STNB2025( 38a edició)

On some recent progress of the Schinzel hypothesis over polynomial rings

Coordinació

Alberto Fernandez Boix

Xerrades

  1. Review of Dirichlet's theorem on primes in arithmetic progressions (Alberto Fernandez Boix)
  2. Basics on Hilbertian fields (Alberto Fernandez Boix)
  3. Classic Hilbertian fields and Hilbertian rings (Alberto Fernandez Boix)
  4. The Schinzel hypothesis for some polynomial rings (Alberto Fernandez Boix)

Referències

\begin{thebibliography} \cite{Schinzelhypothesis} A. Schinzel and W. Sierpi ́nski. Sur certaines hypoth`eses concernant les nombres premiers. Acta Arith., 4:185–208; erratum 5 (1958), 259, 1958. \cite{bodin2020schinzel} A. Bodin, P. D`ebes, and S. Najib. The Schinzel hypothesis for polynomials. Trans. Amer. Math. Soc., 373(12):8339–8364, 2020. \cite{Murtyprogressions} M. Ram Murty and N. Thain. Prime numbers in certain arithmetic progressions. Funct. Approx. Comment. Math., 35:249–259, 2006. \cite{FriedJardenFieldArithmeticbook} M. D. Fried and M. Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzge- biete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Cham, fourth edition, 2023. \end{thebibliography}

Llengües: