
SMALL EXTENSIONS OF ABELIAN ORDERED GROUPS

Lecture I. Abelian ordered groups

1. Ordered sets

In these notes, an ordered set will be a set equipped with a total ordering.

Notation. Let I, J be ordered sets.

• I∞ is the ordered set obtained by adding a (new) last element, which is
formally denoted as ∞.

• Iopp is the ordered set obtained by reversing the ordering of I.
• For S, T ⊂ I and i ∈ I, the following expressions have the obvious meaning

i < S, i > S, S < T.

• I + J is the disjoint union I ⊔ J with the total ordering which respects the
orderings of I and J and satisfies I < J .

An initial segment of an ordered set I is a subset S ⊂ I such that

j ∈ I, i ∈ S, j < i =⇒ j ∈ S.

We denote by Init(I) the set of initial segments of I.
Note that Init(I) is an ordered set with respect to inclusion.

A mapping ι : I → J between two ordered sets is an embedding if it strictly preserves
the ordering

x < y =⇒ ι(x) < ι(y), ∀x, y ∈ I.

We also say that ι : I → J is an extension of I.

An isomorphism of ordered sets is an onto embedding. The order-type of an ordered
set is the class of this set up to isomorphism.

For well-ordered sets the order-type is an ordinal number, like

order-type(I) = 7, ω, ω3 · 4 + 11,

where ω is the order-type of N. We agree that 0 ̸∈ N.

2. Ordered groups

An ordered group (Γ,≤) is an (additive) abelian group Γ equipped with a total
ordering ≤, which is compatible with the group structure:

β < γ =⇒ β + ρ < γ + ρ, ∀ β, γ, ρ ∈ Γ.

For any γ ∈ Γ, we shall denote

|γ| = Max(γ,−γ).

An ordered group Γ has no torsion. In fact, any non-zero γ ∈ Γ satisfies

n|γ| > |γ| > 0, ∀n ∈ N.
1
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An embedding/extension/isomorphism of ordered groups is a group homomorphism
which is simultaneously an embedding/extension/isomorphism of ordered sets.

Basic examples.

• Z ⊂ Q ⊂ Q
(√

2, π
)
⊂ R.

• Z2
lex ⊂ Q2

lex ⊂ Q
(√

2, π
)2
lex

⊂ R2
lex.

Hahn sum and Hahn product. Let I be an ordered set, and let (Γi)i∈I be a family
of ordered groups parameterized by I.

We define their Hahn sum as the direct sum⨿
i∈I

Γi :=
⊕
i∈I

Γi,

equipped with the lexicographical order.

Consider the product
∏

i∈I Γi. For any element a = (ai)i∈I in this product, the
support of a is the subset supp(a) ⊂ I formed by all indices i with ai ̸= 0.

We define the Hahn product (∏
i∈I

Γi

)
lex

⊂
∏
i∈I

Γi

as the subgroup formed by all elements whose support is a well-ordered subset of I,
with respect to the ordering induced by that of I.

It is easy to check that it makes sense to consider the lexicographical order on this
subgroup.

Clearly, the Hahn product is an extension of the Hahn sum:⨿
i∈I

Γi ⊂

(∏
i∈I

Γi

)
lex

.

If all ordered groups coincide, Γi = Γ for all i ∈ I, then we use the notation

Γ(I) ⊂ ΓI
lex,

for the Hahn sum and product, respectively.

Ordered groups as valuation groups. Every ordered group Γ is the value group
of some valued field. For any field k, we may consider the group algebra k[Γ], whose
elements may be expressed as: ∑

γ∈S

aγt
γ, aγ ∈ k,

where S is a finite subset of Γ and t is a formal symbol.
This ring admits the valuation

v : k[Γ] −→ Γ∞,
∑
γ∈S

aγt
γ 7−→ Min{γ ∈ S | aγ ̸= 0}.

The support of the valuation is v−1(∞) = {0}. This proves that k[Γ] is an integral
domain, and the valuation may be extended to its field of fractions.



SMALL EXTENSIONS OF ABELIAN ORDERED GROUPS 3

Divisible hull. A torsion-free group G is divisible if for all γ ∈ G and all n ∈ N,
there exists (a necessarily unique) β ∈ G such that nβ = γ.

For any ordered group Γ the group

ΓQ := Γ⊗Q
is divisible, and it has a natural structure of ordered group with the ordering deter-
mined by the condition

γ ⊗ (1/n) < β ⊗ (1/m) ⇐⇒ mγ < nβ,

for all n,m ∈ N and all γ, β ∈ Γ.

Since Γ has no torsion, it may be embedded in a unique way into ΓQ as an ordered
group. We say that ΓQ is the divisible hull of Γ, because it the minimal divisible
extension of Γ.

Lemma 2.1. For any embedding ι : Γ ↪→ Λ into a divisible ordered group Λ, there
exists a unique embedding of ΓQ into Λ such that ι coincides with the composition
Γ ↪→ ΓQ ↪→ Λ.

3. Convex subgroups and rank

Any subgroup H ⊂ Γ inherites the structure of ordered group, just by taking the
induced ordering. However, the quotient Γ/H does not always inherit a structure of
ordered group.

This occurs if and only if H is a convex subgroup; that is,

β ∈ Γ, γ ∈ H, |β| < |γ| =⇒ β ∈ H.

In this case, we may define an ordering in Γ/H by:

β +H < ρ+H ⇐⇒ β +H ̸= ρ+H and β < ρ.

The notation β + H < ρ + H is compatible with the natural meaning of such an
inequality for arbitrary subsets of Γ. That is, every element in β +H is smaller than
any element in ρ+H.

Lemma 3.1. Let f : Γ → ∆ be an order-preserving group homomorphim between two
ordered groups. Then, Ker(f) is a convex subgroup of Γ and the natural isomorphism
between Γ/Ker(f) and f(Γ) is order-preserving too.

Lemma 3.2. The convex subgroups of Γ are totally ordered by inclusion.

Proof. Let H, H ′ be convex subgroups such that there exists γ ∈ H \H ′.
Then, for all β ∈ H ′ we must have |β| < |γ|, so that H ′ ⊂ H. □

Definition. Let Cvx = Cvx(Γ) be the ordered set of all proper convex subgroups,
ordered by increasing inclusion

{0} ⊂ · · · ⊂ H ⊂ · · ·
The order-type of Cvx is called the rank of Γ, and is denoted rk(Γ).

We may identify Cvx∞ with the ordered set of all convex subgroups of Γ, by letting
∞ represent the whole group Γ.
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Examples.

• rk(Z) = rk(Q) = rk(R) = 1.

• rk(Rn
lex) = n. The sequence of convex subgroups is

{0} ⊂ {0} × · · · × {0} × R ⊂ · · · ⊂ {0} × R× · · · × R ⊂ Rn
lex,

• rk
(
RN

lex

)
= order-type ((N∞)opp), rk

(
RQ

lex

)
> order-type ((Q∞)opp).

• rk(Γ) = rk(ΓQ).

Principal convex subgroups. Let Γ be an ordered group. For any γ ∈ Γ, we
denote by H(γ) the convex subgroup of Γ generated by γ. That is,

H(γ) = {β ∈ Γ | |β| ≤ n|γ| for some n ∈ N} .
Equivalently, H(γ) is the intersection of all convex subgroups containing γ.

These convex subgroups H(γ) are said to be principal.

Definition. Let I = PrCvx(Γ) be the ordered set of non-zero convex principal
subgroups of Γ, ordered by decreasing inclusion.

· · · ⊃ H(γ) ⊃ · · ·
The order-type of I is called the principal rank of Γ, and is denoted prk(Γ).

We may identify I∞ with a set of indices parameterizing all principal convex sub-
groups of Γ. For any i ∈ I we shall denote by Hi the corresponding principal convex
subgroup. We agree that H∞ = {0}.

Then, according to our convention, for any pair of indices i, j ∈ I∞, we have

i < j ⇐⇒ Hi ⊋ Hj.

Lemma 3.3. Every convex subgroup H ⊂ Γ satisfies H =
∪

i∈I,Hi⊂H Hi.

Proof. For all γ ∈ H, the principal convex subgroup H(γ) is contained in H. □
Corollary 3.4. If I is well-ordered, then all convex subgroups are principal.

Proof. For any convex subgroup H, the subset {i ∈ I | Hi ⊂ H} ⊂ I has a minimal
element i0. By Lemma 3.3, H = Hi0 . □
Skeleton of an ordered group and immediate extensions. If H = H(γ) is a
non-zero principal convex subgroup of Γ, we denote by H∗ the union of all principal
convex subgroups not containing γ.

Clearly, H ⊋ H∗ is a convex subgroup (not necessarily principal) and there are no
convex subgroups between these two subgroups.

In other words, H∗ is the immediate precedessor of H in the ordered set Cvx∞. In
particular, the quotient H/H∗ is an ordered group of rank one.

Definition. This quotient H/H∗ is said to be the component of Γ determined by
the non-zero principal convex subgroup H.

The component of Γ determined by any i ∈ I will be denoted as

Ci = Ci(Γ) = Hi/H
∗
i .
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The skeleton of Γ is the pair (I, (Ci)i∈I).

Lemma 3.5. Let Γ ↪→ Λ be an extension of ordered groups. The mappings

Cvx(Γ) −→ Cvx(Λ), H 7−→ convex subgroup of Λ generated by H,

PrCvx(Γ)
ι−→ PrCvx(Λ), H(γ) 7−→ convex subgroup of Λ generated by γ,

are embeddings of ordered sets. Thus, rk(Γ) ≤ rk(Λ) and prk(Γ) ≤ prk(Λ).
Moreover, if i ∈ I = PrCvx(Γ) is the element that corresponds to H(γ), then

the embedding H(γ) ⊂ HΛ(γ) induces an embedding Ci(Γ) ↪→ Cι(i)(Λ) between their
respective components.

Definition. The extension Γ ↪→ Λ is immediate if it preserves the skeleton. That is,
it induces an isomorphism PrCvx(Γ) ≃ PrCvx(Λ) of ordered sets, and isomorphisms
Ci(Γ) ≃ Cι(i)(Λ) between all the components.

If an extension Γ ↪→ Λ is immediate, then prk(Γ) = prk(Λ) by the very definition
of the principal rank. Also, one has rk(Γ) = rk(Λ) by Lemma 3.7.

The converse implication is not true. All non-trivial subgroups of R have rank one,
but they have many different skeletons.

Ordered groups with a prefixed skeleton. Let I be an ordered set and (Ci)i∈I
a family of ordered groups of rank one, parameterized by I.

The Hahn sum and product ⨿
i∈I

Ci ⊂

(∏
i∈I

Ci

)
lex

have both skeleton (I, (Ci)i∈I).

More precisely, let Γ denote any one of these two groups, the Hahn sum or the
Hahn product. For each i ∈ I, consider the following subgroup of Γ:

Hi = {(aj)j∈I | aj = 0 for all j < i}.
Then, Hi is the principal subgroup of Γ generated by any (aj)j∈I ∈ Hi with ai ̸= 0.

Also, the assignment i 7→ Hi determines an isomorphism of ordered sets between I
and I(Γ). In particular, prk(Γ) is the order-type of I.

Moreover, the projection homomorphism

Hi −→ Ci, (aj)j∈I 7−→ ai

induces an isomorphism of ordered groups between Hi/H
∗
i and Ci.

Relationship between rank and principal rank. Since prk(Γ) = order-type(I) is
related to the set of components of Γ, it gives a more precise idea about the structure
of Γ as an ordered group than rk(Γ) = order-type(Cvx).

However, the ordered sets I and Cvx determine one to each other.

Lemma 3.6. The set I is the subset of Cvx∞ formed by all elements admitting an
immediate predecessor.1

1The ordering of I is the opposite of the ordering induced by Cvx∞.
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Proof. We have already mentioned that any non-zero principal convex subgroup H
has an immediate predecessor H∗.

Conversely, if H ′ ⊊ H is an immediate predecessor of a convex subgroup H, then
H is the principal subgroup generated by any γ ∈ H \H ′. □

To any initial segment S ∈ Init(I), we may associate the convex subgroup

HS =
∪

i∈I, i>S

Hi.

Conversely, to any convex subgroup H ⊂ Γ, we may associate the initial segment

SH = {i ∈ I | Hi ⊋ H} ⊂ I.

Lemma 3.7. The assignment S 7→ HS determines an isomorphism of ordered sets:

Init(I)opp −→ Cvx∞.

Its inverse is the assignment H 7→ SH .

Proof. Let us first check that the first mapping is an embedding of ordered sets:

T ⊋ S =⇒ HT ⊊ HS.

In fact, if i ∈ T \ S, then HT ⊂ H∗
i ⊊ Hi ⊂ HS.

Finally, it is an onto map because H = HSH
by Lemma 3.3. □

Let us discuss in more detail how Cvx is constructed from I.
Any i ∈ I determines two “trivial” initial segments:

I≤i = {j ∈ I | j ≤ i} ⊋ I<i = {j ∈ I | j < i} .
There are two more trivial initial segments, the whole set I and the empty subset ∅.

Finally, there are non-trivial initial segments S ⊂ I such that neither S has a
maximal element, nor I \ S has a minimal element.

To each of these initial segments the above correspondence assigns the following
convex subgroups.

initial segment convex subgroup

I {0}
I≤i H∗

i

I<i Hi

S non-trivial HS non-principal

∅ Γ

The subgroup H∗
i is principal if and only if i has an immediate successor (say i+1)

in I. In this case, I≤i = I<i+1 and H∗
i = Hi+1.

Thus, non-principal convex subgroups arise in a two-fold way. Either from non-
trivial initial segments, or from elements i ∈ I with no immediate successor in I.

For instance, suppose that I = Q. Then, every non-trivial initial segment of I
determines a non-principal convex subgroup parameterized by a real number. On the
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other hand, every rational number q determines two convex subroups H∗
q ⊊ Hq, from

which only Hq is principal.
Thus, Cvx = {0}+ (Ropp)◦, where (Ropp)◦ is a real line with the opposite order, in

which every rational number has been doubled by adding an immediate predecessor
of it.

Corollary 3.8. The following conditions are equivalent.

(1) Γ is a principal convex subgroup.
(1) I has a minimal element.
(2) Cvx has a maximal element (immediate predecessor of Γ).

Example. Since N is well-ordered, Corollary 3.8 shows that the Hahn product

RN
lex = RN

is a principal convex subgroup (of itself). Its immediate predecessor is the subgroup
of all elements (ai)i∈N with a1 = 0.

On the other hand, only the finite subsets of Nopp are well-ordered. Thus, the Hahn
product

R(Nopp) = RNopp

lex ⊊ RNopp

is not a principal convex subgroup of itself, by Corollary 3.8.

4. Arquimedean classes and Hahn’s theorem

Let Γ be an ordered group. Two non-zero elements β, γ ∈ Γ are arquimedeanly
equivalent if there exist n,m ∈ N such that

|β| < n|γ| and |γ| < m|β|.
In this case, we write β ∼ γ.

Clearly, this defines an equivalence relation on Γ \ {0}. The equivalence classes
are in canonical bijection with the set I(Γ) parameterizing non-zero principal convex
subgroups of Γ.

Lemma 4.1. Two non-zero elements β, γ ∈ Γ are arquimedeanly equivalent if and
only if they generate the same convex subgroup: H(β) = H(γ).

Definition. We say that Γ is arquimedean if all non-zero elements are arquimedeanly
equivalent.

Theorem 4.2. Let Γ be a non-trivial ordered group. The following conditions are
equivalent.

(1) Γ is arquimedian.
(2) Γ has rank one.
(3) Γ is isomorphic to a subgroup of R.

Proof. By Lemma 4.1, (1) is equivalent to prk(Γ) = 1. By Lemma 3.7, this is equiv-
alent to rk(Γ) = 1 too.

By Lemma 3.5, (3) implies (2). Thus, it remains only to show that (1) implies (3).

Suppose that Γ is arquimedian, and choose any positive γ ∈ Γ. The embedding
Γ ↪→ R sends any β ∈ Γ to the real number determined by the sequence of rational
numbers n/m such that mβ ≤ nγ. □
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Maximal groups. An ordered group Γ is maximal if it admits no immediate exten-
sions. More precisely, if any immediate extension of Γ is an isomorphism.

Theorem 4.3. Let I be an ordered set and (Ci)i∈I a family of ordered groups of rank
one, parameterized by I. The Hahn product

(∏
i∈I Ci

)
lex

is maximal.

Hahn’s theorem.

Definition. An ordered group Γ is regular if for every i ∈ I(Γ), there exists a ring
Z ⊂ Ai ⊂ Q such that the component Ci(Γ) is free as an Ai-module.

Theorem 4.4 (Hahn’s theorem). Every regular ordered group Γ admits an immediate
embedding to the Hahn product determined by the skeleton of Γ.

Corollary 4.5. Every regular and maximal ordered group is isomorphic to the Hahn
product determined by its skeleton.

Corollary 4.6. Every ordered group Γ may be embedded into RI(Γ)
lex .

Proof. We may embed Γ into ΓQ, which is obviously regular, because its components
are Q-vector spaces. This extension preserves the ordered sets of principal convex
subgroups: I(Γ) ≃ I(ΓQ).

By Hahn’s theorem, ΓQ may be embedded into a Hahhn product where the com-
ponents are parameterized by I(Γ). This Hahn product may be obviously embedded

into RI(Γ)
lex . □
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Lecture II. Small extensions of ordered groups

5. Small extensions in a fixed universe

5.1. Small extensions.

Commensurable extensions. The rational rank of an abelian group G is the car-
dinality of any maximal subset of Z-linearly independent elements in G:

rr(G) = dimQ(G⊗Z Q).

Clearly, rr(G) = 0 if and only if G is a torsion group.

An extension of ordered groups Γ ↪→ Λ is commensurable if rr(Λ/Γ) = 0.

The extension Γ ↪→ ΓQ is obviously commensurable. Actually, ΓQ is simultaneously
the minimal divisible extension of Γ and the maximal commensurable extension of Γ.

Lemma 5.1. For any commensurable extension Γ ↪→ Λ, there exists a unique embed-
ding of Λ into ΓQ such that the composition Γ ↪→ Λ ↪→ ΓQ is the canonical embedding.

For an arbitrary extension ι : Γ ↪→ Λ, we denote by

Γ ↪→ Λcom ⊂ Λ

the maximal commensurable extension of Γ in Λ; that is,

Λcom = {ξ ∈ Λ | mξ ∈ ι(Γ), for some m ∈ N} .

Definition. We say that Γ ↪→ Λ is a small extension if Λ/Λcom is a cyclic group.

Therefore, a small extension is either commensurable (if Λcom = Λ), or it has
rr(Λ/Γ) = 1 and the quotient Λ/Λcom is isomorphic to Z.

This definition is motivated by the following result.

Theorem 5.2. Let K be a field and let µ : K[x] ↠ Γµ∞ be a valuation on the
polynomial ring K[x]. Let Γ = µ(K∗) be the value group of the restriction of µ to K.
Then, Γ ⊂ Γµ is a small extension of ordered groups.

Equivalent extensions. Two extensions of Γ,

Γ ↪−→ Λ, Γ ↪−→ Λ′,

are said to be equivalent if there is an isomorphism Λ −→∼ Λ′ of ordered groups
fitting into a commmutative diagram:

Λ

↑ ↘
Γ −→ Λ′

By Lemma 5.1, every commensurable extension of Γ is equivalent to a unique
subgroup of ΓQ.
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Extensions that increase the rank at most by one. By Lemma 3.5, any exten-
sion Γ ↪→ Λ of ordered groups induces two embeddings of ordered sets

(1) Cvx(Γ) ↪−→ Cvx(Λ), PrCvx(Γ) ↪−→ PrCvx(Λ).

The following well-known inequality is an easy consequence of Hahn’s theorem:

(2) rr(Λ/Γ) ≥ ♯PrCvx(Λ) \ PrCvx(Γ),
where we identify PrCvx(Γ) with its image in PrCvx(Λ) under the embedding of (1).

Lemmas 3.6 and 3.7 describe how the sets Cvx(Γ) and PrCvx(Γ) determine one to
each other. From this relationship it follows

♯PrCvx(Λ) \ PrCvx(Γ) = 0 ⇐⇒ ♯Cvx(Λ) \ Cvx(Γ) = 0

♯PrCvx(Λ) \ PrCvx(Γ) = 1 ⇐⇒ ♯Cvx(Λ) \ Cvx(Γ) = 1

Definition. We say that the extension Γ ↪→ Λ increases the rank at most by one if

♯PrCvx(Λ) \ PrCvx(Γ) ≤ 1.

If ♯PrCvx(Λ) \ PrCvx(Γ) = 0 we say that Γ ↪→ Λ preserves the rank.
If ♯PrCvx(Λ) \ PrCvx(Γ) = 1 we say that Γ ↪→ Λ increases the rank by one.

Caution! This terminology abuses of language. If Γ ↪→ Λ preserves the rank, then
obviously rk(Γ) = rk(Λ), but the converse is not true.

For instance, N0 = {0} + N is isomorphic to N as an ordered set; hence, the
ordered groups RN

lex and RN0
lex have the same rank. However, the natural embedding

RN
lex ↪→ RN0

lex increases the rank by one.

It follows from (2) that the extension Γ ↪→ ΓQ preserves the rank.

Lemma 5.3. Every small extension Γ ↪→ Λ increases the rank at most by one

Proof. Since a small extension satisfies rr(Λ/Γ) ≤ 1, the statement is a consequence
of the inequality in (2). □

5.2. Small subextensions of a fixed universe. From now on, we fix an extension
Γ ↪→ U of ordered groups, and we identify Γ with its image in U .

For any γ ∈ U , the subgroups generated by γ over Γ and U com,

Γ ⊂
⟨
Γ, γ

⟩
⊂
⟨
U com, γ

⟩
⊂ U

are small extensions of Γ in U .
We are not aiming at a classification of the small extensions of Γ in U . Rather, in

view of the applications to valuations, we are interested in the classification of the
elements in U by a certain equivalence relation.

Definition. We say that β, γ ∈ U are Γ-equivalent if there exists an isomorphism of
ordered groups ⟨

Γ, β
⟩

−→∼
⟨
Γ, γ

⟩
,

which acts as the identity on Γ and sends β to γ.
In this case, we write β ∼Γ γ, or simply β ∼ γ if the base group Γ is clear from the

context. We denote by [β]Γ = [β] ⊂ U the class of β.
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By Lemma 5.1, any grup homomorphism
⟨
U com, β

⟩
→ U which acts as the identity

on Γ, acts as the identity on U com.
The next result follows immediately from this fact.

Lemma 5.4. (1) Two elements β, γ ∈ U are Γ-equivalent if and only if they are
U com-equivalent.

(2) If β ∈ U com, then [β] = {β}.
Let U incom = U \ U com be the subset of incommensurable elements over Γ. There

is an easy criterion to decide when two elements in U incom are Γ-equivalent.

Lemma 5.5. Let β, γ ∈ U incom with β < γ. Then, β and γ are Γ-equivalent if and
only if there is no b ∈ U com such that β < b < γ.

Proof. Any element in the subgroup
⟨
Γ, β

⟩
may be written in a unique way as

a+mβ, with a ∈ Γ, m ∈ Z.
Hence, for any β, γ ∈ U incom there is a unique group isomorphism

h :
⟨
Γ, β

⟩
−→∼

⟨
Γ, γ

⟩
acting as the identity on Γ and sending β to γ. We have β ∼ γ if and only if this
homomorphism h preserves the ordering.

Suppose that β < b < γ, for some b ∈ U com. Then, h does not preserve the
ordering, because γ = h(β) > b = h(b). Thus, β and γ are not Γ-equivalent.

Conversely, suppose that there is no b ∈ U com such that β < b < γ. Let us check
that the homomorphism h preserves the ordering.

For arbitray elements in
⟨
Γ, β

⟩
, we clearly have,

(3) a+mβ < a′ +m′β ⇐⇒


m = m′, a < a′, or

m < m′, (a− a′)/(m′ −m) < β, or

m > m′, (a− a′)/(m′ −m) > β.

By our assumption, if m ̸= m′ we have

a− a′

m′ −m
< β ⇐⇒ a− a′

m′ −m
< γ,

because (a− a′)/(m′ −m) belongs to U com.
Hence, the conditions of the right-hand side of (3) are satisfied if we replace β with

γ. Therefore, a+mγ < a′ +m′γ, and this proves that h preserves the ordering. □
Our aim in this lecture is to find explicit computations of the quotient set U/∼ for

some concrete ordered groups U .

6. Small extensions that preserve the rank

Let Γ be an ordered group. From now on, we denote

I = PrCvx(Γ) = PrCvx(ΓQ),

where we identify PrCvx(Γ) = PrCvx(ΓQ) by the natural isomorphism induced by
the embedding Γ ↪→ ΓQ.

If (I; (Ci)i∈I) is the skeleton of Γ, then the skeleton of ΓQ is

(I; (Qi)i∈I) , where Qi = Ci ⊗Z Q for all i.
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In section 4, we constructed a maximal embedding of Γ which preserves the rank.
Let us recall this construction. Consider the Hahn product

H(ΓQ) =

(∏
i∈I

Qi

)
lex

.

