THE FORMULATION OF THE CYCLOTOMIC IWASAWA MAIN CONJECTURE IN MAZUR-WILES PAPER, PRELIMINARY VERSION

F.BARS AND I.BLANCO-CHACÓN

1. Algebraic side: Iwasawa modules and characteristic ideals in cyclotomic Iwasawa theory.

Let us fix p an odd prime once and for all.

By a *p*-adic Dirichlet character we mean a character $\chi : (\mathbb{Z}/N)^* \to \overline{\mathbb{Q}_p}^*$ and by $\mathcal{O}_{\chi} \subset \overline{\mathbb{Q}_p}$ we mean the ring extension of \mathbb{Z}_p generated by the values of χ , where as usual \mathbb{Q}_p are the *p*-adic numbers and \mathbb{C}_p will denote the completion of $\overline{\mathbb{Q}_p}$. We assume, once and for all, that the conductor of χ , called *f* in the text, is not divisible by p^2 (i.e. χ is a character of first kind). As usual, the Teichmüller character $\omega : (\mathbb{Z}/p)^* = \mathbb{F}_p^* \to \mathbb{Z}_p^* \subseteq \overline{\mathbb{Q}_p}^*$ is the unique character of order p-1 such that $\omega(a) \equiv a \pmod{p}$.

Let μ_{p^n} be the group of p^n -th roots of unity and set

$$\mathbb{Q}(\mu_{p^{\infty}}) := \cup_{n=1}^{\infty} \mathbb{Q}(\mu_{p^{n}}).$$

Denote by $\mathbb{Q}_{\infty}/\mathbb{Q}$ the unique \mathbb{Z}_p -extension of \mathbb{Q} , where $[\mathbb{Q}(\mu_{p^{\infty}}) : \mathbb{Q}_{\infty}] = p - 1$, and $\mathbb{Q}_n \subset \mathbb{Q}_{\infty}$ the subfield of degree p^n over \mathbb{Q} .

For a finite abelian extension F/\mathbb{Q} , write $F_{\infty} = F\mathbb{Q}_{\infty}$, and $F_n = F\mathbb{Q}_n$. The \mathbb{Z}_p -extension F_{∞}/F is called the cyclotomic extension of the number field F and denote by Γ the Galois group $\operatorname{Gal}(F_{\infty}/F)$.

Consider the Iwasawa algebra: $\mathbb{Z}_p[[\operatorname{Gal}(F_{\infty}/M)]] := \lim_{\stackrel{\longleftarrow}{\to}} \mathbb{Z}_p[\operatorname{Gal}(F_n/M)]$ with $\mathbb{Q} \subset M \subset F$ such that F_{∞}/M

is abelian. Assume once and for all that $F \cap \mathbb{Q}_{\infty} = \mathbb{Q}$, (recall any χ of first kind is attached by class field theory to a field F with $F \cap \mathbb{Q}_{\infty} = \mathbb{Q}$).

We have

$$\mathbb{Z}_p[[\operatorname{Gal}(F_{\infty}/\mathbb{Q})]] = \mathbb{Z}_p[\operatorname{Gal}(F/\mathbb{Q})][[\operatorname{Gal}(F_{\infty}/F)]] \cong \mathbb{Z}_p[\operatorname{Gal}(F/\mathbb{Q})][[\Gamma]].$$

For any \mathbb{Z}_p -module U which admits a continuous action of $\operatorname{Gal}(F_{\infty}/\mathbb{Q})$, the χ -part of U is the $\mathcal{O}_{\chi}[[\Gamma]]$ -module obtained by change of scalars:

$$U_{\chi} = U \otimes_{\mathbb{Z}_p[\operatorname{Gal}(F/\mathbb{Q})]} \mathcal{O}_{\chi}.$$

Recall that we have a non-canonical isomorphism:

$$\sigma_{\gamma}: \mathcal{O}_{\chi}[[\Gamma]] \to \Lambda_{\chi} := \mathcal{O}_{\chi}[[T]]$$

mapping γ (a topological generator of Γ) to 1 + T, latter on we will fix this choice.

Recall the following statements on the theory of Λ_{χ} -modules of finite type:

- (1) M, N are Λ_{χ} -pseudo-isomorphic if exists a Λ_{χ} -homomorphism from M to N with finite kernel and cokernel. We write $M \sim N$ if they are Λ_{χ} -pseudo-null, which is an equivalence relation for Λ_{χ} -torsion modules.
- (2) $M = \Lambda_{\chi}$ -torsion (always of finite type), then

$$M \sim \oplus_{i=1}^r \Lambda_{\chi}/(h_i)$$

for some natural r where each $h_i \in \Lambda_{\chi}$. The invariant

$$(h_1 \cdots h_r) = Char_{\Lambda_{\chi}}(M)$$

is named the characteristic ideal of the $\Lambda_{\chi}\text{-module }M.$

Recall that for any $\alpha \in \Lambda_{\chi}$, we can write

$$\alpha = \pi^{\mu} h(T) v(T)$$

where π is an uniformizer of \mathcal{O}_{χ} , h(T) a distinguished polynomial of degree λ (i.e. the reduction of h(T) in $\Lambda_{\chi}/(p)$ is T^{λ}), and v(T) a unit of Λ_{χ} .

For $Char_{\Lambda_{\chi}}(M) = (\alpha)$ with α as above, the number $\mu \in \mathbb{N}$ is called the μ -invariant of M, and $\lambda = degree_T(h(T))$ is named the λ -invariant of M.

Denote by $A_n(F)$ the *p*-primary component of the ideal class group of F_n and by $H_n(F)$ the Galois group of the *p*-Hilbert class field of F_n over F_n , a $\operatorname{Gal}(F/\mathbb{Q})$ -module by the conjugation.

The inclusion of the divisor groups induces a map $\iota_n : A_n(F) \to A_{n+1}(F)$ and $A_{\infty}(F) := \lim_{\stackrel{\longrightarrow}{\iota_n}} A_n(F)$ defines

a $\mathbb{Z}_p[[\operatorname{Gal}(F_\infty/\mathbb{Q})]]$ -module.

The restriction maps $Res_{n+1}: H_{n+1}(F) \to H_n(F)$ allow us to define the $\mathbb{Z}_p[[Gal(F_\infty/\mathbb{Q})]]$ -module:

$$H_{\infty}(F) := \lim_{\substack{\leftarrow \\ Res_n}} H_n(F)$$

We have an isomorphism compatible with the $\operatorname{Gal}(F/\mathbb{Q})$ -action $A_n(F) \to \cong H_n(F)$, satisfying the following commutative diagrams:

$$\begin{array}{ccccc} A_{n+1}(F) & \rightarrow^{\cong} & H_{n+1}(F) & A_n(F) & \rightarrow^{\cong} & H_n(F) \\ \downarrow Norm & \downarrow Res & \downarrow \iota_n & transfer \\ A_n(F) & \rightarrow^{\cong} & H_n(F) & A_{n+1}(F) & \rightarrow^{\cong} & H_{n+1}(F) \end{array}$$

Recall that $Hom(A_{\infty}(F), \mathbb{Q}_p/\mathbb{Z}_p)$ is a $\mathbb{Z}_p[[Gal(F_{\infty}/\mathbb{Q})]]$ -module with action given by $(\tau \cdot f)(a) := \tau f(\tau^{-1}a) = f(\tau^{-1}a)$. Iwasawa proved that:

$$Hom(A_{\infty}(F), \mathbb{Q}_p/\mathbb{Z}_p)_{\chi^{-1}} \sim H_{\infty}(F)_{\chi}^{\#}$$

as Λ_{χ} -modules (through the above fixed isomorphism σ_{γ}) and they are Λ_{χ} -finite modules finitely generated, where # denotes the same group but with the $\operatorname{Gal}(F_{\infty}/\mathbb{Q})$ action given by the rule $\tau h^{\#} := \tau^{-1}h$.

Therefore, we can define by $h_p(F, \chi, T)$ the generator of $char_{\Lambda_{\chi}}(H_{\infty}(F)_{\chi})$ as the product of π^{μ} (with a fixed uniformizer for \mathcal{O}_{χ}) and a distinguished polynomial.

Proposition 1. We have the following results,

$$char_{\Lambda_{\chi}}(H_{\infty}(F)_{\infty,\chi}^{\#}) = (h_p(\chi, (1+T)^{-1} - 1))$$

$$char_{\Lambda_{\chi}}(Hom(A_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)_{\chi} = (h_p(\chi^{-1}, (1+T)^{-1} - 1))$$

Remark 2. Usually there is another Λ_{χ} -Iwasawa module for which the main conjecture is formulated. Consider M_n the maximal abelian p-extension of F_n which is unramified except possibly at the primes of F_n lying above p. Consider $M_{\infty} := \bigcup_{n \ge 0} M_n$ and denote by $X_{\infty} = Gal(M_{\infty}/F_{\infty})$ which is a $\mathbb{Z}_p[[Gal(F_{\infty}/F)]]$ -module as usual action by conjugation.

Then $X_{\infty,\chi}$ is a finitely generated Λ_{χ} -module and it is a torsion module if χ is an even character, and under that assumption, we have an isomorphism of Λ_{χ} -modules:

$$X_{\infty,\chi} \cong Hom(A_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p(1))_{\chi} \cong Hom(A_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)_{\omega^{-1}\chi}$$

where $\mathbb{Q}_p/\mathbb{Z}_p(1) = \mu_{p^{\infty}} = \bigcup_{n \geq 0} \mu_{p^n}$ (the first Tate twist) and ω denotes the Teichmüller character. Therefore, for χ even we have:

$$char_{\Lambda_{\chi}}(X_{\infty,\chi}) = (h_p(\omega\chi^{-1}, u(1+T)^{-1} - 1))$$

where u is $\kappa(\gamma) \in \mathbb{Z}_p^*$ where κ is the p-cyclotomic character restricted to $\Gamma = Gal(F_{\infty}/F)$, and γ a fixed topological generator of Γ .

For some computations, Mazur and Wiles work with Fitting ideals instead of characteristic ideals, see §5 for few details of the role that plays in the paper. (For a survey on Fitting ideals, see [3]).

Definition 3. Let Z be a finitely generated Λ_{χ} -module and let

$$\Lambda^a_{\gamma} \to^{\psi} \Lambda^b_{\gamma} \twoheadrightarrow Z$$

be a presentation, where the map ψ can be represented by an $a \times b$ -matrix Φ_Z with entries in Λ_{χ} .

In this setting, the Fitting ideal of Z is the ideal generated by all the determinants of the $b \times b$ -minors of Φ_Z if $a \ge b$ and otherwise is the zero ideal. We denote this ideal by $Fitt_{\Lambda_{\chi}}(Z)$.

And recall the following result

Lemma 4. Let Z be a finitely generated Λ_{χ} -module having no \mathcal{O}_{χ} -torsion. Then,

$$char_{\Lambda_{\chi}}(Z) = Fitt_{\Lambda_{\chi}}(Z)$$

An more general we have

Lemma 5. Let Z be a finitely generated torsion Λ_{χ} -module such that $\mu = 0$. Then we have,

 $char_{\Lambda_{\chi}}(Z)(\pi,T)^{lenght_{\Lambda_{\chi}}(tor_{\mathcal{O}_{\chi}}(Z))} \subseteq Fitt_{\Lambda_{\chi}}(Z) \subseteq char_{\Lambda_{\chi}}(Z).$

Concerning our involved Iwasawa modules in order to relate Fitting ideals with characteristic ideals we have the following result

Proposition 6. For each odd character χ , we have:

THE FORMULATION OF THE CYCLOTOMIC IWASAWA MAIN CONJECTURE IN MAZUR-WILES PAPER, PRELIMINARY VERSION

- (1) (Iwasawa) $H_{\infty,\chi}$ and $Hom(A_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)_{\chi}$ have no finite Λ_{χ} -submodules,
- (2) (Ferrero-Washington) The μ -invariant for $H_{\infty,\chi}$ and $Hom(A_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p)_{\chi}$ are zero, in particular both are of finite type as \mathbb{Z}_p -modules.

2. Analytic side: p-adic L-functions and Iwasawa main conjecture

Let χ be a Dirichlet character associated to F with conductor f,

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}; \ Re(s) > 1.$$

From the functional equation, we have for $m \ge 1$ integer:

$$L(1-m,\chi) \left\{ \begin{array}{l} \neq 0 \ if \ m \equiv \delta(mod \ 2) \\ = 0 \ otherwise \end{array} \right.$$

where $\delta = 0$ if χ even and 1 if χ is odd.

We can relate these special values to the generalized Bernoulli numbers, namely, recall that $B_{n,\chi}$ are defined by

$$\sum_{a=1}^{f} \frac{\chi(a)te^{at}}{e^{ft} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}$$

Proposition 7. For $m \ge 1$ we have $L(1-m,\chi) = -\frac{B_{m,\chi}}{m}$.

The Bernoulli polynomials $B_n(X)$ defined by

$$\frac{te^{Xt}}{e^t-1} = \sum_{n=0}^{\infty} B_n(X) \frac{t^n}{n!},$$

which satisfy

$$B_{n,\chi} = f^{n-1} \sum_{a=1}^{f} \chi(a) B_n(\frac{a}{f})$$

and play a key role in order to construct a series named *p*-adic *L*-function, and that we write $L_p(s,\chi)$ with $s \in \mathbb{C}_p$ in some range of convergence such that

$$L_p(1-m,\chi) = -(1-\chi\omega^{-n}(p)p^{m-1})\frac{B_{m,\chi\omega^{-m}}}{m},$$

for $m \geq 1$.

Recall that $L_p(T,\chi) \in Frac(\mathcal{O}_{\chi})[[T]]$, where Frac(R) denotes the field of fractions of a domain R. For further details on $L_p(s,\chi)$, as its classical construction, se for example §3.4[1].

In section §4, following the classical work of Iwasawa, we construct a formal power series $G_p(T, \chi) \in \mathcal{O}_{\chi}[[T]]$ which should interpolate the *p*-adic *L*-functions as a measure, in particular in order to simplify, χ is assumed to be of first kind (i.e. $p^2 \nmid f$ the conductor).

The power series $G_p(T, \chi)$ is characterized by the property

$$G_p(\chi, u^s - 1) = L_p(\chi, s), \ \forall s \in \mathbb{Z}_p$$

The following formulation of a Cyclotomic Iwasawa Main Conjecture (IMC in the following in the text) was formulated by Greenberg:

Conjecture 8 (IMC). Let χ be an even primitive Dirichlet character of first kind. Then, as ideals of $\mathcal{O}_{\chi}[[T]]$, we have

$$(h_p(\omega\chi^{-1},T)) = (G_p(\chi,T)).$$

3. IWASAWA THEORY IN TERMS OF COMPONENTS

Let us denote by $G = G_p \times G'_p$ a finite abelian group of order k where G_p the p-primary component and G'_p the product of all ℓ -primary components with $\ell \neq p$. Consider

$$R = \mathbb{Z}_p[G] = \mathbb{Z}_p[G_p] \otimes \mathbb{Z}_p[G'_p]$$

a complete ring, product of local rings (i.e., a semi-local ring).

- There is a bijection between any of the sets in the list:
 - (1) connected components of Spec(R)
 - (2) irreducible idempotents of R,

(3) maximal ideals of R,

(4) \mathbb{Q}_p -conjugacy classes of $\overline{\mathbb{Q}_p}^*$ -valued characters of G'_p .

Write Π_R for the set of connected components of Spec(R) and let us refer to its elements as *components*. For each $\mathfrak{m} \in \Pi_R$, $R_{\mathfrak{m}}$ denotes the completion of R with respect to the corresponding maximal ideal and $e_{\mathfrak{m}}$ the irreducible idempotent. We have

$$R = \prod_{\mathfrak{m} \in \Pi_R} R_\mathfrak{m}.$$

Denote by Σ_R the set of irreducible components of Spec(R), and we have a bijectivity with \mathbb{Q}_p -conjugacy classes of $\overline{\mathbb{Q}_p}^*$ -valued characters of G. The elements of Σ_R are called *sheets* and we have a surjection:

$$\Sigma_R \twoheadrightarrow \Pi_R.$$

The basic sheet of a component \mathfrak{m} (corresponding to a \mathbb{Q}_p -conjugacy of a character χ' on G'_p) is the sheet corresponding to the \mathbb{Q}_p -conjugacy of the character of G obtained from χ' with the projection $G \to G'_p$.

Observe that the basic sheet corresponds to the characters of G in \mathfrak{m} of order prime to p, these characters are named basic characters.

Fix an integer a prime to p and set $G_{a,n} := (\mathbb{Z}/ap^n)^*$, and $R_{a,n} = \mathbb{Z}_p[G_{a,n}]$. Define from the natural projections $R_{a,n+1} \to R_{a,n}$,

$$R_{a,\infty} := \lim_{\longleftarrow} R_{a,n}$$

and since $(G_{a,n})'_p = (G_{a,1})'_p$ we have (componentwise):

$$R_{a,\infty,\mathfrak{m}} := \lim_{\stackrel{\longleftarrow}{\underset{n}{\longleftarrow}}} (R_{a,n})_{\mathfrak{m}}.$$

A component \mathfrak{m} of $R_{a,\infty,\mathfrak{m}}$ is primitive or (a-primitive) if the conductor of any basic character is either a or ap.

A component \mathfrak{m} of $R_{a,\infty,\mathfrak{m}}$ is pseudo-primitive if there is some character of \mathfrak{m} whose conductor is a or ap. A component \mathfrak{m} is even (resp. odd) if every character belonging to \mathfrak{m} is even (resp. odd).

Examples 9. We give different examples of the above concepts.

(1) Take p = 3 and a = 11. Consider a character of conductor 33

$$\chi: (\mathbb{Z}/33)^* \cong (\mathbb{Z}/3)^* \times (\mathbb{Z}/11)^* \cong C_2 \times C_{10} \to \mathbb{C}_3^*.$$

(recall that the finite subgroup in \mathbb{Z}_3^* of square roots of unity is $\{\pm 1\}$). The character χ is primitive if it does not vanish on C_2 , and χ^2 has conductor 11, in particular, χ^2 is a pseudo-primitive character in this case.

(2) Take p = 3 and a = 2, take the character

$$\chi: (\mathbb{Z}/6)^* \to \mathbb{Z}_3^* \subseteq \mathbb{C}_3^*$$

of order 2 given by $5 \mapsto -1$. It is a basic character of conductor 3, in particular it is not primitive. It is neither a Galois conjugate, because the image is in \mathbb{Z}_3^* , thus it is not pseudo-primitive.

(3) Take p an odd prime and a = 1. Then, we have the Teichmüller character

$$\omega: (\mathbb{Z}/p)^* \to \mathbb{Z}_p^*.$$

The conductor of ω^j with (j, p-1) = 1 is p and hence, it is primitive, and a basic character because the Galois conjugation is exactly the same character.

Write $\Gamma_a := ker(\mathbb{Z}_{p,a}^* := \lim_{\stackrel{\longleftarrow}{n}} \mathbb{Z}/ap^n \to (\mathbb{Z}/pa\mathbb{Z})^*)$, a free pro-*p*-group on one generator *u* such that $u \not\equiv 1 \pmod{ap^2}$, and $\Gamma_a/\Gamma_a^{p^n} \times (\mathbb{Z}/ap)^* \cong G_{a,n-1}$, therefore we have:

$$R_{a,\infty,\mathfrak{m}} \cong R_{a,1,\mathfrak{m}}[[\Gamma_a]]$$

$$R_{a,n,\mathfrak{m}} \cong R_{a,1,\mathfrak{m}}[\Gamma_a/\Gamma_a^{p^{n-1}}]$$

Definition 10. For $k \in \mathbb{Z}$, the k-twisted yoke

$$\rho_k : \mathbb{Z}_p[[Gal(\overline{\mathbb{Q}}/\mathbb{Q})]] \to R_{a,\infty}$$

is the unique continuous ring homomorphism such that

$$\rho_k(g) = \varepsilon_{p,1}^{\kappa}(g)[\varepsilon_{p,a}(g)]$$

where

$$\varepsilon_{p,a}: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{Z}_{p,a}^*$$

defined by the property $\zeta_{ap^n}^{\varepsilon_{p,a}(g)} = g(\zeta_{ap^n})$ for every ap^n -th root ζ_{ap^n} of 1 in \overline{Q} , and observe

$$\alpha \circ \varepsilon_{p,a} = \varepsilon_{p,1}$$

where $\alpha : \mathbb{Z}_{p,a}^* \to \mathbb{Z}_{p,1}^* = \mathbb{Z}_p^*$ the natural projection.

The conjugate k-twisted yoke is defined by $\overline{\rho}_k(g) := \varepsilon_{p,1}^k(g) [\varepsilon_{p,a}(g)]^{-1}$. Now if \mathfrak{m} is a component of $R_{a,\infty}$ we denote by $\eta_{k,\mathfrak{m}}$ (and $\overline{\eta}_{k,\mathfrak{m}}$) the composition of ρ_k (resp. $\overline{\rho}_k$) with the projection to the factor $R_{a,\infty,\mathfrak{m}}$.

Remark 11. Consider the restriction of $\varepsilon_{p,a}$ to $Gal(\mathbb{Q}(\mu_a)_{\infty}/\mathbb{Q}) \cong Gal(\mathbb{Q}(\mu_a)_{\infty}/\mathbb{Q}(\mu_a)) \times Gal(\mathbb{Q}(\mu_a)/\mathbb{Q})$ and defines and isomorphism between $Gal(\mathbb{Q}(\mu_a)_{\infty}/\mathbb{Q}(\mu_a))$ to Γ_a , this isomorphism is named κ when a = 1, and κ_a in general.

We choose once and for all a topological generator γ_a of $Gal(\mathbb{Q}(\mu_a)_{\infty}/\mathbb{Q}(\mu_a))$ such that $\kappa_a(\gamma_a) = u$ a fix topological generator of Γ_a , and in particular $\alpha(u) = \kappa(\gamma) = \kappa_a(\gamma_a)$.

In this setting we have the "Tate" twist automorphism,

$$\tau: R_{a,\infty} \to R_{a,\infty}, \ [g] \mapsto \alpha(g)[g],$$

which clearly satisfies

$$\tau^{-1}\rho_k = \rho_{k+1}.$$

Remark 12. Consider M a $R_{a,\infty}$ -module and a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -module such that its Galois action is obtained from $R_{a,\infty}$ by composition with a homomorphism $h : \mathbb{Z}_p[[\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})]] \to R_{a,\infty}$. Consider the Tate-twisted module $M(1) := M \otimes_{\mathbb{Z}_p} \mu_{p^{\infty}}$ with $R_{a,\infty}$ -structure by action on the first module, then its Galois-module action is given via τh .

Definition 13. Let M be a $R_{a,\infty,\mathfrak{m}}$ -module with a commuting action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. We say that M is a \overline{n}_{-1} -yoked bimodule (or it admits a yoked bimodule structure) if its $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -structure is obtained from its $R_{a,\infty,\mathfrak{m}}$ -structure via the homomorphism $\overline{\eta}_{-1,\mathfrak{m}}$.

Let us emphasize that $\overline{\eta}_{-1,\mathfrak{m}}$ is a surjective morphism characterized by the formula

$$\overline{\eta}_{-1,\mathfrak{m}}(Frob_{\ell}) = \ell^{-1}[\ell]^{-1}$$

where ℓ is any prime coprime with ap, and $Frob_{\ell}$ any Frobenius element in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ associated to ℓ , and $[\ell]$ refers the image in $R_{a,\infty,\mathfrak{m}}$ of $[l] \in \mathbb{Z}_p[[\mathbb{Z}_{p,a}^*]]$.

Definition 14. Consider an algebraic p-abelian extension L/K. We say that L/K is of type \mathfrak{m} if the kernel of

$$\bar{j}_{-1}: \mathbb{Z}_p[[\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})]] \twoheadrightarrow R_{a,\infty,\mathfrak{m}}$$

annihilates the module $\operatorname{Gal}(L/K)$ viewed as a $\mathbb{Z}_p[[\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})]]$ -module via conjugation.

Let us consider a component \mathfrak{m} . Set S be the set of Dirichlet characters of conductor dividing ap belonging to \mathfrak{m} , and always assume that it is an even component. Let $F_{\mathfrak{m}}^+$ be the finite abelian extension of \mathbb{Q} characterized by

$$\operatorname{Gal}(\mathbb{Q}/F^+_{\mathfrak{m}}) = \cap_{\chi \in S} ker(\chi).$$

Definition 15. A finite extension L/K is said to be **everywhere** unramified if there exist algebraic number fields of finite degree $K' \subset K$ and $L' \subset L$ containing K' such that L = L'K and L'/K' is an unramified extension.¹. In general L/K is said **everywhere** unramified if it is a union of finite **everywhere** unramified extensions.

Define by $K_{\mathfrak{m},\infty} := \mathbb{Q}_{\infty} F^+_{\mathfrak{m}}(\zeta_p)$, and let $L_{\mathfrak{m},\infty}$ the maximal **everywhere** unramified abelian extension of $K_{\mathfrak{m},\infty}$ of type \mathfrak{m} and denote by

$$H_{\mathfrak{m}} := \operatorname{Gal}(L_{\mathfrak{m},\infty}/K_{\mathfrak{m},\infty}).$$

Consider a character ψ of \mathfrak{m} of conductor dividing ap. Denote by $H_{\mathfrak{m},\psi}$ the $\mathcal{O}_{\psi}[[T]]$ -module obtained from $H_{\mathfrak{m}}$ via the change of scalars:

$$R_{a,\infty,\mathfrak{m}} = R_{a,1,\mathfrak{m}}[[\Gamma_a]] \to \mathcal{O}_{\psi}[[\Gamma_a]] \to^{\sigma_u} \mathcal{O}_{\psi}[[T]]$$

where the first map is the natural one for the Dirichlet character, and the second one maps a topological generator u of Γ_a to (1 + T).

Mazur and Wiles claims the obviousness of the following statement

 $^{^{1}}$ It seems that in the definition on Wiles-Mazur is unclear the use of the term everywhere unramified

$$\beta: H_{\infty,(\psi\omega)^{-1}}(F^+_{\mathfrak{m}}(\zeta_p)) \cong H_{\mathfrak{m},\psi}$$

where

$$u\beta((1+T)x) = (1+T)^{-1}\beta(x)$$

for $x \in H_{\infty,(\psi\omega)^{-1}}$, where $u \in \mathbb{Z}_p^*$ meaning $\kappa(\gamma)$.

Mazur-Wiles will work on quotients of $H_{\mathfrak{m},(\psi\omega)^{-1}}$ in order to prove IMC when \mathfrak{m} is a primitive component.

