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4.1 Introduction

In the middle of the 17th century, Fermat wrote that for n � 3 the
equation an + bn = cn had no solution in the set of strictly positive
integers. This sentence became known as Fermat’s Last Theorem
(FLT). This problem proved to be unexpectedly difficult and a glob-
al solution was not found for 350 years. It was only in the 60’s that
Hellegouarch noticed that non-trivial solutions of the Fermat equa-
tion were related to the existence of torsion points in some elliptic
curves. On the other hand in the 50’s Taniyama formulated a precise
conjecture saying that All rational elliptic curves arise from modular
forms, and it was only in 1985 that Frey suggested that the ellip-
tic curve y2 = x(x − ap)(x + bp) constructed from a solution of the
Fermat equation should not be modular. It was along this ideas and
with deep results from Serre, Mazur and Ribet on elliptic curves, Ga-
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lois representations and modular forms that FLT was reduced to the
proof of the Taniyama conjecture. Finally, in 1995 in papers from
Wiles and Taylor-Wiles the conjecture was proved for semi-stable el-
liptic curves, establishing the FLT. Wiles’ theorem, now known by
Modularity theorem, was improved by Breuil, Conrad, Taylor, and
Diamond and states that the Taniyama conjecture is indeed true for
all rational elliptic curves.

Among the important consequences of the Modularity theorem
and the theory around it is the possibility of using and generalizing
some key ideas in the proof of FLT in order to study other Dio-
phantine equations. For example, the generalized Fermat equation
xp + 2αyp = zp has been solved by Ribet, and equations of the form
φ(x, y) = dzp, where φ is a degree-3 separable homogeneous form had
been extensively studied by Billerey.

The interplay between elliptic curves, modular forms and Ga-
lois representations given by the Modularity theorem and the Ribet-
Mazur theorem is the central point in the modern strategy to solve
Diophantic equations, in particular the FLT. The purpose of this work
is to introduce some tools and techniques used to prove the FLT and
see how they generalize to other Diophantic equations. Precisely,
we study Ribet’s paper [6] where he solves the generalized Fermat
equation xp + 2αyp = zp.
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4.2 Elliptic Curves

In this section we start by recalling some basic facts about Galois
representations associated with elliptic curves, then we study some
properties of EA,B,C curves and finally we introduce the Tate curve
and use it to prove a result due to Hellegouarch.

4.2.1 Galois Representation

Let Q̄ ⊂ C be the integral closure of Q. It is known that Q̄/Q is a
Galois extension and we denote its Galois group by GQ.

Let E be an elliptic curve defined over Q, n � 1 and set V =
E(Q̄)[n].

Since V is a free Z/nZ-module of rank 2, we see that if P1, P2 is
a basis of V , we have

(σ(P1), σ(P2)) = (P1, P2)
[

aσ bσ

cσ dσ

]
.

4.2.1 Theorem The action of GQ on E[n] defines a representation

GQ
ρn−→ GL2(Z/nZ).

The image is isomorphic to the Galois group of the extension: newline
Q(E[n])/Q.

About this representation there are two important theorems due
to Serre and Mazur. The version that follows of the theorem from
Mazur is simplified and stated as it will be of use later.

4.2.2 Theorem (Serre) Let E be an elliptic curve defined over Q
which is not isomorphic over Q̄ to any curve having complex multi-
plication. Then there exists an integer N � 1, depending only on
E, such that for every integer n prime to N , the representation ρn is
surjective.

4.2.3 Theorem (Mazur) Let p � 5 be a prime and E a semi-stable
elliptic curve over Q. Then, the representation ρp as above is irre-
ducible.



48 Cap. 4 he Modular Approach to some Generalized Fermat Equations

Idea of proof: If ρp is reducible, meaning that there exists a sub-
space invariant for all ρp(σ), then there exists a subgroup C of order
p invariant under GQ. From the semistability hypothesis it is pos-
sible to deduce that there exists some curve over Q isogenous to E
with a group of rational points isomorphic to Z/2Z ⊕ Z/2lZ. This
contradicts a result of Mazur in [4].