By Hahn’s theorem, there is an immediate embedding ΓQ ↪→ H(ΓQ). This embedding
has the following property.

Lemma 6.1. For any i ∈ I and any q ∈ Qi, there exists an element bi,q ∈ ΓQ whose
image in H(ΓQ) is of the form:

bi,q = (· · · 0 0 q ⋆ ⋆ · · · ).

That is, bi,q = (bj)j∈I , with bi = q and bj = 0 for all j < i.

For each i ∈ I we fix, once and for all, a positive element 1i ∈ Qi. This choice
determines an embedding Qi ↪→ R of ordered groups, which sends our fixed element
1i to the real number 1.

For any q ∈ Qi, we abuse of language and denote by the same symbol q ∈ R the
image of q by the embedding Qi ↪→ R.

Thus, we get extensions

Γ ↪−→ ΓQ ↪−→ H(ΓQ) ↪−→ RI
lex.

Lemma 6.2. For any rank-preserving extension Γ ↪→ Λ, there exists an embedding
Λ ↪→ RI

lex fitting into a commutative diagram

Λ

↑ ↘
Γ −→ RI

lex

Proof. Since ΛQ is divisible, Lemma 2.1 shows that there exists a commutative dia-
gram of embeddings of ordered groups

Λ −→ ΛQ

↑ ↑
Γ −→ ΓQ

By hypothesis, the isomorphisms of (1) determine natural identifications:

PrCvx(ΓQ) = PrCvx(Γ) = I = PrCvx(Λ) = PrCvx(ΛQ).

Also, if the skeleton of ΛQ is (I; (Li)i∈I), we have natural embeddings of Q-vector
spaces

Qi ↪−→ Li, for all i ∈ I.

The immediate embedding ΓQ ↪→ H(ΓQ) given by Hahn’s theorem relies on certain
choices of Q-bases of the components Qi. Analogous choices for the components Di
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can be made in a compatible way with the embeddings Qi ↪→ Li. Hence, we may
extend our commutative diagram above to a larger one:

Λ −→ ΛQ −→ H(ΛQ)

↑ ↑ ↑
Γ −→ ΓQ −→ H(ΓQ)

Finally, for any i ∈ I, we denote by 1i ∈ Li the image of the positive element
1i ∈ Qi by the embedding Qi ↪→ Li. This choice determines an embedding Li ↪→ R
which is compatible with the embeddings Qi ↪→ Li an Qi ↪→ R. In other words, we
may assume that the composition

Qi ↪−→ Li ↪−→ R
is our fixed embedding Qi ↪→ R. Therefore, we have a commutative diagram of
embeddings

Λ −→ ΛQ −→ H(ΛQ)

↑ ↑ ↑ ↘
Γ −→ ΓQ −→ H(ΓQ) −→ RI

lex

This ends the proof of the lemma. □

Caution! The embedding Λ ↪→ RI
lex is not necessarily unique. Thus, every rank-

preserving extension of Γ is equivalent to some subextension of Γ ↪→ RI
lex, but not to

a unique one!

For instance, if β, γ ∈ RI
lex are two different incommensurable elements (over Γ)

which are Γ-equivalent, then the subgroups
⟨
Γ, β

⟩
and

⟨
Γ, γ

⟩
are equivalent, but

they may be different.
Our aim in this section is to find a canonical system of representatives of RI

lex/ ∼.
Clearly, (

RI
lex

)com
= ΓQ,

and the classes of commensurable elements are computed in Lemma 5.4.
Thus, we focus on the computation of classes of incommensurable elements.

Canonical system of representatives of
(
RI

lex

)incom
/ ∼. Let Init(I) be the set of

initial segments of I. For any S ∈ Init(I), consider the canonical projection

πS : RI
lex −→ RS

lex, β = (βi)i∈I 7−→ βS = (βi)i∈S.

This is a homomorphism of ordered groups, admitting a section

ιS : RS
lex ↪−→ RI

lex, ρ = (ρi)i∈S 7−→ ιS(ρ) = (ρ | 0),
where (ρ | 0) has the obvious meaning.

Definition. An element ρ ∈ RS
lex is said to be commensurable over Γ if there exists

b ∈ ΓQ such that bS = ρ.

Lemma 6.3. For any β ∈
(
RI

lex

)incom
and any S ∈ Init(I) such that βS is incom-

mensurable, we have β ∼ (βS | 0).
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Proof. Suppose that β < (βS | 0). Any γ ∈ RI
lex such that β < γ < (βS | 0) has

necessarily γS = βS. Since this element is incommensurable, γ cannot belong to ΓQ.
By the criterion of Lemma 5.5, β ∼ (βS | 0).

If β > (βS | 0), the argument is completely analogous. □

For the construction of a canonical system of representatives of
(
RI

lex

)incom
/ ∼ it

suffices to consider inside each class [β] the element having minimal support.

Definition. A minimal incommensurable element is any β ∈
(
RI

lex

)incom
for which

there exists S ∈ Init(I) such that

(1) βS is incommensurable.
(2) βT is comensurable, for all T ∈ Init(I) such that T ⊊ S.
(3) β = (βS | 0).

Theorem 6.4. The set of minimal incommensurable elements is a system of repre-

sentatives of
(
RI

lex

)incom
/ ∼.

The proof of this theorem follows from Lemmas 6.6 and 6.7 below.

Lemma 6.5. For any well-ordered set J , there is an isomorphism of ordered sets:

J∞ −→ Init(J), j 7−→ J<j = {k ∈ J | k < j}
In particular, Init(J) is a well-ordered set.

Proof. Clearly, this mapping strictly preserves the ordering:

j < k =⇒ J<j ⊊ J<k.

Let us check that the mappping is onto. Since J is well-ordered, for any S ∈ Init(J),
S ⊊ J , there exists j0 = Min(J \ S), and clearly S = J<j0 .

Finally, for S = J we have obviously J = J<∞. □

Lemma 6.6. For any β ∈
(
RI

lex

)incom
, the subset of Init(I) formed by the initial

segments S such that βS is incommensurable contains a minimal element.
For this minimal S, (βS | 0) is a minimal incommensurable element in [β].

Proof. Let J = supp(β), which is a well-ordered subset of I. By Lemma 6.5, Init(J)
is a well-ordered set too. Consider the natural embedding

Init(J) ↪−→ Init(I), T 7−→ T̃ =
∪

j∈J
I≤j,

where T̃ is the minimal initial segment of I containing T .
Consider the subsets

ΣJ =
{
T ∈ Init(J) | βT̃ is incommensurable

}
⊂ Init(J),

ΣI = {S ∈ Init(I) | βS is incommensurable} ⊂ Init(I).

By definition, if T ∈ ΣJ , then T̃ ∈ ΣI .
Since β is incommensurable, J belongs to ΣJ , so that ΣJ ̸= ∅. Since Init(J) is

well-ordered, there exists T0 = Min(ΣJ). Let us show that T̃0 = Min(ΣI).

For any S ∈ ΣI , the set T = S ∩ J ∈ Init(J) satisfies T̃ ⊂ S. Since βT̃ and βS have

support T , we have T ∈ ΣJ too. Since T0 ⊂ T , we deduce that T̃0 ⊂ T̃ ⊂ S.
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Clearly, (βS | 0) is a minimal incommensurable element, and β ∼ (βS | 0) by
Lemma 6.3. □

Lemma 6.7. The minimal incommensurable elements are pairwise inequivalent.

Proof. Let β = (βS | 0), γ = (γT | 0) be two minimal incommensurable elements, and
take j = Min(supp(β − γ)). Assume for instance S ⊂ T .

If j ̸∈ S, then j > S and βS = γS. This implies S = T and β = γ. In fact, since
γS = βS is incommensurable, we cannot have S ⊊ T by the minimality of T .

Suppose j ∈ S and let R = I<j ∈ Init(I). Since R ⊊ S, γR = βR is commensurable.
Let b = (bi)i∈I ∈ ΓQ such that γR = βR = bR.

On the other hand, we have (for instance) βj < γj, and there exists q ∈ Qj such
that βj < q < γj. Now, consider the element bj,q−bj ∈ ΓQ defined in Lemma 6.1. The
element c = b + bj,q−bj ∈ ΓQ satisfies β < c < γ. By Lemma 5.5, β and γ are not
Γ-equivalent. □

This ends the proof of Theorem 6.4.

Definition. Let EqRk(Γ) be the set of minimal incommensurable elements in RI
lex.

We define the equal-rank closure of Γ as the totally ordered set

ΓR = ΓQ ⊔ EqRk(Γ) ⊂ RI
lex,

which is a canonical system of representatives of RI
lex/ ∼.

The set EqRk(Γ), canonical system of representatives of
(
RI

lex

)incom
/∼, splits in

a natural way into the disjoint union of two subsets.

Lemma 6.8. Let β = (βS | 0) ∈ EqRk(Γ) be a minimal incommensurable element in
RI

lex. The following conditions are equivalent.

(1) β does not belong to H(ΓQ).
(2) The initial segment S contains a maximal element.

Proof. Suppose that β = (βi)i∈I ̸∈ H(ΓQ), and let J = supp(β). By our assumption,

J0 := {j ∈ J | βj ̸∈ Qj} ̸= ∅.

Since J is well-ordered, it exists j0 = Min (J0). Since βj0 ̸= 0, we have j0 ∈ S. Let

R0 = I<j0 ⊊ R = I≤j0 ⊂ S.

Since βR is incommensurable and βR0 is commensurable, we must have R = S by the
minimality of S. Hence, S has j0 as its maximal element.

Suppose that S contains a maximal element i, and let T = I<i ⊊ S. By hypothesis,
βT is commensurable, so that there exists b ∈ ΓQ such that βT = bT . In particular,
βj ∈ Qj for all j < i. This implies that βi ̸∈ Qi, so that β does not belong to H(ΓQ).

In fact, if βi ∈ Qi, we may consider the element c = bi,βi−bi ∈ ΓQ described in
Lemma 6.1. The element b+c ∈ ΓQ satisfies (b+c)S = βS, which is a contradiction. □

Definition. Let β ∈
(
RI

lex

)incom
. The class [β] is said to be rationally incommensu-

rable if there exists γ ∈ H(ΓQ) such that β ∼ γ.
Otherwise, the class [β] is said to be irrationally incommensurable.
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According to this definition, we may split the set EqRk(Γ) into the disjont union
of two subsets

EqRk(Γ) = EqRkrat(Γ) ⊔ EqRkirrat(Γ),

which represent the rationally and irrationally incommensurable classes, respectively.
By Lemma 6.8, we may describe these subsets as:

EqRkrat(Γ) = EqRk(Γ) ∩H(ΓQ), EqRkirrat(Γ) =
∪

i∈I
EqRkirrat(Γ)i,

EqRkirrat(Γ)i :=
{
(b | q | 0) | b ∈ RI<i

lex commensurable, q ∈ R \Qi

}
.

Caution! The set EqRkrat(Γ) is a system of representatives of (H(ΓQ) \ ΓQ) / ∼.
However, the set EqRkirrat(Γ) does not represent all classes in

(
RI

lex \H(ΓQ)
)
/ ∼.

In this latter set we may have rationally incommensurable classes. That is, there may
exist elements β ∈ RI

lex \H(ΓQ) such that the class [β] contains elements in H(ΓQ).

Before giving some examples, let us emphasize a relevant observation, which is an
immediate consequence of the fact that ΓQ = H(ΓQ) if Γ has finite rank.

Lemma 6.9. If rk(Γ) < ∞, then EqRkrat(Γ) = ∅.

Examples.

(0) Γ = {0}.
I = ∅, ΓQ = ΓR = {0}.

(1) rk(Γ) = 1.

EqRkrat = ∅, EqRkirrat = R \ ΓQ, ΓR = R.
(2) Γ = R2

lex.

EqRkrat = EqRkirrat = ∅, ΓR = Γ.

(3) Γ = Q2
lex.

EqRkrat = ∅, EqRkirrat =
{
(x, 0) ∈ R2 | x ∈ R \Q

}
⊔ (Q× (R \Q)) .

ΓR = R2
lex \

{
(x, y) ∈ R2 | x ̸∈ Q, y ̸= 0

}
.

(4) Γ = R(N).

EqRkrat = RN \ R(N), EqRkirrat = ∅, ΓR = RN
lex = RN.

(5) Γ = Q(N), RI
lex = RN.

EqRkrat = QN \Q(N), EqRkirrat =
∪

i∈N

(
Qi−1 × (R \Q)× {0}N>i

)
.

ΓR = QN ⊔ EqRkirrat .

(6) Γ = R(I), for I = N+ N ≃ ({1, 2} × N)lex.

RI
lex =

(
RN × RN)

lex
, EqRkirrat = ∅.

EqRkrat = {(x, 0) | x ∈ RN \ R(N)} ⊔ {(x, y) | x ∈ R(N), y ∈ RN \ R(N)}.
ΓR =

(
RN × RN)

lex
\
{
(x, y) ∈ RN × RN | x ̸∈ R(N), y ̸= 0

}
.
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7. Small extensions that increase the rank by one

7.1. One-added-element embeddings of ordered sets.

Definition. An embedding of (totally) ordered sets

ι : I ↪−→ J

is a one-added-element embedding if J \ ι(I) is a one-element subset of J .

Caution! This concept should be not confused with the property

order-type(J) = order-type(I) + 1,

which has an specific meaning if I and J are well-ordered and their order-type is an
ordinal number.

For instance, the one-added-element embedding

(4) N ↪−→ N, n 7−→ n+ 1,

has source and target with order-type equal to ω.

Generic example. Let I be an ordered set. For any S ∈ Init(I), consider the
ordered set

(5) IS = S + {iS}+ Sc,

where Sc = I \ S is the complementary subset of S in I.
The natural embedding I ↪→ IS is a one-added-element embedding. Also, every

one-added-element embedding I ↪→ J is isomorphic to IS for a unique S ∈ Init(I).
More precisely, there is a unique S ∈ Init(I) and a unique isomorphism IS −→∼ J

of odered sets, fitting into a commutative diagram

IS

↑ ↘
I ↪−→ J

For instance, for I = J = N and the one-added-embedding of (4), we have S = ∅,
IS = {0}+ N and the isomorphism IS −→∼ J maps n 7→ n+ 1 for all n ≥ 0.

Universal construction. Let I be an ordered set. Consider the “double-I” set

II := I ∪ {iS | S ∈ Init(I)} .

We may consider a natural total ordering determined by

(1) For all S ∈ Init(I), the restriction of the ordering to IS = I ∪ {iS} is the
ordering considered in (5).

(2) iS < iT ⇐⇒ S ⊊ T, for all S, T ∈ Init(I).

This ordered set is called the one-added-element hull of I. It satisfies an obvious
universal property.
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Lemma 7.1. For any one-added-element embedding I ↪→ J of ordered sets, there
exists a unique embedding J ↪→ II fitting into a commutative diagram

J

↑ ↘
I ↪−→ II

The image of J in II is IS for a unique S ∈ Init(I).

7.2. Small extensions that increase the rank by one. Let Γ ↪→ Λ be an exten-
sion of ordered groups.

Lemma 7.2. If the extension Γ ↪→ Λ increases the rank by one, there is a unique
S ∈ Init(I) and an embedding Λ ↪→ RIS

lex fitting into commutative diagram:

Λ

↗ ↘
Γ ↪−→ RI

lex ↪−→ RIS
lex ↪−→ RII

lex

Proof. The initial segment S is uniquely determined by the condition PrCvx(Λ) ≃ IS.
Then, the proof follows immediately from Lemma 7.1. □

Caution! For any S ∈ Init(I), all subextensions of Γ ↪→ RIS
lex increase the rank at

most by one. However, the extension Γ ↪→ RII
lex admits subextensions yielding a much

larger increase of the rank. We consider the ordered group RII
lex only to make it clear

that the union of ordered groups∪
S∈Init(I)

RIS
lex ⊂ RII

lex

has a natural total ordering.

The rest of the section is devoted to classify the incommensurable elements that
increase the rank by one. The application of the criterion of Lemma 5.5, leads to the
computation of a set of representatives of the quotient set(∪

S∈Init(I)
RIS

lex \ R
I
lex

)/
∼

To start with, we must determine what elements γ ∈
∪

S∈Init(I)
(
RIS

lex \ RI
lex

)
deter-

mine an extension Γ ⊂
⟨
Γ, γ

⟩
which increases the rank by one.

The concept of minimal incommensurable element and Lemmas 6.3, 6.6 hold in our
larger groups RIS

lex. However, for an element β ∈ RIS
lex \RI

lex the class [β] may preserve
the rank if its minimal incommensurable element belongs to RI

lex.

Example. The group Γ = Q has I = {1} and ΓR = RI
lex = R. The total group

H1 = Γ is the unique non-trivial principal convex subgroup.
For S = I, we have IS = {1, 2}, where we denote 2 = iS for simplicity. Thus,

RIS
lex = R2

lex, and the embedding RI
lex ↪→ R2

lex has image R× {0}.
The new principal subgroup of R2

lex is {0} × R.
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Let β = (
√
2,
√
3) ∈ RIS

lex \ RI
lex. The subgroup generated by β is⟨

Γ, β
⟩
=
{(

q +m
√
2,m

√
3
)
| q ∈ Q, m ∈ Z

}
.

This group has rank one because ({0} × R) ∩
⟨
Γ, β

⟩
is the trivial group.

Alernatively, the minimal incommensurable element in the class [β] is γ =
(√

2, 0
)
,

which belongs to RI
lex. Thus,

⟨
Γ, β

⟩
≃
⟨
Γ, γ

⟩
has rank one.

The chain of principal convex subgroups of RI
lex is (Hi)i∈I , where

Hi = {(βj)j∈I | βj = 0 ∀ j < i} .
Hence, if we identify Γ with its image in RI

lex, the chain of principal convex subgroups
of Γ is

(Hi ∩ Γ)i∈I .

Lemma 7.3. Let β = (βj)j∈I ∈ RIS
lex \ RI

lex. The following conditions are equivalent.

(1) The extension Γ ↪→
⟨
Γ, β

⟩
increases the rank by one.

(2) The minimal incommensurable element in [β] does not belong to RI
lex.

(3) The minimal incommensurable element in [β] is (βS′ | 0), where S ′ = S+{iS}.
(4) The subgroup

⟨
Γ, β

⟩
contains an element γ = (γi)i∈IS such that

γiS ̸= 0, and γi = 0 for all i ∈ S.

Proof. Let T ⊂ IS be the initial segment such that (βT | 0) is the minimal incom-
mensurable element in [β].

(1) ⇒ (2). By Lemma 6.3, the condition (βT | 0) ∈ RI
lex implies that the group⟨

Γ, β
⟩
≃
⟨
γ, (βT | 0)

⟩
does not increase the rank. This contradicts (1).

(2) ⇒ (3). The condition (βT | 0) ̸∈ RI
lex is equivalent to βiS ̸= 0. In particular,

iS ∈ T (so that S ′ ⊂ T ) and βS′ is incommensurable. By the minimality of T , we
have T = S ′.

(3) ⇒ (4). Since iS = Max(S ′), the minimality of S ′ implies βiS ̸= 0 and βS

commensurable. Let b ∈ ΓQ such that βS = bS. The element γ = β − b belongs to⟨
ΓQ, β

⟩
and satisfies the conditions of (4). Hence, there exists m ∈ N such that mγ

belongs to
⟨
Γ, β

⟩
and satisfies the conditions of (4).

(4)⇒ (1). An element γ ∈
⟨
Γ, β

⟩
satisfying (4) generates a new principal subgroup

HiS ∩
⟨
Γ, β

⟩
. The condition γiS ̸= 0 implies that γ does not belong to the smaller

subgroup
∪

i>iS

(
Hi ∩

⟨
Γ, β

⟩)
. The condition γi = 0 for all i ∈ S implies that γ does

not generate any larger subgroup Hi ∩
⟨
Γ, β

⟩
for i ∈ S. □

We may now proceed to compute a system of representatives of the subset of(
RIS

lex \ RI
lex

)
/∼ formed by the classes that increase the rank.

By Lemma 7.3, these classes are those whose minimal incommensurable elements
are

β = βS,a,q = (a | q | 0) , a ∈ RS
lex commensurable, q ∈ R∗,

for an arbitrary S ∈ Init(I). Note that q = βiS .
Nevertheless, we cannot proceed as in section 6 because Lemma 6.7 fails. There

are minimal incommensurable elements in RIS
lex \ RI

lex which are equivalent.
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Lemma 7.4. The minimal incommensurable elements βS,a,q and βT,b,p are Γ-equiva-
lent if and only if

(6) S = T, a = b, pq > 0.

Proof. If the conditions of (6) are satisfied, we have βS,a,q ∼ βS,a,p by Lemma 5.5. In

fact, for any γ = (γi)i∈IS ∈ RIS
lex, the condition βS,a,q < γ < βS,a,p implies γS = a and

q < γiS < p. Since we are asuming that p and q have the same sign, this implies
γiS ̸= 0, so that γ cannot be commensurable over Γ.

Conversely, suppose that βS,a,q ∼ βT,b,p. Arguing as in the proof of Lemma 6.7, we
conclude that S = T and a = b.

Finally, suppose that p and q have a different sign; for instance, q < 0 < p. Then,
if γ = (γi)i∈I ∈ ΓQ satisfies γS = a, we have γiS = 0, so that βS,a,q < γ < βS,a,p. This
is impossible by Lemma 5.5, so that p and q must have the same sign. □

As a consequence, the classes in
(∪

S∈Init(I) R
IS
lex \ RI

lex

)/
∼ which increase the

rank are represented by the set

IncRk(Γ) =
∪

S∈Init(I)

{
b−, b+ | b ∈ RS

lex commensurable
}
,

where we define

b− = βS,b,−1 = (b | −1 | 0) , b+ = βS,b,1 = (b | 1 | 0) .
If b± = (bi)i∈IS , note that biS = ±1 and bj = 0 for all j > iS.

The elements corresponding to S = ∅ deserve a special notation

−∞ = β∅,−1 = (−1 | 0), ∞− = β∅,1 = (1 | 0).
The notation for ∞− is motivated by the fact that this element is the immediate
predecessor of ∞ in the set Γsme∞.

Definition. The small-extensions closure of Γ is the ordered set

Γsme = ΓR ⊔ IncRk(Γ),

with the ordering induced by RII
lex.

This set is a system of representatives of
(∪

S∈Init(I)R
IS
lex

)/
∼.

The next result follows immediately from Lemmas 6.2, 5.3 and 7.2.

Lemma 7.5. Let Γ ↪→ Λ be a small extension of Γ, and choose γ ∈ Λ such that
Λ =

⟨
Γ, γ

⟩
. For a unique β ∈ Γsme there exists an isomorphism⟨

Γ, γ
⟩

−→∼
⟨
Γ, β

⟩
of ordered groups acting as the identity on Γ and sending γ to β

Therefore, in order to complete the classification of small extensions of Γ up to
equivalence, we need only to classify the elements in Γsme by the equivalence relation

β ≡ γ ⇐⇒
⟨
Γ, β

⟩
=
⟨
Γ, γ

⟩
.

We leave this task to the reader.
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Let us emphasize the position of the “increasing-rank” elements with respect to
the total ordering of Γsme:

−∞ = Min (Γsme) , ∞− = Max (Γsme) .

For S = I, each b ∈ ΓQ has an immediate predecessor and an immediate successor:

b− < b < b+, b− = Max (Γsme,<b) , b+ = Min (Γsme,>b) .

If ∅ ⊊ S ⊊ I, then for every commensurable b ∈ RS
lex we have

b− < π−1
S (b) < b+, b− = Max

(
Γsme,<π−1

S (b)

)
, b+ = Min

(
Γsme,>π−1

S (b)

)
.

Examples. Let us draw the set Γsme in some concrete examples.

(0) Γ = {0}.

In this case, ΓQ = ΓR = {0} and Γsme = {−∞, 0, ∞−}.

(1) Γ = R.

In this case, ΓQ = ΓR = R and Γsme is a real line with global minimal and maximal
added elements, and such that to every real number an immediate predecessor and
successor have been added.

• •
•
•
•

−∞ · · · · · · ∞−
b

b+

b−

(2) Γ = Q.

In this case, ΓQ = Q, ΓR = R and Γsme is a real line with global minimal and
maximal added elements, and such that to every rational number an immediate pre-
decessor and successor have been added.

• •
•
•
•

•−∞ ∞−· · · · · ·
b ∈ Q

b+

b−
b ̸∈ Q

(3) Γ = R2
lex.

In this case, ΓQ = ΓR = R2
lex and Γsme is a real plane with global minimal and

maximal added elements, such that every vertical line has a minimal and maximal
added element, and to every single point an immediate predecessor and successor
have been added.
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• •

•
•

•

•

··
··(a, b)

(a, b)−

(a, b)+

−∞ ∞−· · · · · ·
c

...

...
•

•

(c, ⋆)+

(c, ⋆)−

(4) Γ = Q2
lex.

In this case, ΓQ = Γ and ΓR = R2
lex \ {(x, y) | x ̸∈ Q, y ̸= 0}.

Now, Γsme adds to ΓR a global minimal and maximal elements. Also, it adds a
minimal and maximal element to each vertical line with rational abscissa. Finally, it
adds an immediate predecessor and successor to every single rational point in Q2.