For pseudo-primitive components Mazur-Wiles introduce a new module $H^{\flat}_{\mathfrak{m}} := Gal(L^{\flat}_{\mathfrak{m},\infty}/K_{\mathfrak{m},\infty})$ where $L^{\flat}_{\mathfrak{m},\infty}$ is the maximal virtually unramified extension of $K_{\mathfrak{m},\infty}$ of type \mathfrak{m} , where an abelian extension is called virtually unramified of type \mathfrak{m} if is of type \mathfrak{m} and it is unramified expect possible at primes of residual characteristic dividing a.

Proposition 17. Let \mathfrak{m} be a primitive or pseudo-primitive component and ψ a character belonging to \mathfrak{m} such that a divides the conductor of ψ . Then, the natural surjection

$$H^{\mathfrak{p}}_{\mathfrak{m},\psi} \twoheadrightarrow H_{\mathfrak{m},\psi}$$

has finite kernel (which is zero if ${\mathfrak m}$ is primitive).

In particular the characteristic ideal of $H^{\flat}_{\mathfrak{m},\psi}$ coincides with the characteristic ideal of $H_{\mathfrak{m},\psi}$.

4. STICKELBERGER ELEMENTS AND STICKELBERGER IDEALS: p-ADIC L-FUNCTIONS Á LA IWASAWA

Denote by $\langle x \rangle$ the real number $\equiv x \mod \mathbb{Z}$ with $0 \leq \langle x \rangle < 1$. The k-th Stickelberger element is defined by:

$$\vartheta_k(b,N) := (N^{k-1}/k) \sum_{t=1,gcd(t,N)=1}^N B_k(\langle bt/N \rangle)[t]^{-1} \in \mathbb{Q}[(\mathbb{Z}/N)^*]$$

for any positive integer N and any integer b. As usual in group rings, denote:

$$\hat{\vartheta}_k(b,N) := (N^{k-1}/k) \sum_{t=1, gcd(t,N)=1}^N B_k(\langle bt/N \rangle)[t] \in \mathbb{Q}[(\mathbb{Z}/N)^*]$$

The k-th Stickelberger ideal is defined via:

2

$$S_k(N) := \mathbb{Z}[(\mathbb{Z}/N)^*] \cap \sum_{b \in \mathbb{Z}} \vartheta_k(b; N) \mathbb{Z}[(\mathbb{Z}/N)^*],$$
$$S_k(N)' := \mathbb{Z}[(\mathbb{Z}/N)^*] \cap \sum_{b \in \mathbb{Z}, acd(b,p)=1} \vartheta_k(b; N) \mathbb{Z}[(\mathbb{Z}/N)^*]$$

and similarly $\hat{S}_k(N)$ and $\hat{S}_k(N)'$.

It is known that

$$\vartheta_{k,c}(b;N) := (1 - c^k[c]^{-1})\vartheta_k(b;N) \in \mathbb{Z}[(\mathbb{Z}/N)^*].$$

Let us get back to $R_{a,\infty}$, and take $N = ap^n$. We can define

$$\vartheta_{k,c}(b;ap^{\infty}) := \lim_{\stackrel{\longleftarrow}{n}} \vartheta_{k,c}(b;ap^n) \in R_{a,\infty}$$

because in $R_{a,n+1} \to R_{a,n}$ we have $\vartheta_{k,c}(b,ap^{n+1}) \mapsto \vartheta_{k,c}(b;ap^n)$.

We have the relation via the twist automorphism: $\vartheta_{k,c}(1;ap^{\infty}) = \tau \vartheta_{k+1,c}(1;ap^{\infty})$.

Now we follow Iwasawa for the construction of the p-adic L-function through k-th Stickelberger elements. Recall that χ is a Dirichlet character of first kind of conductor dividing *ap*. Define by

$$G_{p,k,c}(\chi,T) \in \mathcal{O}_{\chi}[[T]] := \alpha_{\chi}(\vartheta_{k,c}(1;ap^{\infty})), where$$
$$\alpha_{\chi}: R_{a,\infty} = R_{a,1}[[\Gamma_a]] \to \mathcal{O}_{\chi}[[\Gamma_a]] \to^{\sigma_u} \mathcal{O}_{\chi}[[T]]$$

is the composition of the map taking into account $\chi : (\mathbb{Z}/ap)^* \to \mathcal{O}^*_{\chi}$ and σ_u defined by $[u] \mapsto 1 + T$. Recall that u is a fixed topological generator of Γ_a chosen so that $\alpha(u) = \kappa(\gamma) \in \mathbb{Z}_p^*$, and we identify in all this lecture $\Gamma_a \cong \Gamma_1 \text{ via } u \mapsto \gamma \text{ and by abuse in notation, } u \in \mathbb{Z}_p^* \text{ represents the element } \alpha(u).$ If $\chi \omega^{-k}$ is not of *p*-power order, then $(1 - c^k[c]^{-1})$ defines a unit power series $u_{p,k,c} \in \mathcal{O}_{\chi}[[T]]$, and under this

hypothesis one defines the k-th Stickelberger power series

$$G_{p,k}(\chi,T) := G_{p,k,c}(\chi,T)/u_{p,k,c} \in \mathcal{O}_{\chi}[[T]]$$

which is independent of c.

Theorem 18 (Iwasawa). Let χ be a Dirichlet character of first kind. Then

$$L_p(\chi, s) = G_p(\chi, \kappa(\gamma)^s - 1), \forall s \in \mathbb{Z}_p$$

where $G_p(\chi, T) = -G_{p,1}(\chi^{-1}\omega, T).$

From the commutativity of the diagram:

$$\begin{array}{cccc} R_{a,\infty} & \rightarrow^{\alpha_{\chi}} & \mathcal{O}_{\chi}[[T]] & T \\ \tau^{-1} \downarrow & \downarrow & \downarrow \\ R_{a,\infty} & \rightarrow^{\alpha_{\chi\omega}} & \mathcal{O}_{\chi}[[T]] & u^{-1}(1+T) - 1 \end{array}$$

we obtain,

$$G_p(\chi, T) = -G_{p,k}(\chi^{-1}\omega^k, u^{k-1}(1+T) - 1),$$

where u in the last two statements means the element $\kappa(\gamma) \in \mathbb{Z}_p^*$.

For later convenience in the seminar let us study the generators of the 2-th Stickelberger ideals in $R_{a,n,\mathfrak{m}}$.

Denote by $\vartheta_{2,\mathfrak{m}}(b;ap^n)$ the image of $\vartheta_2(b;ap^n)$ in $R_{a,n,\mathfrak{m}} \otimes \mathbb{Q}_p$. If ω^2 does not belong to \mathfrak{m} , there exists c such that $(1 - c^2[c]^{-1})$ projects to a unit in $R_{a,n,\mathfrak{m}}$, therefore

$$\vartheta_{2,\mathfrak{m}}(b;ap^n) \in R_{a,n,\mathfrak{m}}.$$

Denote by $S_2(ap^n)_{\mathfrak{m}}$ the ideal in $R_{a,n,\mathfrak{m}}$ generated by the images of $S_2(ap^n)$ in $R_{a,n,\mathfrak{m}}$. Similar definitions for $S_2(ap^n)'_{\mathfrak{m}}, \hat{S}_2(ap^n)_{\mathfrak{m}}$ and $\hat{S}_2(ap^n)'_{\mathfrak{m}}$.

Proposition 19. Let m be a component.

- (1) If \mathfrak{m} is pseudo-primitive and not associated to ω^2 or the trivial character, then $S_2(ap^n)'_{\mathfrak{m}}$ is generated by $\vartheta_{2,\mathfrak{m}}(d;ap^n)$ where d runs through those divisors of r where ap/r is the reduced conductor.
- (2) If \mathfrak{m} is pseudo-primitive and not associated to ω^{-2} or the trivial character, then $\hat{S}_2(ap^n)'_{\mathfrak{m}}$ is generated by $\hat{\vartheta}_{2,\mathfrak{m}}(d;ap^n)$ where d runs through those divisors of r where ap/r is the reduced conductor.
- (3) If \mathfrak{m} is a-primitive and not associated to ω^2 or the trivial character, then $S_2(ap^n)'_{\mathfrak{m}}$ is principal ideal generated by $\vartheta_{2,\mathfrak{m}}(1;ap^n)$ (the principal Stickelberger element).

There are also results for the remaining pseudo-primite \mathfrak{m} that coincide with $\omega^{\pm 2}$ or trivial character but we do not reproduce them here.

Finally, we show the relation between 2-th Stickelberger ideal and the *p*-adic *L*-function à la Iwasawa.

Proposition 20. Let χ be a non-trivial even-character of conductor a or ap and $\chi \neq \omega^{-2}$. If a = 1, then

$$\alpha_{\mathfrak{m},\chi}(\hat{S}_2(ap^{\infty})'_{\mathfrak{m}}) = G_{p,2}(\chi^{-1}, (1+T)^{-1} - 1)$$

where recall that $\alpha_{\mathfrak{m},\chi}: R_{a,\infty,\mathfrak{m}} \to \mathcal{O}_{\chi}[[T]]$ follows from α_{χ} with the projection $R_{a,\infty} \to R_{a,\infty,\mathfrak{m}}$.

5. The IMC follows from a inclusion on Fitting ideals

Consider $G_p(\psi\omega^2, T)$, which is not a unit power series for any ψ character associated to the pseudo-primitive component \mathfrak{m} , (this allows Mazur-Wiles to suppose different restrictions, for example, when a = 1, they assume that \mathfrak{m} does not contain as basic character ω^{-2} or the trivial character).

The big work of Mazur and Wiles is to construct an ideal $\mathfrak{b}_{n,\mathfrak{m}} \subseteq R_{a,n,\mathfrak{m}}$ and a virtually unramified extension of type $\mathfrak{m} L_{\mathfrak{m}}^{(n)}/K_{\mathfrak{m}}$ such that $\operatorname{Gal}(L_{\mathfrak{m}}^{(n)}/K_{\mathfrak{m}})$ is an $R_{a,\infty,\mathfrak{m}}$ -module which satisfies the following properties:

 \bullet we have a relation that in the simplest case of $\mathfrak m$ primitive reads as:

$$(1-l[l])^k \mathfrak{b}_{\mathfrak{m}}^{(n)} \subseteq \hat{S}_2(ap^n)'_{\mathfrak{m}},$$

where l and k are technical elements, see the precise definition in [4, Chp 4§3,Chp5§5], for example k = 0 if $\psi = \psi'_p \omega^k$ and $k \not\equiv -1 \pmod{p-1}$, (moreover, in that situation we have that $\mathfrak{b}_{\mathfrak{m}}^{(n)} = \hat{S}_2(ap^n)'_{\mathfrak{m}}$ which is principal generated by the principal Stickelberger element $\hat{\vartheta}_2(ap^n)_{\mathfrak{m}}$).

We define

$$\mathfrak{b}_{\mathfrak{m}}^{(\infty)} = \lim_{\stackrel{\longleftarrow}{\longleftarrow} n} \mathfrak{b}_{\mathfrak{m}}^{(n)} \subset R_{a,\infty,\mathfrak{m}}$$

through the natural maps $R_{a,n+1,\mathfrak{m}} \to R_{a,n,\mathfrak{m}}$.

Thus, in the simplest case we have the inclusion

$$(1-l[l])^k \mathfrak{b}_{\mathfrak{m}}^{(\infty)} \subseteq \hat{S}_2(ap^\infty)'_{\mathfrak{m}}$$

Now, applying the result of Proposition 20 we obtain:

(1)
$$(1 - l\psi(l)[l])^k \alpha_{\mathfrak{m},\psi}(\mathfrak{b}_{\mathfrak{m}}^{(\infty)}) \subseteq (G_{p,2}(\psi^{-1}, (1+T)^{-1} - 1)).$$

• we have a ideal $\mathfrak{U}_{\mathfrak{m}} \subset R_{a,\infty,\mathfrak{m}}$ of finite index (independent of n) such that:

$$\mathfrak{l}_{\mathfrak{m}}Fitt_{R_{a,\infty,\mathfrak{m}}}(Gal(L_{\mathfrak{m}}^{(n)}/K_{\mathfrak{m}})) \subseteq \mathfrak{b}_{\mathfrak{m}}^{(\infty)}$$

Now, the projective limit of Fitting ideals not always gets the Fitting ideal, but in complete local noetherian rings does ([4, Apendix (10)] or [3]), thus:

(2)
$$\mathfrak{U}_{\mathfrak{m}}Fitt_{R_{\mathfrak{m}},\infty,\mathfrak{m}}(H^{\flat}_{\mathfrak{m}}) \subseteq \mathfrak{b}_{\mathfrak{m}}^{(\infty)}$$

And in order to get back to characteristic ideals and because $H_{\mathfrak{m}}$ is pseudo-isomorphic to $H_{\mathfrak{m}}^{\flat}$ (we have epimorphism between them with finite kernel) applying Lemma 5 (or [4, cor. prop.2 Appendix]):

(3)
$$\mathfrak{U}'_{\mathfrak{m}} char_{\mathcal{O}_{\psi}[[T]]}(H_{\mathfrak{m},\psi}) \subseteq \alpha_{\mathfrak{m},\psi}(\mathfrak{b}_{\mathfrak{m}}^{(\infty)})$$

where $\mathfrak{U}_{\mathfrak{m}} \subseteq R_{a,\infty,\mathfrak{m}}$ an ideal of finite index.

Now combining equations (1) and (3):

(4)
$$(1 - l\psi(l)[l])^k char_{\mathcal{O}_{\psi}[[T]]}(H_{\mathfrak{m},\psi}) \subseteq (G_{p,2}(\psi^{-1}, (1+T)^{-1} - 1)).$$

Now take $\psi := \chi \omega^{-2}$. Now by Proposition 16 one deduces

$$Char_{\mathcal{O}_{\psi}[[T]]}(H_{\infty,\hat{\chi}=\omega\chi^{-1}}) = (h_{\mathfrak{m},\psi}(u^{-1}(1+T)^{-1}-1))$$

where $Char_{R_{a,\infty,\mathfrak{m}}}(H_{\infty,\psi}) = (h_{\mathfrak{m},\psi}(T))$, generated by the corresponding distinguished polynomial (we are with μ -invariant zero), and therefore we read equation (4) as follows:

$$(1-\psi(l)[l](u^{-1}(1+T)^{-1}-1))^k Char_{\mathcal{O}_{\psi}[[T]]}(H_{\infty,\hat{\chi}}) \subseteq (G_{p,2}(\psi^{-1}=\omega^2\chi^{-1},u(1+T)-1)) = (G_p(\chi,T)).$$

For the simplest case k = 0 we have an inclusion, (and in the general statement need analysis to the zeroes of $(1 - \psi(l)[l](u^{-1}(1+T)^{-1}-1))$ and similar factors.

This allows to prove that

$G_p(\chi,T)$ divides $h_p(\hat{\chi},T)$,

where $h_p(\hat{\chi}, T)$ is the distinguished polynomial such that $Char_{R_{a,\infty,\mathfrak{m}}}(H_{\infty,\hat{\chi}}) = (h_p(\hat{\chi}, T))$, (for this one use that in $\mathcal{O}_{\chi}[[T]]$ one have that if $\mathfrak{a}(f) \subset (g)$ with $f, g \in \mathcal{O}_{\chi}[[T]]$ and \mathfrak{a} an ideal of $\mathcal{O}_{\chi}[[T]]$ of finite index then g divides f, see [4, Lemma3, Appendix]).².

The other divisibility follows for the analytic class number formula proving the IMC.

References

[1] H. Castillo, Kubota-Leopoldt p-adic L-function, see www.algant.eu/documents/theses/castillo.pdf

[2] J. Coates, The work of Mazur-Wiles, Bourbaki talk 475,...

[3] F. Nuccio, Fitting ideals, pp83–95 In The Iwasawa theory of totally real fields, LNS vol.12, Ramanujan math. society, (2010).

[4] B.Mazur and A.Wiles, Class fields of abelian extensions of Q, Inventiones math. **76** (1984), 179–330.

 $^{^{2}}$ Recall that the Fitting ideal is not always principal, and we need to replace it by the characteristic ideal in order to use the above Lemma 3 in the appendix of Mazur-Wiles