�

Now fix a prime l. Considering the action of GQ on the ln-torsion
for all n ∈ N and the asociated representations we can put them
together to obtain an action on the Tate module Tl(E) ∼= Zl⊕Zl and
a continuous representation

ρE,l : GQ → GL2(Zl) ⊂ GL2(Ql).

We call ρE,l the 2-dimensional Galois representation associated to E
at l.

4.2.4 Theorem Let l be a prime and E be an elliptic curve over
Q with conductor N. The Galois representation ρE,l is unramified at
every prime p � lN . For any such p let p ⊂ Z̄ be any maximal ideal
over p. Then the characteristic equation of ρE,l(Frobp) is

x2 − ap(E)x+ p = 0.

The Galois representation ρE,l is irreducible.

4.2.2 EA,B,C curves

Now we introduce Frey’s idea which allowed to relate solutions of the
Fermat equation to particular elliptic curves. We want to associate to
each point (a, b, c) (with a,b,c relatively prime) on the curve xp+yp =
zp a cubic curve EA,B,C such that it is an elliptic curve if and only if
the point (a, b, c) is a non-trivial solution (abc �= 0). Going into this
direction it is natural to search for curves of the form

y2 = (x− α)(x− β)(x− γ)

with the following conditions

β − γ = ap, γ − α = bp, α− β = cp,



4.2. Elliptic Curves 49

making the discriminant of the right-hand side is (abc)2p �= 0. Thus,
putting γ = 0 we have

y2 = x(x− ap)(x+ bp)

More generally, let A,B, C be three relatively prime non-zero in-
tegers. We say that the equation A+B+C = 0 is an ABC relation.

4.2.5 Definition Given an ABC relation, we set

EA,B,C : y2 = x(x−A)(x+B)

These curves satisfy Δ = 24(ABC)2 and j(EA,B,C) = 28(BC +
CA + AB)3(ABC)−2. Thus saying that ABC �= 0 is equivalent to
saying that EA,B,C is smooth. Also, if we make a circular permutation
of (A,B, C), the new curve EB,C,A is isomorphic to EA,B,C over Q.
In the case of Fermat equation we have A = ap, B = bp and C =
−(ap + bp) = −cp.

A subset of these curves which is going to be of use in the proof
of Fermat’s last theorem is that of those curves such that

A ≡ 3 mod 4 B ≡ 0 mod 32.

In this situation the following holds.

4.2.6 Theorem Let l be a prime.

1. If l does not divide ABC, the curve EA,B,C has good reduction
modulo l.

2. If l �= 2 divides ABC, the reduction of EA,B,C modulo l is a
curve of genus zero and multiplicative type.

3. If l = 2, and if 2 divides ABC, the reduction modulo l of a min-
imal model of EA,B,C is a curve of genus zero and multiplicative
type.

Proof:(1.)If l does not divide ABC then it does not divide Δ, and
the reduced curve modulo l is smooth.
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(2.) If an odd prime l divides A or B, the equation of the reduced
curve is of the type

Y 2 = X2(X + c̃), with c̃ ∈ Fl different from zero.

Then the tangent lines at (0, 0) are given by

Y 2 − c̃X2 = (Y −
√

c̃X)(Y +
√

c̃X).

Thus we have distinct tangents over F̄l and the reduction is mul-
tiplicative. If l | C we take a circular permutation and apply the
previous case.

(3.) For l = 2, we consider the change of variables X = 4x and
Y = 4x+ 4y leading to the minimal model equation

y2 + xy = x3 + cx2 + dx

with c = (B−1−A)/4 and d = −AB/16. It follows that the reduced
modulo 2 equation is

y2 + xy =
{

x3 if A ≡ 7 mod 8
x3 + x2 if A ≡ 3 mod 8,

Hence we can see that the tangents at (0, 0) are given by

{
y(x+ y) if A ≡ 7 mod 8
y2 + xy + x2 if A ≡ 3 mod 8,

In the first case it is clear that the tangents are distinct; for the second
case we need to consider the extension F2[u], where u is a root of the
polynomial z2 − z + 1, to factorize into two distinct tangents. Hence
the reduction is multiplicative.

�

4.2.1 Corol.lari. When A ≡ 3 mod 4 and B ≡ 0 mod 32, then EA,B,C

is semi-stable and its conductor is rad(ABC), the product of the
primes dividing ABC.
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4.2.3 The Tate Curve Eq

To finish with elliptic curves we will introduce two theorems due to
Tate. The following theorems are essential in the proof of Helle-
gouarch Theorem which allow to study the ramification of the Galois
representation ρp = ρ̄E,p, the reduction mod p of the representation
in the Tate module at p associated to the curve E = Eap,bp,cp .

Let Qp be the p-adic integers and |.|p its p-adic absolute value.
It is known that every elliptic curve over C is of the form C/Λ with
Λ a lattice. Although Qp is a complete field, a similar result for Qp

has no chances of success because there are no discrete subgroups
in Qp. However, the multiplicative group Q∗p has a lot of discrete
subgroups, namely those of the form qZ, for |q|p �= 1. In fact, Tate
has constructed a curve Eq for every q ∈ Q∗p such that |q|p < 1 and
achieved to prove an uniformization theorem for all elliptic curves
over Qp with |j(E)|p > 1. That is the content of the two following
theorems.

4.2.7 Theorem (Tate) Let q ∈ Q∗p satisfy |q|p < 1 and let,

sk(q) =
∑
n�1

nkqn

1− qn
, a4(q) = −s3(q),

a6(q) = −5s3(q) + 7s5(q)
12

(a) The series a4(q) and a6(q) converge in Qp to elements in Zp and
allow to define the Tate curve Eq over Qp by the equation

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

with discriminant and j-invariant given by

Δ(q) = q
∏
n�1

(1− qn)24 and j(Eq) =
1
q
+ 744 + 196884q + ...

(b) There is an isomorphism φ : Q̄∗p/〈q〉 ∼→ Eq(Q̄p) where 〈q〉 ⊂ Q∗p
is the multiplicative subgroup generated by q.
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(c) The map φ on (b) is compatible with the action of the Galois
group of Q̄p/Qp in the sense that

φ(uσ) = φ(u)σ for all u ∈ Q̄∗p, σ ∈ GQ̄p/Qp
.

In particular, for any algebraic extension L/K φ induces an
isomorphism

φ : L∗/〈q〉 ∼→ Eq(L)

The reduction modulo p of Eq gives the curve

Ẽq : y2 + xy = x3

and elementary calculus shows that there is a double point at (0, 0)
and the tangents at this point are y = 0 and x + y = 0. Thus
the Tate curve has multiplicative split reduction at p. Note that
|j(Eq)|p = 1/|q|p > 1 thus the uniformization theorem can not work
for curves with j(E) ∈ Zp. Fortunately, this is the only constraint.

4.2.8 Theorem (Tate) Let E/Qp be an elliptic curve with |j(E)|p >
1.

A. There is a unique q ∈ Q∗p with |q|p < 1 such that E is isomorphic
over Q̄p to the Tate curve Eq.

B. Furthermore, the isomorphism is over Qp if and only if E has
split multiplicative reduction at p. If E does not have split
multiplicative reduction at p then the isomorphism is over a
(unique) quadratic extension of Qp. This quadratic extension
is unramified if and only if E has (non-split) multiplicative re-
duction.

Let E = Eap,bp,cp be the ABC curve associated to a solution of
the Fermat equation with p � 5. As mentioned in the beginning of
this section we want to study the ramification of the representation
ρ̄E,p. We know that if ρE,p ramifies at l then there is a σ ∈ Il acting
non-trivially in Tp(E). As we will see ramification can disappear
when reducing mod p. So we do not know if the action of Il on E[p]
is non-trivial, that is if ρ̄E,p ramifies at l. The action of Il on E[p] is
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non-trivial if and only if the field extension Kp = Q(E[p])/Q has non-
trivial inertia subgroup at l, that is Kp ramifies at l. Then we want
to understand the ramification of the field Kp. Since ramification is a
local property we can suppose for each prime l that E is defined over
Ql and that Kp = Ql(E[p]). For l dividing abc we prove the following
theorem.

4.2.9 Theorem (Hellegouarch) Let l be a prime dividing abc. Then
the field Kp associated to the curve Eap,bp,cp can be considered as a
subfield of Ql(ζp, 21/p) (or Ql(β1/2)(ζp, 21/p) with Ql(β1/2) unrami-
fied).

Proof: We start by showing that Kp always contain a primitive p-
root of unity ζp. One can show that E[p] is equipped with the Weil
form

ep : E[p]× E[p]→ μp(Q̄),

where μp(Q̄) are the p-roots of unity. This form turns out to be
bilinear, alternating (ep(T, T ) = 1), non-degenerate and compatible
with the action of GQ̄/K in the sense that ep(S, T )σ = ep(Sσ, T σ) for
any extension K/Q and all σ ∈ GQ̄/K . Now, since E[p] ⊂ Kp we have
for each pair of points (S, T )

ep(S, T )σ = ep(Sσ, T σ) = ep(S, T ) for all σ ∈ GQ̄/Kp

Hence ep(S, T ) ∈ Kp thus μp(Q̄) ⊂ Kp.

Replacing (A,B, C) by (ap, bp, cp) in the formula for the j-invariant
of EA,B,C we get that j = −28(apcp + bpcp + apbp)3(abc)−2p. Recall
that mdc(a, c) = mdc(a, b) = mdc(b, c) = 1 and let l be a prime di-
viding abc. Then νl(j) = −2pνl(abc) if l �= 2 and νl(j) = 8−2pνl(abc)
if l = 2. That is, |j|l > 1 for all l if p � 5. From Tate’s uniformization
theorem and corollary 4.2.1 we know that Eap,bp,cp is equivalent to the
curve Eq over the field Ql or over an unramified quadratic extension
of Ql.

Now we suppose that the isomorphism is over Ql and let L =
Ql(ζp, 21/p). From Tate’s theorem we have Eq(L) isomorphic to L∗/〈q〉.
Since j is up to an unit a p-th power in L it follows from the discrim-
inant formula of Eq that the same is true for the parameter q. Hence
there exists q′ ∈ L such that q = unit ∗ (q′)p. Thus, 〈ζp, q

′〉/〈q〉 is
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contained in L∗/〈q〉. Since 〈ζp, q
′〉/〈q〉 is isomorphic to Z/pZ×Z/pZ

we conclude that L∗/〈q〉 ∼ Eq(L) already contains all the p-torsion,
implying Kp ⊂ L. In the case that the isomorphism is over the un-
ramified quadratic extension Ql(β2) we take L = Ql(β1/2)(ζp, 21/p)
and repeat the reasoning.

�

4.2.10 Theorem (Néron-Ogg-Shafarevich) Let E/Q be an elliptic
curve. E has good reduction at l if and only if ρE,p is unramified at
l for some prime p �= l if and only if ρE,p is unramified at l for all
primes p �= l.

4.2.2 Corol.lari. For p � 5, the representation ρ̄E,p : GQ → GL2(Fp)
is unramified outside 2p.

Proof: Let l �= p. If l � abc then l � Δ and E has good reduction at
l. By theorem 4.2.10 ρE,p is unramified at l, hence ρ̄E,p also is. If
l|abc then Hellegouarch theorem implies that Kp does not ramify at
l if l �= 2, p. Then ρ̄E,p is unramified outside 2p.

�

4.3 Modular Representations

In this section we recall results about cusp forms and their associated
representations and we will also introduce the definition of modular
representation.

Let Sk(Γ0(N)) denote the C-vector space of the weight k cusp
forms respect to the congruence subgroup Γ0(N). From the theory
surrounding the Riemann-Roch theorem it is possible to derive for-
mulas for the dimension of these spaces. An important corollary that
will be of use later is the following.

4.3.1 Corol.lari. S2(Γ0(2t)) = {0} for t ∈ {0, 1, 2, 3, 4} and S2(Γ0(32))
has dimension 1.

Now we will need some notation. Let K be any number field (i.e.
a finite extension of Q) and OK its ring of integers. Let l be a prime
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number and λ any maximal ideal lying over l. Denote by Kλ the
λ-adic field obtained by taking fractions of

OK,λ = lim←−
n

{OK/λn}.

We may view Zl as a subring of OK,λ and Ql as a subfield Kλ. For
a modular form f denote by Kf the field generated by its Fourier
coefficients. It can be shown that Kf is a number field.

It is possible to construct from the modular curves X1(N) an
abelian variety J1(N), the Jacobian of the modular curve X1(N).
Similarly to what happen with elliptic curves, to the torsion points
of J1(N) there is an associated Galois representation. This represen-
tation decomposes into 2-dimensional representations associated to
modular forms. The next theorem is a consequence of the mentioned
procedure and says that there are Galois representations arising from
weight 2 cusp forms.

4.3.1 Theorem Let f ∈ S2(Γ0(N)) be a normalized eigenform with
number field Kf . Let l be a prime. For each maximal ideal λ of OKf

lying over l there is a 2-dimensional Galois representation

ρf,λ : GQ :→ GL2(Kf,λ).

This representation is unramified at every prime p � lN . For any such
p let p ⊂ Z be any maximal ideal lying over p. Then ρf,λ(Frobp)
satisfies the polynomial equation

x2 − apx+ p = 0.

For the converse phenomenon we make the following definition.

4.3.2 Definition An irreducible Galois representation

ρ : GQ → GL2(Ql)

such that detρ = χl is modular of weight 2 if there exists a newform
f ∈ S2(Γ0(M)) such that Kf,λ = Ql for some maximal ideal λ of OKf

lying over l and such that ρf,λ ∼ ρ.

4.3.2 Remarca. Note that the representations ρE,l associated to el-
liptic curves as in chapter 1 are good candidates to be modular.
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We can extend this ideas for mod l representations. Let f ∈
S2(Γ0(M)) be a newform and let λ ⊂ OKf

lie above l. It can be
shown that up to similarity we may assume that the representation
ρf,λ maps to GL2(OKf ,λ). So it reduces modulo l to a representation

ρ̄f,λ : GQ → GL2(OKf ,λ/λOKf ,λ).

More generally we consider continuous mod l representations ρ̄ :
GQ → GL2(Fl). Since GQ is compact this means that the image
is finite and therefore lies in GL2(Flr) for some r. The notion of
modularity has a mod l analogous.

4.3.3 Definition An irreducible representation ρ̄ : GQ → GL2(F̄p)
is modular of weight 2 and level N if there exists a newform
f ∈ S2(Γ0(N)) and a maximal ideal λ ⊂ OKf

lying over p such that
ρ̄f,λ ∼ ρ̄

4.3.3 Remarca. Also for f ∈ Sk(Γ0(N)) a normalized eigenform of
weight k > 2 there is attached to it (by a result of Deligne) a Galois
representations where the trace of Frobenius agree with the values
ap(f). Thus, definitions 4.3.2 and 4.3.3 also generalize to any weight
k > 2.

4.4 The Big Theorems

In this section we present the final ingredients for the study of the
Fermat equation: the Modularity theorem and the Mazur-Ribet the-
orem.

4.4.1 Wiles’ Theorem

Wiles proved that every semi-stable elliptic curve over Q is modular
and later the result was generalized for all elliptic curves. This gen-
eral version of Wiles Theorem is known as Modularity Theorem and
there are several equivalent versions of it. Here we will state three
versions: the first one is the more arithmetic and the other two use
the Galois representations for elliptic curves and Modular forms. The
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last version will directly take part in the proof of Fermat last theorem.

Let E be an elliptic curve defined over Q, and let

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be a minimal Weirstrass model for E. For a prime p of good reduction,
i.e. primes not dividing the conductor of E, we define the quantities

ap(E) := p+ 1−#Ẽ(Fp).

4.4.1 Theorem (Modularity Theorem, Version ap) Let E be an el-
liptic curve over Q with conductor NE . Then for some newform
f ∈ S2(Γ0(NE)),

ap(f) = ap(E) for all primes p � NE .

4.4.2 Theorem (Modularity Theorem, Version R) Let E be an el-
liptic curve over Q. Then ρE,l is modular for some l.

4.4.3 Theorem (Modularity Theorem, strong Version R) Let E be
an elliptic curve over Q with conductor N . Then for some newform
f ∈ S2(Γ0(N)) with number field Kf = Q,

ρf,l ∼ ρE,l for all l.

4.4.4 Proposition Let E be an elliptic curve over Q. Then if ρE,l

is modular for some l then ρE,l is modular for all l.

4.4.2 Mazur-Ribet’s Theorem

The last ingredient for the proof of the FLT is a deep and technical
fact about representations. The Ribet-Mazur theorem allows to low-
er the level of modularity of representations and we will see that this
has powerful consequences.

We will call odd to a representation ρ such that det ρ(conj) = −1,
where conj is the complex conjugation. There is a very important
conjecture (now is a theorem) regarding modularity of mod l repre-
sentations due to Serre. In its formulation Serre gives a recipe for
obtain a minimal level Nρ̄ in terms of the ramification of ρ̄.
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1 Conjecture (Serre) Let ρ̄ : GQ → GL2(F̄p) be irreducible and
odd. Then ρ̄ is modular of level Nρ̄ (the Artin conductor of ρ̄)
and some weight k � 2. For example, a prime l �= p divides Nρ̄ if and
only if ρ̄ is ramified at p.

4.4.1 Remarca. For our purposes, we consider the Artin conductor
outside of p, that is p � Nρ̄.

4.4.5 Theorem (Mazur-Ribet) Let p � 3 be a prime. Let ρ̄ : GQ →
GL2(Fp) be a representation irreducible over F̄p and modular of level
N.

If ρ̄ is finite at p then we can take N to be the Artin conductor
of the representation and k = 2. In other words if ρ̄ is modular then
it is modular of level Nρ̄ predicted by Serre and weight 2.

We will not explain the meaning of ‘ρ̄ is finite at p’, because it is
too technical. For our considerations it is enough to know that for an
elliptic curve E, semi-stable at a prime p such that p|νp(Δ), then the
representation ρp : GQ → GL2(Fp) is finite at p. Also, if E has good
reduction at p then ρp is finite at p. The requirement ‘ρ̄ is finite at
p’ is only needed to remove the prime p from the level of modularity.
The other primes can be removed with less hypothesis.

4.5 The Equation xp + 2αyp = zp

In this section we will use all the machinery from the previous sec-
tions to study the equation xp+2αyp = zp. Although the Modularity
theorem will be used three times in this chapter, there are weaker re-
sults that would be enough for this equations. We first study the case
α = 0 which only needs Wiles result on semi-stable elliptic curves;
then we proceed to the cases α > 1 and α = 1. For both cases results
due to Diamond on the modularity of EA,B,C curves are enough.

4.5.1 Case α = 0

Since we are considering α = 0 our equation is the Fermat equation.
To a solution (a, b, c) of the equation xp + yp = zp we will call it



4.5. The Equation xp + 2αyp = zp 59

primitive if a, b, c are relatively prime and non-trivial if (abc �= 0).
Now we state and prove Fermat’s Last Theorem.

4.5.1 Theorem (Fermat-Wiles) Let p � 5 be a prime. There are no
non-trivial primitive solutions of

xp + yp = zp.

Proof: Let (a, b, c) be a non-trivial primitive solution of Fermat’s
equation for p � 5. Since the solution is primitive it is easy to see
that we can suppose that b is even and a, c are odd and also that
a ≡ −1 (mod 4) (if a ≡ 1 (mod 4) we take the solution (−a,−b,−c)).

Now consider the curve E = Eap,bp,cp (which is semistable by
corollary 4.2.1) and the representation ρ̄E,p : GQ → GL2(Fp) induced
by the action of GQ on E[p]. The modularity theorem says that
ρE,p must be modular of level N , hence ρ̄E,p is also modular. This
representation is irreducible by theorem 4.2.3 and finite at p, hence
it satisfies the hypothesis of Mazur-Ribet theorem. Thus we can take
N to be the Artin conductor of ρ̄E,p. Since ρ̄E,p only ramifies at
2p its Artin conductor equals 2. But S2(Γ0(2)) = {0} by corollary
4.3.1 so ρ̄E,p is not modular and so ρE,p is not modular, reaching a
contradiction.

�

4.5.2 Case α > 1

In this section we solve the equation xp + 2αyp = zp for the cases
α > 1 but first we make some considerations which are valid also
when α = 1.

Suppose that (a, b, c) is a solution of 0 = ap + 2αbp + cp, then
also ap + 2α−kp(2kb)p + cp = 0 thus there exists a solution for an
equation with α satisfying 1 � α < p. Let 1 � α < p. If the
solution is primitive, then it is immediate that a and c are odd,
meaning that A = ap, B = 2αbp and C = cp are relatively prime. As
before we normalize the solutions to a ≡ −1 (mod 4). Because of the
normalization we have A ≡ −1 ≡ 3 (mod 4) and B even. Consider
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the Frey curve
E : y2 = x(x−A)(x+B),

with minimal discriminant of the form ΔE = 2s(ABC)2 by the proof
of part 3 of theorem 4.2.6. Looking at the proof of parts 1 and 2 of
the same theorem we see that we only needed the hypothesis A ≡ 3,
hence E is semi-stable at every prime p �= 2. Moreover, calculations
show that the conductor NE of E has the form 2trad′(ABC) with
t ∈ {0, 1, 3, 5}, where rad′(ABC) is the product of the odd primes
in rad(ABC). Furthermore, 4 divides B if and only if t � 3; E is
semi-stable at 2 (t = 0, 1) if and only if 16|B, more precisely from
part 3 of theorem 4.2.6 follows that if 32 divides B then the reduction
at 2 is multiplicative (t = 1); and t = 5 if and only if ord2(B) = 1.
Now, keeping p � 5 we will use the same ideas of the previous section
to prove the following theorem.

4.5.2 Theorem Let p � 5. The equation ap + 2αbp + cp = 0 has no
solutions in nonzero integers a, b, c if α > 1.

Proof: By the modularity theorem ρE,p is modular of level NE

and so ρ̄E,p is also modular of level NE . It is not possible to apply
theorem 4.2.3, because E is not semi-stable at 2. For this case Ribet
achieves to prove irreducibility working with information about the
conductor of ρ̄E,p for this specific curve. Since every prime l �= 2
is semi-stable and Δ(E) is a p-th power times a power of 2, ρ̄E,p

is finite at p. Hence, by the Mazur-Ribet theorem, ρ̄E,p is modular
of level equal to its Artin conductor. With an argument similar to
Hellegouarch it is possible to show that the Artin conductor is 2t. By
corollary 4.3.1 we see that t = 5, that is ord2(B) = 2. Since B = 2αbp

we have a contradiction with α > 1.

�

4.5.3 Case α = 1

In this section we treat the hardest case, α = 1. We say it is the
hardest not only because we only cover it for values of p ≡ 1 mod 4,
but also because it makes use of tools that have not been introduced
so far. In view of this will only give the guideline of the proof by
sating new results at each step. We aim to the following theorem.
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4.5.3 Theorem Let p � 17 and p ≡ 1 mod 4. Let (a, b, c) be a
solution in non-zero integers of the equation xp + 2yp + zp = 0. If
(a, b, c) are coprime and we use the normalization a ≡ −1 mod 4,
then the only possible solution is (a, b, c) = (−1, 1,−1).

Since (a, b, c) are coprime, it is clear that a and c need to be odd.
But it is an immediate corollary of the previous section that b must
also be odd.

4.5.1 Corol.lari. The equation ap + 2bp + cp = 0 has no integer
solutions with b even.

Proof: From the proof of theorem 4.5.2 we see that we must have
ord2(B) = 2. This is not possible when b is even since B = 2bp.

�

Let E0 be the elliptic curve associated with the trivial solution
(−1, 1,−1) (i.e. the elliptic curve with complex multiplication y2 =
x3 − x) and E the elliptic curve associated to a solution (a, b, c). Let
also ρ̄E0,p and ρ̄E,p be the associated 2-dimensional mod p represen-
tations. The following holds.

4.5.4 Proposition The 2-dimensional mod p representations of GQ

defined by E and E0 are isomorphic.

Idea of proof: We have seen in the previous section that ρ̄E,p is
associated with a eigenform coming from Γ0(32). This is a one di-
mensional space, that is J0(32) is an elliptic curve, hence ρ̄E,p arises
from J0(32)[p]. In particular, the isomorphism class of ρ̄E,p does not
depend on the solution. Then ρ̄E0,p ∼ ρ̄E,p.

�

Now we can use information about the elliptic curve E0.

4.5.5 Proposition The image of ρ̄E0,p is contained in the normalizer
of a Cartan subgroup of GL2(Fp). If p ≡ 1 mod 4 (or p ≡ −1 mod
4) then it is the normalizer of a Cartan split (or non-split) subgroup
of GL2(Fp).
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The next theorem puts strong constraints on the set of primes at
which E does not have potential good reduction.

4.5.6 Theorem (Mazur-Momose) Let p � 17. If the image of ρ̄E,p

is contained in the normalizer of a Cartan split subgroup of GL2(Fp)
then E has potential good reduction at all primes l �= 2.

Finally, we prove theorem 4.5.3. Since p ≡ 1 mod 4, from the
above propositions we see that ρ̄E,p is under the hypothesis of Mazur-
Momose theorem. From the previous section we know that E has
multiplicative reduction at all odd primes dividing abc, then it can
not have potential good reduction at these primes. Then Mazur-
Momose theorem imply that there is no such a prime, hence abc is
2n with n � 0. Since all of them are odd we must have n = 0. Hence
the only normalized solution is (−1, 1,−1).

�

4.6 More Equations

In this section, in order to illustrate that the techniques of the previ-
ous sections also work with curves that are not ABC we will give two
more examples of Diophantine equations. In the examples bellow we
will make explicit the associated Frey curve, the discriminant Δ, the
conductor N and the Artin conductor Nρ, but we will not solve the
equation.

As we already mentioned, Diamond proved without using the full
generality of the Modularity theorem (MT) that the curves EA,B,C

are modular. Furthermore, he also proved a weaker version of the MT
for curves with restricted ramification. In the first of the following
two examples modularity of the Frey curve follows from the work of
Diamond, but in the second example the full power of the Modularity
theorem is needed. Let (a, b, c) denote a non-trivial primitive solution.

Example 1: The equation ap + bp = c2. If ab is even, we can
assume c ≡ 1 (mod 4) and consider the elliptic curve

y2 + xy = x3 +
c− 1
4

x2 +
ap

26
x.
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This curves satisfies

Δ =
1
212

(a2b)p, N = rad(ab), Nρ = 2.

If ab is odd, we can assume a ≡ −1 (mod 4) and consider

y2 = x3 + 2cx2 + apx

which satisfies

Δ = 26(a2b)p, N = 25rad(ab), Nρ = 32.

Example 2: The equation ap + bp = c3. If ab is even consider

y2 = x3 − 3(ap + 9bp)cx− 2(a2p − 18apbp − 27b2p)

with discriminant Δ = 21233(a3b)p. If c = 2c0 is even let

y2 + bpy = x3 − 3(c3
0 + bp)c0x− c3

0(2c
3
0 − 5bp)

which have discriminant Δ = 33(a3b)p. In both cases

N = rad(ab), Nρ = 3 if 3|ab

or
N = 33rad(ab), Nρ = 27 if 3 � ab.
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