• •

•
•

•

• •

··
··(a, b) ∈ Q2

(a, b)−

(a, b)+

−∞ ∞−· · · · · ·
c ∈ Q c ̸∈ Q

...

...
•

•

(c, ⋆)+

(c, ⋆)−



SMALL EXTENSIONS OF ABELIAN ORDERED GROUPS 23

Lecture III. Extension of valuations to polynomial rings

8. Valuations on a polynomial ring

Let K be a field, and let K[x] be the polynomial ring in one indeterminate.
A valuation on K[x] is a mapping

µ : K[x] −→ Λ∞

where Λ is an ordered group, such that the following two conditions are satisfied for
all f, g ∈ K[x]:

(1) µ(fg) = µ(f) + µ(g),

(2) µ(f + g) ≥ Min{µ(f), µ(g)}.

The support of µ is the prime ideal

p = pµ = µ−1(∞) ∈ Spec(K[x]).

The value group of µ is the subgroup Γµ ⊂ Λ generated by µ (K[x] \ p).

The valuation µ induces a valuation on the residue field κ(p), field of fractions of
K[x]/p. Note that κ(0) = K(x), while for p ̸= 0 the field κ(p) is a simple finite
extension of K.

Thus, a valuation µ on K[x] determines a valuation on a simple field extension
L/K, either algebraic or transcendental.

Let (K, v) be a valued field, and denote by Γ = v(K∗) the value group.

Definition. A valuation µ onK[x] is an extension of v if the valuation onK obtained
by restriction of µ is equivalent to v. In other words, there exists an embedding of
ordered groups ι : Γ ↪→ Γµ, fitting into a commutative diagram

K[x]
µ−→ Γµ∞

↑ ↑ ι

K
v−→ Γ∞

In this case, the valuation induced by µ on the field L = K[x]/pµ is an extension
of v to that field.

Definition. The extension µ/v is commensurable, preserves the rank, or increases
the rank by one, if the extension of ordered groups ι : Γ ↪→ Γµ has this property,
respectively.

All valuations with non-trivial support are commensurable over v.

Definition. Two valuations on K[x],

µ : K[x] −↠ Γµ∞, µ′ : K[x] −↠ Γµ′∞,
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are equivalent if there is an isomorphism of ordered groups φ : Γµ −→∼ Γµ′ fitting
into a commutative diagram

(7)

Γµ∞
φ−→ Γµ′∞

µ ↑ ↗ µ′

K[x]

Obviously, two equivalent valuations on K[x] induce equivalent valuations on K by
restriction.

In particular, if µ, µ′ are equivalent extensions of v, determining embeddings

ι : Γ ↪−→ Γµ, ι′ : Γ ↪−→ Γµ′ ,

the commutativity of the diagram (7) implies the commutativity of

Γµ
φ−→ Γµ′

ι ↑ ↗ ι′

Γ

Usually, we shall identify Γ with its image in Γµ and Γµ′ . Then, the isomorphism
φ will necessary act as the identity on Γ.

Aim. Describe the set of extensions of v to K[x], up to equivalence.

In this lecture we cover a few modest steps towards this aim.

Let us fix an extension Γ ↪→ Λ of ordered groups, and consider extensions of v,

µ : K[x] −→ Λ∞,

which are Λ-valued. The set of these valuations admits a partial ordering:

µ ≤ µ′ ⇐⇒ µ(f) ≤ µ′(f) for all f ∈ K[x].

This partial ordering does not behave well with respect to the equivalence of val-
uations. However, we have a natural partial ordering ≤ on the set of equivalence
classes of commensurable extensions µ/v, because these classes may be identified
with ΓQ-valued extensions of v, by Lemma 5.1.

9. Depth zero valuations on K[x]

Definition. Let Γ ↪→ Λ be an embedding of ordered groups.
For given a ∈ K and γ ∈ Λ, consider the valuation µ = µa,γ on K[x] defined as

µ
(∑

0≤s
as(x− a)s

)
= Min {v(as) + sγ | 0 ≤ s} .

This extension µ of v is said to be a depth-zero valuation on K[x].
Note that µa,γ has trivial support, and Γµ =

⟨
Γ, γ

⟩
is a small extension of Γ.

We woud like to classify these depth-zero extensions of v up to equivalence. In
principle, the main difficulty is the fact that we have freedom in the choice of the
extensions Γ ↪→ Λ. However, for a fixed a ∈ K, the classification of depth-zero
valuations is an easy consequence of the results of Lecture II.
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Theorem 9.1. Let a ∈ K. Every depth-zero valuation µ = µa,γ is equivalent to µa,β

for a unique β ∈ Γsme.
Moreover, µ/v is commensurable if and only if β ∈ ΓQ. Also, µ/v preserves the

rank if and only if β ∈ ΓR.

Proof. Regardless of the ordered groups containing the values β, γ, the depth-zero
valuations µa,γ and µa,β are equivalent if and only if there exists an isomorphism of
ordered groups φ :

⟨
Γ, γ

⟩
→
⟨
Γ, β

⟩
fitting into a commutative diagram⟨

Γ, γ
⟩
∞ φ−→

⟨
Γ, β

⟩
∞

µa,γ ↑ ↗ µa,β

K[x]

This is equivalent to φ acting as the identity on Γ and mapping γ to β.
Since

⟨
Γ, γ

⟩
is a small extension of Γ, Lemma 7.5 shows that there exists a unique

β ∈ Γsme for which these conditions hold. □
Finally, for two values β, γ in the same ordered group Λ it is easy to check that

(8) µa,β = µb,γ ⇐⇒ β = γ ≤ v(a− b).

Together with Theorem 9.1, this leads to an explicit description of the equivalence
classes of depth-zero valuations.

Extreme valuations. For a fixed a ∈ K, and values β, γ ∈ Γsme we clearly have

µa,β ≤ µa,γ ⇐⇒ β ≤ γ.

Therefore, the set of equivalence classes Ta := {µa,γ | γ ∈ Γsme} inherits an ordering
from Γsme. Since Γsme has a minimal and maximal element,

−∞ ≤ Γsme ≤ ∞−,

the corresponding valuations are minimal and maximal elements of Ta, respectively.

• ••µa,−∞ · · · · · · µa,∞−

µa,γ

From the relationship (8) we deduce that the minimal valuation µa,−∞ is indepen-
dent of a:

µa,−∞ = µb,−∞ for all a, b ∈ K.

We shall denote this absolute minimal depth-zero valuation simply by µ−∞.
By thinking in the case a = 0, we see that it acts as follows:

µ−∞ : K[x] −↠ (Z× Γ)∞, f 7−→ (ord∞(f), v(lc(f))) ,

where lc(f) is the leading coefficient of a non-zero polynomial f .

On the other hand, the maximal valuation µa,∞− acts as follows:

µa,∞− : K[x] −↠ (Z× Γ)∞, f 7−→ (ordx−a(f), v(init(f))) ,

where init(f) is the first non-zero coefficient of the (x − a)-expansion of a non-zero
f ∈ K[x].
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10. Key polynomials and augmentation of valuations

Let µ be an extension of v to K[x] with trivial support.
For arbitrary polynomials f, g ∈ K[x], we write f |µ g to indicate the existence of

h ∈ K[x] such that µ(g − fh) > µ(g).

A key polynomial for µ is a monic polynomial ϕ ∈ K[x] satisfying two conditions,
for arbitrary f, g ∈ K[x]:

(1) ϕ |µ fg =⇒ ϕ |µ f or ϕ |µ g,

(2) ϕ |µ f =⇒ deg(ϕ) ≤ deg(f).

A key polynomial for µ is necessarily irreducible in K[x].

Let ϕ ∈ K[x] be a monic non-constant polynomial. Any f ∈ K[x] admits a
canonical ϕ-expansion

f =
∑

0≤s
asϕ

s, a ∈ K[x], deg(a) < deg(ϕ).

Lemma 10.1. Let ϕ ∈ K[x] be a key polynomial for µ.

(1) For all f ∈ K[x] with ϕ-expansion f =
∑

0≤s asϕ
s we have

µ(f) = Min{µ(asϕs) | s ≥ 0}.
(2) The following subset of Γµ is a subgroup which is commensurable over Γ.

Γµ,ϕ := {µ(a) | a ∈ K[x], 0 ≤ deg(a) < deg(ϕ)} .
In particular, Γµ =

⟨
Γµ,ϕ, µ(ϕ)

⟩
is a small extension of Γ.

By eventually replacing µ with an equivalent valuation, we may suppose that
Γµ,ϕ ⊂ ΓQ. Then, Lemma 7.5 shows the existence of a unique ρ ∈ Γsme admitting an
isomorphism

φ : Γµ =
⟨
Γµ,ϕ, µ(ϕ)

⟩
−→

⟨
Γµ,ϕ, ρ

⟩
acting as the identity on Γµ,ϕ and sending µ(ϕ) to ρ.

Therefore, by eventually replacing µ with an equivalent valuation, we may suppose
that µ(ϕ) ∈ Γsme.

Definition. Let µ be an extension of v to K[x] admitting key polynomials.
Let Γµ ↪→ Λ be an embedding of ordered groups.
For given ϕ ∈ K[x] a key polynomial for µ, and γ ∈ Λ such that γ > µ(ϕ), consider

the valuation µ′ = [µ; ϕ, γ] on K[x] defined on ϕ-expansions as

µ′
(∑

0≤s
asϕ

s
)
= Min {µ(as) + sγ | 0 ≤ s} .

This extension µ′ of v is said to be an ordinary augmentation of µ with augmenta-
tion data ϕ, γ.

We also write µ
ϕ,γ−→ µ′. Note that µ′ has trivial support, and Γµ′ =

⟨
Γµ,ϕ, γ

⟩
is a

small extension of Γ.

We may construct plenty of augmented valuations of µ by considering arbitrarily
large extensions Λ.

If we fix the key polynomial ϕ, these augmentations are easily classified up to
equivalence.
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Theorem 10.2. Let ϕ be a key polynomial for µ. Every augmented valuation µ′ =
[µ; ϕ, γ] is equivalent to [µ; ϕ, β] for a unique β ∈ Γsme such that β > µ(ϕ).

Moreover, µ/v is commensurable if and only if β ∈ ΓQ. Also, µ/v preserves the
rank if and only if β ∈ ΓR.

The proof is completely analogous to that of Theorem 9.1.
Finally, if we consider different key polynomials ϕ, χ for µ and two values β, γ >

µ(ϕ) in the same ordered group Λ, then we have

[µ; ϕ, β] = [µ; χ, γ] ⇐⇒ β = γ ≤ µ(ϕ− χ).

Together with Theorem 10.2, this leads to an explicit description of the equivalence
classes of valuations which may be obtained as ordinary augmentations of µ.

Extreme valuation. For a fixed key polynomial ϕ for µ, and values β, γ ∈ Γsme,
β, γ > µ(ϕ), we clearly have

[µ; ϕ, β] ≤ [µ; ϕ, γ] ⇐⇒ β ≤ γ.

Thus, the set of equivalence classes of ordinary augmentations of µ with augmen-
tation data ϕ:

Tµ,ϕ := {[µ; ϕ, γ] | γ ∈ Γsme, γ > µ(ϕ)}
inherits an ordering from Γsme. Since Γsme has a maximal element ∞−, this set
contains a maximal element too.

• ••µ · · · [µ; ϕ,∞−]
[µ; ϕ, γ]

This maximal valuation [µ; ϕ,∞−] acts as follows:

[µ; ϕ,∞−] : K[x] −↠ (Z× Γµ)∞, f 7−→ (ordϕ(f), µ(init(f))) ,

where init(f) is the first non-zero coefficient of the ϕ-expansion of a non-zero f ∈ K[x].

11. Limit augmentations

Let µ be an extension of v to K[x], with trivial support.
A countably infinite chain of ordinary augmentations

(9) µ = ρ0
χ1,β1−→ ρ1

χ2,β2−→ · · · −→ ρi−1
χi,βi−→ ρi −→ · · ·

is said to be a continuous MacLane chain of µ (abbreviated ML-chain) if it satisfies
the following conditions

(1) The key polynomials χi have the same degree for all i ≥ 1.
(2) There exists χ0, key polynomial for µ of minimal degree, such that χ1 ∤µ χ0.
(3) χi+1 ∤ρi χi, ∀ i ≥ 1.

The constant number m = deg(χi), for all i ≥ 1, is called the stable degree of the
continuous MacLane chain.

A polynomial f ∈ K[x] is stable (with respect to the given continuous ML-chain)
if there exists i ≥ 0 such that ρi(f) = ρi+1(f).

In this case, ρi(f) = ρj(f) for all j ≥ i. We denote by µ∞(f) this stable value of
f .
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We say that µ∞ is the stability function of the continuous ML-chain. This function
depends on the continuous ML-chain, and not only on µ.

Lemma 11.1. Consider a continuous MacLane chain of µ with stable degree m.

(1) For all i ≥ 0, Γρi = Γµ is commensurable over Γ.
(2) All polynomials of degree less than m are stable.
(3) Γµ coincides with the set of stable values of all stable polynomials.
(4) All key polynomials χi are stable.

In particular, we may suppose that Γµ ⊂ ΓQ, by eventually replacing µ with an
equivalent valuation.

If all polynomials in K[x] are stable, then µ∞ is a valuation on K[x] with trivial
support. We say that µ∞ is the stable limit of the continuous ML-chain.

Definition. Suppose that all polynomials of degree m are stable, but there exist
non-stable polynomials. Take a non-stable monic ϕ ∈ K[x] of minimal degree. Since
the product of stable polynomials is stable, ϕ is irreducible in K[x].

Let Γµ ↪→ Λ be an embedding of ordered groups, and choose γ ∈ Λ such that
ρi(ϕ) < γ for all i ≥ 0. We denote by µ′ = [µ∞;ϕ, γ] the valuation

µ′ : K[x] −→ Λ ∪ {∞}
assigning to any f ∈ K[x], with ϕ-expansion f =

∑
0≤s asϕ

s, the value

µ′(f) = Min{µ∞(as) + sγ | 0 ≤ s}.
Note that µ′ has trivial support. We say that µ′ is a limit-augmentation of µ with

respect to the augmentation data (ρi)i≥0, ϕ and γ.

Lemma 11.2. (1) If f ∈ K[x] is a stable polynomial, then µ′(f) = µ∞(f).
(2) Γµ′ =

⟨
Γµ, γ

⟩
is a small extension of Γ.

Therefore, we may argue as in the case of ordinary augmentations.
If we fix the non-stable monic polynomial ϕ of minimal degree, the valuations that

can be obtained as limit-augmentations of µ are easily classified up to equivalence.

Theorem 11.3. Let ϕ ∈ K[x] be a non-stable monic polynomial of minimal degree
deg(ϕ) > m, with respect to a continuous ML-chain of µ of stable degree m as in
(9). Every limit-augmented valuation µ′ = [µ∞; ϕ, γ] is equivalent to [µ∞; ϕ, β] for a
unique β ∈ Γsme such that β > ρi(ϕ) for all i ≥ 0.

Moreover, µ/v is commensurable if and only if β ∈ ΓQ. Also, µ/v preserves the
rank if and only if β ∈ ΓR.

The proof is completely analogous to that of Theorem 9.1.
Finally, if we consider different non-stable monic polynomials of minimal degree

ϕ, χ, and two values β, γ in the same ordered group Λ, such that β, γ > ρi(ϕ) for all
i ≥ 0, then

[µ∞; ϕ, β] = [µ∞; χ, γ] ⇐⇒ β = γ ≤ µ∞(ϕ− χ).

Together with Theorem 11.3, this leads to an explicit description of the equivalence
classes of valuations which may be obtained as limit-augmentations of µ, with respect
to the same ML-chain (9).
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Extreme valuation. Consider a continuous ML-chain as in (9) of stable degree m,
and a fixed monic non-stable ϕ of minimal degree deg(ϕ) > m.

For all values β, γ ∈ Γsme, β, γ > ρi(ϕ) for all i ≥ 0, we clearly have

[µ∞; ϕ, β] ≤ [µ∞; ϕ, γ] ⇐⇒ β ≤ γ.

Thus, the set of equivalence classes of limit-augmentations of µ with augmentation
data (ρi)i≥0, ϕ:

Tµ,(ρi)i≥0,ϕ := {[µ∞; ϕ, γ] | γ ∈ Γsme, γ > ρi(ϕ) for all i ≥ 0}
inherits an ordering from Γsme. Since Γsme has a maximal element ∞−, this set
contains a maximal element too.

• ••µ · · · [µ∞; ϕ,∞−]
[µ∞; ϕ, γ]

This maximal valuation [µ∞; ϕ,∞−] acts as follows:

[µ∞; ϕ,∞−] : K[x] −↠ (Z× Γµ)∞, f 7−→ (ordϕ(f), µ∞(init(f))) ,

where init(f) is the first non-zero coefficient of the ϕ-expansion of a non-zero f ∈ K[x].


