STNB2024(37a edició)

Càlcul eficient de funcions theta associades a grups de Schottky p-àdics

Ponents

Marc Masdeu

Resum

Sigui $K/\mathbb{Q}_p$ una extensió finita dels $p$-àdics. Un subgrup de $\operatorname{GL}_2(K)$ es diu de Schottky si és finit generat i format per elements hiperbòlics. Aquests grups són sempre lliures i discrets, i actuen de manera discontínua a $\Omega = \mathbb{P}^1(K) \setminus L$, on $L$ és el grup de punts límit de $\Gamma$. El quocient $\Omega/\Gamma$ és una corba de Mumford, i les funcions theta $p$-àdiques ens permeten calcular la seva jacobiana. En aquesta xerrada explicarem un treball conjunt amb Xavier Xarles on donem un mètode polinomial per calcular aquestes funcions.

Fitxers

No hi ha fitxers per descarregar

Llengües: