
THE FORMULATION OF THE CYCLOTOMIC IWASAWA MAIN CONJECTURE IN

MAZUR-WILES PAPER, PRELIMINARY VERSION

F.BARS AND I.BLANCO-CHACÓN

1. Algebraic side: Iwasawa modules and characteristic ideals in cyclotomic Iwasawa theory.

Let us fix p an odd prime once and for all.

By a p-adic Dirichlet character we mean a character χ : (Z/N)∗ → Qp
∗
and by Oχ ⊂ Qp we mean the ring

extension of Zp generated by the values of χ, where as usual Qp are the p-adic numbers and Cp will denote the

completion of Qp. We assume, once and for all, that the conductor of χ, called f in the text, is not divisible by

p2 (i.e. χ is a character of first kind). As usual, the Teichmüller character ω : (Z/p)∗ = F∗
p → Z∗

p ⊆ Qp
∗
is the

unique character of order p− 1 such that ω(a) ≡ a(mod p).
Let µpn be the group of pn-th roots of unity and set

Q(µp∞) := ∪∞
n=1Q(µpn).

Denote by Q∞/Q the unique Zp-extension of Q, where [Q(µp∞) : Q∞] = p − 1, and Qn ⊂ Q∞ the subfield
of degree pn over Q.

For a finite abelian extension F/Q, write F∞ = FQ∞, and Fn = FQn. The Zp-extension F∞/F is called the
cyclotomic extension of the number field F and denote by Γ the Galois group Gal(F∞/F ).

Consider the Iwasawa algebra: Zp[[Gal(F∞/M)]] := lim
←−
n

Zp[Gal(Fn/M)] with Q ⊂ M ⊂ F such that F∞/M

is abelian. Assume once and for all that F ∩Q∞ = Q, (recall any χ of first kind is attached by class field theory
to a field F with F ∩Q∞ = Q).

We have
Zp[[Gal(F∞/Q)]] = Zp[Gal(F/Q)][[Gal(F∞/F )]] ∼= Zp[Gal(F/Q)][[Γ]].

For any Zp-module U which admits a continuous action of Gal(F∞/Q), the χ-part of U is the Oχ[[Γ]]-module
obtained by change of scalars:

Uχ = U ⊗Zp[Gal(F/Q)] Oχ.

Recall that we have a non-canonical isomorphism:

σγ : Oχ[[Γ]] → Λχ := Oχ[[T ]]

mapping γ (a topological generator of Γ) to 1 + T , latter on we will fix this choice.
Recall the following statements on the theory of Λχ-modules of finite type:

(1) M,N are Λχ-pseudo-isomorphic if exists a Λχ-homomorphism from M to N with finite kernel and
cokernel. We write M ∼ N if they are Λχ-pseudo-null, which is an equivalence relation for Λχ-torsion
modules.

(2) M a Λχ-torsion (always of finite type), then

M ∼ ⊕ri=1Λχ/(hi)

for some natural r where each hi ∈ Λχ. The invariant

(h1 · · ·hr) = CharΛχ(M)

is named the characteristic ideal of the Λχ-module M .
Recall that for any α ∈ Λχ, we can write

α = πµh(T )v(T )

where π is an uniformizer of Oχ, h(T ) a distinguished polynomial of degree λ (i.e. the reduction of h(T )
in Λχ/(p) is T

λ), and v(T ) a unit of Λχ.
For CharΛχ(M) = (α) with α as above, the number µ ∈ N is called the µ-invariant of M , and

λ = degreeT (h(T )) is named the λ-invariant of M .

Denote by An(F ) the p-primary component of the ideal class group of Fn and by Hn(F ) the Galois group of
the p-Hilbert class field of Fn over Fn, a Gal(F/Q)-module by the conjugation.

The inclusion of the divisor groups induces a map ιn : An(F ) → An+1(F ) and A∞(F ) := lim
−→
ιn

An(F ) defines

a Zp[[Gal(F∞/Q)]]-module.
1



2 F.BARS AND I.BLANCO-CHACÓN

The restriction maps Resn+1 : Hn+1(F ) → Hn(F ) allow us to define the Zp[[Gal(F∞/Q)]]-module:

H∞(F ) := lim
←−
Resn

Hn(F ).

We have an isomorphism compatible with the Gal(F/Q)-action An(F ) →∼= Hn(F ), satisfying the following
commutative diagrams:

An+1(F ) →∼= Hn+1(F ) An(F ) →∼= Hn(F )
↓ Norm ↓ Res ↓ ιn transfer
An(F ) →∼= Hn(F ) An+1(F ) →∼= Hn+1(F )

Recall that Hom(A∞(F ),Qp/Zp) is a Zp[[Gal(F∞/Q)]]-module with action given by (τ ·f)(a) := τf(τ−1a) =
f(τ−1a). Iwasawa proved that:

Hom(A∞(F ),Qp/Zp)χ−1 ∼ H∞(F )#χ
as Λχ-modules (through the above fixed isomorphism σγ) and they are Λχ-finite modules finitely generated,
where # denotes the same group but with the Gal(F∞/Q) action given by the rule τh# := τ−1h.

Therefore, we can define by hp(F, χ, T ) the generator of charΛχ(H∞(F )χ) as the product of πµ (with a fixed
uniformizer for Oχ) and a distinguished polynomial.

Proposition 1. We have the following results,

charΛχ(H∞(F )#∞,χ) = (hp(χ, (1 + T )−1 − 1))

charΛχ(Hom(A∞,Qp/Zp)χ = (hp(χ
−1, (1 + T )−1 − 1))

Remark 2. Usually there is another Λχ-Iwasawa module for which the main conjecture is formulated. Consider
Mn the maximal abelian p-extension of Fn which is unramified except possibly at the primes of Fn lying above
p. Consider M∞ := ∪n≥0Mn and denote by X∞ = Gal(M∞/F∞) which is a Zp[[Gal(F∞/F )]]-module as usual
action by conjugation.

Then X∞,χ is a finitely generated Λχ-module and it is a torsion module if χ is an even character, and under
that assumption, we have an isomorphism of Λχ-modules:

X∞,χ
∼= Hom(A∞,Qp/Zp(1))χ ∼= Hom(A∞,Qp/Zp)ω−1χ,

where Qp/Zp(1) = µp∞ = ∪n≥0µpn (the first Tate twist) and ω denotes the Teichmüller character. Therefore,
for χ even we have:

charΛχ(X∞,χ) = (hp(ωχ
−1, u(1 + T )−1 − 1))

where u is κ(γ) ∈ Z∗
p where κ is the p-cyclotomic character restricted to Γ = Gal(F∞/F ), and γ a fixed

topological generator of Γ.

For some computations, Mazur and Wiles work with Fitting ideals instead of characteristic ideals, see §5 for
few details of the role that plays in the paper. (For a survey on Fitting ideals, see [3]).

Definition 3. Let Z be a finitely generated Λχ-module and let

Λaχ →ψ Λbχ � Z

be a presentation, where the map ψ can be represented by an a× b-matrix ΦZ with entries in Λχ.
In this setting, the Fitting ideal of Z is the ideal generated by all the determinants of the b× b-minors of ΦZ

if a ≥ b and otherwise is the zero ideal. We denote this ideal by FittΛχ(Z).

And recall the following result

Lemma 4. Let Z be a finitely generated Λχ-module having no Oχ-torsion. Then,

charΛχ(Z) = FittΛχ(Z).

An more general we have

Lemma 5. Let Z be a finitely generated torsion Λχ-module such that µ = 0. Then we have,

charΛχ(Z)(π, T )
lenghtΛχ (torOχ (Z)) ⊆ FittΛχ(Z) ⊆ charΛχ(Z).

Concerning our involved Iwasawa modules in order to relate Fitting ideals with characteristic ideals we have
the following result

Proposition 6. For each odd character χ, we have:
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(1) (Iwasawa) H∞,χ and Hom(A∞,Qp/Zp)χ have no finite Λχ-submodules,
(2) (Ferrero-Washington) The µ-invariant for H∞,χ and Hom(A∞,Qp/Zp)χ are zero, in particular both

are of finite type as Zp-modules.

2. Analytic side: p-adic L-functions and Iwasawa main conjecture

Let χ be a Dirichlet character associated to F with conductor f ,

L(s, χ) =
∞∑
n=1

χ(n)

ns
; Re(s) > 1.

From the functional equation, we have for m ≥ 1 integer:

L(1−m,χ)

{
̸= 0 if m ≡ δ(mod 2)

= 0 otherwise

where δ = 0 if χ even and 1 if χ is odd.
We can relate these special values to the generalized Bernoulli numbers, namely, recall that Bn,χ are defined

by
f∑
a=1

χ(a)teat

eft − 1
=

∞∑
n=0

Bn,χ
tn

n!
,

Proposition 7. For m ≥ 1 we have L(1−m,χ) = −Bm,χ
m .

The Bernoulli polynomials Bn(X) defined by

teXt

et − 1
=

∞∑
n=0

Bn(X)
tn

n!
,

which satisfy

Bn,χ = fn−1

f∑
a=1

χ(a)Bn(
a

f
)

and play a key role in order to construct a series named p-adic L-function, and that we write Lp(s, χ) with
s ∈ Cp in some range of convergence such that

Lp(1−m,χ) = −(1− χω−n(p)pm−1)
Bm,χω−m

m
,

for m ≥ 1.
Recall that Lp(T, χ) ∈ Frac(Oχ)[[T ]], where Frac(R) denotes the field of fractions of a domain R. For

further details on Lp(s, χ), as its classical construction, se for example §3.4[1].
In section §4, following the classical work of Iwasawa, we construct a formal power series Gp(T, χ) ∈ Oχ[[T ]]

which should interpolate the p-adic L-functions as a measure, in particular in order to simplify, χ is assumed
to be of first kind (i.e. p2 - f the conductor).

The power series Gp(T, χ) is characterized by the property

Gp(χ, u
s − 1) = Lp(χ, s), ∀s ∈ Zp.

The following formulation of a Cyclotomic Iwasawa Main Conjecture (IMC in the following in the text) was
formulated by Greenberg:

Conjecture 8 (IMC). Let χ be an even primitive Dirichlet character of first kind. Then, as ideals of Oχ[[T ]],
we have

(hp(ωχ
−1, T )) = (Gp(χ, T )).

3. Iwasawa theory in terms of components

Let us denote by G = Gp ×G′
p a finite abelian group of order k where Gp the p-primary component and G′

p

the product of all ℓ-primary components with ℓ ̸= p. Consider

R = Zp[G] = Zp[Gp]⊗ Zp[G′
p]

a complete ring, product of local rings (i.e., a semi-local ring).
There is a bijection between any of the sets in the list:

(1) connected components of Spec(R)

(2) irreducible idempotents of R,
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(3) maximal ideals of R,

(4) Qp-conjugacy classes of Qp
∗
-valued characters of G′

p.

Write ΠR for the set of connected components of Spec(R) and let us refer to its elements as components.
For each m ∈ ΠR, Rm denotes the completion of R with respect to the corresponding maximal ideal and em

the irreducible idempotent. We have

R =
∏

m∈ΠR

Rm.

Denote by ΣR the set of irreducible components of Spec(R), and we have a bijectivity with Qp-conjugacy
classes of Qp

∗
-valued characters of G. The elements of ΣR are called sheets and we have a surjection:

ΣR � ΠR.

The basic sheet of a component m (corresponding to a Qp-conjugacy of a character χ′ on G′
p) is the sheet

corresponding to the Qp-conjugacy of the character of G obtained from χ′ with the projection G→ G′
p.

Observe that the basic sheet corresponds to the characters of G in m of order prime to p, these characters
are named basic characters.

Fix an integer a prime to p and set Ga,n := (Z/apn)∗, and Ra,n = Zp[Ga,n]. Define from the natural
projections Ra,n+1 � Ra,n,

Ra,∞ := lim
←−
n

Ra,n

and since (Ga,n)
′
p = (Ga,1)

′
p we have (componentwise):

Ra,∞,m := lim
←−
n

(Ra,n)m.

A component m of Ra,∞,m is primitive or (a-primitive) if the conductor of any basic character is either a or ap.

A component m of Ra,∞,m is pseudo-primitive if there is some character of m whose conductor is a or ap.
A component m is even (resp. odd) if every character belonging to m is even (resp. odd).

Examples 9. We give different examples of the above concepts.

(1) Take p = 3 and a = 11. Consider a character of conductor 33

χ : (Z/33)∗ ∼= (Z/3)∗ × (Z/11)∗ ∼= C2 × C10 → C∗
3.

(recall that the finite subgroup in Z∗
3 of square roots of unity is {±1}). The character χ is primitive if

it does not vanish on C2, and χ
2 has conductor 11, in particular, χ2 is a pseudo-primitive character in

this case.
(2) Take p = 3 and a = 2, take the character

χ : (Z/6)∗ → Z∗
3 ⊆ C∗

3

of order 2 given by 5 7→ −1. It is a basic character of conductor 3, in particular it is not primitive. It
is neither a Galois conjugate, because the image is in Z∗

3, thus it is not pseudo-primitive.
(3) Take p an odd prime and a = 1. Then, we have the Teichmüller character

ω : (Z/p)∗ → Z∗
p.

The conductor of ωj with (j, p − 1) = 1 is p and hence, it is primitive, and a basic character because
the Galois conjugation is exactly the same character.

Write Γa := ker(Z∗
p,a := lim

←−
n

Z/apn → (Z/paZ)∗), a free pro-p-group on one generator u such that u ̸≡

1(mod ap2), and Γa/Γ
pn

a × (Z/ap)∗ ∼= Ga,n−1, therefore we have:

Ra,∞,m
∼= Ra,1,m[[Γa]]

Ra,n,m ∼= Ra,1,m[Γa/Γ
pn−1

a ].

Definition 10. For k ∈ Z, the k-twisted yoke

ρk : Zp[[Gal(Q/Q)]] → Ra,∞

is the unique continuous ring homomorphism such that

ρk(g) = εkp,1(g)[εp,a(g)]

where
εp,a : Gal(Q/Q) → Z∗

p,a

defined by the property ζ
εp,a(g)
apn = g(ζapn) for every apn-th root ζapn of 1 in Q, and observe
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α ◦ εp,a = εp,1

where α : Z∗
p,a → Z∗

p,1 = Z∗
p the natural projection.

The conjugate k-twisted yoke is defined by ρk(g) := εkp,1(g)[εp,a(g)]
−1. Now if m is a component of Ra,∞ we

denote by ηk,m (and ηk,m) the composition of ρk (resp. ρk) with the projection to the factor Ra,∞,m.

Remark 11. Consider the restriction of εp,a to Gal(Q(µa)∞/Q) ∼= Gal(Q(µa)∞/Q(µa))×Gal(Q(µa)/Q) and
defines and isomorphism between Gal(Q(µa)∞/Q(µa)) to Γa, this isomorphism is named κ when a = 1, and κa
in general.

We choose once and for all a topological generator γa of Gal(Q(µa)∞/Q(µa)) such that κa(γa) = u a fix
topological generator of Γa, and in particular α(u) = κ(γ) = κa(γa).

In this setting we have the “Tate” twist automorphism,

τ : Ra,∞ → Ra,∞, [g] 7→ α(g)[g],

which clearly satisfies

τ−1ρk = ρk+1.

Remark 12. Consider M a Ra,∞-module and a Gal(Q/Q)-module such that its Galois action is obtained from

Ra,∞ by composition with a homomorphism h : Zp[[Gal(Q/Q)]] → Ra,∞. Consider the Tate-twisted module
M(1) := M ⊗Zp µp∞ with Ra,∞-structure by action on the first module, then its Galois-module action is given
via τh.

Definition 13. Let M be a Ra,∞,m-module with a commuting action of Gal(Q/Q). We say that M is a

n−1-yoked bimodule (or it admits a yoked bimodule structure) if its Gal(Q/Q)-structure is obtained from its
Ra,∞,m-structure via the homomorphism η−1,m .

Let us emphasize that η−1,m is a surjective morphism characterized by the formula

η−1,m(Frobℓ) = ℓ−1[ℓ]−1

where ℓ is any prime coprime with ap, and Frobℓ any Frobenius element in Gal(Q/Q) associated to ℓ, and [ℓ]
refers the image in Ra,∞,m of [l] ∈ Zp[[Z∗

p,a]].

Definition 14. Consider an algebraic p-abelian extension L/K. We say that L/K is of type m if the kernel of

η−1 : Zp[[Gal(Q/Q)]] � Ra,∞,m

annihilates the module Gal(L/K) viewed as a Zp[[Gal(Q/Q)]]-module via conjugation.

Let us consider a component m. Set S be the set of Dirichlet characters of conductor dividing ap belonging to
m, and always assume that it is an even component. Let F+

m be the finite abelian extension of Q characterized
by

Gal(Q/F+
m ) = ∩χ∈Sker(χ).

Definition 15. A finite extension L/K is said to be everywhere unramified if there exist algebraic number
fields of finite degree K ′ ⊂ K and L′ ⊂ L containing K ′ such that L = L′K and L′/K ′ is an unramified
extension.1. In general L/K is said everywhere unramified if it is a union of finite everywhere unramified
extensions.

Define by Km,∞ := Q∞F
+
m (ζp), and let Lm,∞ the maximal everywhere unramified abelian extension of

Km,∞ of type m and denote by

Hm := Gal(Lm,∞/Km,∞).

Consider a character ψ of m of conductor dividing ap. Denote by Hm,ψ the Oψ[[T ]]-module obtained from
Hm via the change of scalars:

Ra,∞,m = Ra,1,m[[Γa]] → Oψ[[Γa]] →σu Oψ[[T ]]

where the first map is the natural one for the Dirichlet character, and the second one maps a topological
generator u of Γa to (1 + T ).

Mazur and Wiles claims the obviousness of the following statement

1It seems that in the definition on Wiles-Mazur is unclear the use of the term everywhere unramified
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Proposition 16 (Mazur-Wiles). The natural map H∞ → Hm induces an isomorphism of O(ψω)−1-modules

β : H∞,(ψω)−1(F+
m (ζp)) ∼= Hm,ψ

where

uβ((1 + T )x) = (1 + T )−1β(x)

for x ∈ H∞,(ψω)−1 , where u ∈ Z∗
p meaning κ(γ).

Mazur-Wiles will work on quotients of Hm,(ψω)−1 in order to prove IMC when m is a primitive component.

For pseudo-primitive components Mazur-Wiles introduce a new moduleH♭
m := Gal(L♭m,∞/Km,∞) where L♭m,∞

is the maximal virtually unramified extension of Km,∞ of type m, where an abelian extension is called virtually
unramified of type m if is of type m and it is unramified expect possible at primes of residual characteristic
dividing a.

Proposition 17. Let m be a primitive or pseudo-primitive component and ψ a character belonging to m such
that a divides the conductor of ψ. Then, the natural surjection

H♭
m,ψ � Hm,ψ

has finite kernel (which is zero if m is primitive).
In particular the characteristic ideal of H♭

m,ψ coincides with the characteristic ideal of Hm,ψ.

4. Stickelberger elements and Stickelberger ideals: p-adic L-functions á la Iwasawa

Denote by < x > the real number ≡ x mod Z with 0 ≤< x >< 1. The k-th Stickelberger element is defined
by:

ϑk(b,N) := (Nk−1/k)
N∑

t=1,gcd(t,N)=1

Bk(< bt/N >)[t]−1 ∈ Q[(Z/N)∗]

for any positive integer N and any integer b. As usual in group rings, denote:

ϑ̂k(b,N) := (Nk−1/k)

N∑
t=1,gcd(t,N)=1

Bk(< bt/N >)[t] ∈ Q[(Z/N)∗].

The k-th Stickelberger ideal is defined via:

Sk(N) := Z[(Z/N)∗] ∩
∑
b∈Z

ϑk(b;N)Z[(Z/N)∗],

Sk(N)′ := Z[(Z/N)∗] ∩
∑

b∈Z,gcd(b,p)=1

ϑk(b;N)Z[(Z/N)∗],

and similarly Ŝk(N) and Ŝk(N)′.
It is known that

ϑk,c(b;N) := (1− ck[c]−1)ϑk(b;N) ∈ Z[(Z/N)∗].

Let us get back to Ra,∞, and take N = apn. We can define

ϑk,c(b; ap
∞) := lim

←−
n

ϑk,c(b; ap
n) ∈ Ra,∞

because in Ra,n+1 → Ra,n we have ϑk,c(b, ap
n+1) 7→ ϑk,c(b; ap

n).
We have the relation via the twist automorphism: ϑk,c(1; ap

∞) = τϑk+1,c(1; ap
∞).

Now we follow Iwasawa for the construction of the p-adic L-function through k-th Stickelberger elements.
Recall that χ is a Dirichlet character of first kind of conductor dividing ap. Define by

Gp,k,c(χ, T ) ∈ Oχ[[T ]] := αχ(ϑk,c(1; ap
∞)), where

αχ : Ra,∞ = Ra,1[[Γa]] → Oχ[[Γa]] →σu Oχ[[T ]]

is the composition of the map taking into account χ : (Z/ap)∗ → O∗
χ and σu defined by [u] 7→ 1 + T . Recall

that u is a fixed topological generator of Γa chosen so that α(u) = κ(γ) ∈ Z∗
p, and we identify in all this lecture

Γa ∼= Γ1 via u 7→ γ and by abuse in notation, u ∈ Z∗
p represents the element α(u).

If χω−k is not of p-power order, then (1− ck[c]−1) defines a unit power series up,k,c ∈ Oχ[[T ]], and under this
hypothesis one defines the k-th Stickelberger power series

Gp,k(χ, T ) := Gp,k,c(χ, T )/up,k,c ∈ Oχ[[T ]]

which is independent of c.
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Theorem 18 (Iwasawa). Let χ be a Dirichlet character of first kind. Then

Lp(χ, s) = Gp(χ, κ(γ)
s − 1),∀s ∈ Zp

where Gp(χ, T ) = −Gp,1(χ−1ω, T ).

From the commutativity of the diagram:

Ra,∞ →αχ Oχ[[T ]] T
τ−1 ↓ ↓ ↓
Ra,∞ →αχω Oχ[[T ]] u−1(1 + T )− 1

we obtain,

Gp(χ, T ) = −Gp,k(χ−1ωk, uk−1(1 + T )− 1),

where u in the last two statements means the element κ(γ) ∈ Z∗
p.

For later convenience in the seminar let us study the generators of the 2-th Stickelberger ideals in Ra,n,m.
Denote by ϑ2,m(b; ap

n) the image of ϑ2(b; ap
n) in Ra,n,m⊗Qp. If ω2 does not belong to m, there exists c such

that (1− c2[c]−1) projects to a unit in Ra,n,m, therefore

ϑ2,m(b; ap
n) ∈ Ra,n,m.

Denote by S2(ap
n)m the ideal in Ra,n,m generated by the images of S2(ap

n) in Ra,n,m. Similar definitions for

S2(ap
n)′m, Ŝ2(ap

n)m and Ŝ2(ap
n)′m.

Proposition 19. Let m be a component.

(1) If m is pseudo-primitive and not associated to ω2 or the trivial character, then S2(ap
n)′m is generated

by ϑ2,m(d; ap
n) where d runs through those divisors of r where ap/r is the reduced conductor.

(2) If m is pseudo-primitive and not associated to ω−2 or the trivial character, then Ŝ2(ap
n)′m is generated

by ϑ̂2,m(d; ap
n) where d runs through those divisors of r where ap/r is the reduced conductor.

(3) If m is a-primitive and not associated to ω2 or the trivial character, then S2(ap
n)′m is principal ideal

generated by ϑ2,m(1; ap
n) (the principal Stickelberger element).

There are also results for the remaining pseudo-primite m that coincide with ω±2 or trivial character but we do
not reproduce them here.

Finally, we show the relation between 2-th Stickelberger ideal and the p-adic L-function à la Iwasawa.

Proposition 20. Let χ be a non-trivial even-character of conductor a or ap and χ ̸= ω−2. If a = 1, then

αm,χ(Ŝ2(ap
∞)′m) = Gp,2(χ

−1, (1 + T )−1 − 1)

where recall that αm,χ : Ra,∞,m → Oχ[[T ]] follows from αχ with the projection Ra,∞ → Ra,∞,m.

5. The IMC follows from a inclusion on Fitting ideals

Consider Gp(ψω
2, T ), which is not a unit power series for any ψ character associated to the pseudo-primitive

component m, (this allows Mazur-Wiles to suppose different restrictions, for example, when a = 1, they assume
that m does not contain as basic character ω−2 or the trivial character).

The big work of Mazur and Wiles is to construct an ideal bn,m ⊆ Ra,n,m and a virtually unramified extension

of type m L
(n)
m /Km such that Gal(L

(n)
m /Km) is an Ra,∞,m-module which satisfies the following properties:

• we have a relation that in the simplest case of m primitive reads as:

(1− l[l])kb
(n)
m ⊆ Ŝ2(ap

n)′m,

where l and k are technical elements, see the precise definition in [4, Chp 4§3,Chp5§5], for example

k = 0 if ψ = ψ′
pω

k and k ̸≡ −1(mod p− 1), (moreover, in that situation we have that b
(n)
m = Ŝ2(ap

n)′m
which is principal generated by the principal Stickelberger element ϑ̂2(ap

n)m).
We define

b
(∞)
m = lim

←−
n

b
(n)
m ⊂ Ra,∞,m

through the natural maps Ra,n+1,m → Ra,n,m.
Thus, in the simplest case we have the inclusion

(1− l[l])kb
(∞)
m ⊆ Ŝ2(ap

∞)′m

Now, applying the result of Proposition 20 we obtain:

(1) (1− lψ(l)[l])kαm,ψ(b
(∞)
m ) ⊆ (Gp,2(ψ

−1, (1 + T )−1 − 1)).
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• we have a ideal Um ⊂ Ra,∞,m of finite index (independent of n) such that:

UmFittRa,∞,m(Gal(L
(n)
m /Km)) ⊆ b

(∞)
m

Now, the projective limit of Fitting ideals not always gets the Fitting ideal, but in complete local
noetherian rings does ( [4, Apendix (10)] or [3]), thus:

(2) UmFittRa,∞,m(H
♭
m) ⊆ b

(∞)
m .

And in order to get back to characteristic ideals and because Hm is pseudo-isomorphic to H♭
m (we

have epimorphism between them with finite kernel) applying Lemma 5 (or [4, cor. prop.2 Appendix]):

(3) U′
mcharOψ [[T ]](Hm,ψ) ⊆ αm,ψ(b

(∞)
m )

where U′
m ⊆ Ra,∞,m an ideal of finite index.

Now combining equations (1) and (3):

(4) (1− lψ(l)[l])kcharOψ[[T ]](Hm,ψ) ⊆ (Gp,2(ψ
−1, (1 + T )−1 − 1)).

Now take ψ := χω−2. Now by Proposition 16 one deduces

CharOψ[[T ]](H∞,χ̂=ωχ−1) = (hm,ψ(u
−1(1 + T )−1 − 1)

where CharRa,∞,m(H∞,ψ) = (hm,ψ(T )), generated by the corresponding distinguished polynomial (we are with
µ-invariant zero), and therefore we read equation (4) as follows:

(1− ψ(l)[l](u−1(1 + T )−1 − 1))kCharOψ[[T ]](H∞,χ̂) ⊆ (Gp,2(ψ
−1 = ω2χ−1, u(1 + T )− 1)) = (Gp(χ, T )).

For the simplest case k = 0 we have an inclusion, (and in the general statement need analysis to the zeroes
of (1− ψ(l)[l](u−1(1 + T )−1 − 1)) and similar factors.

This allows to prove that
Gp(χ, T ) divides hp(χ̂, T ),

where hp(χ̂, T ) is the distinguished polynomial such that CharRa,∞,m(H∞,χ̂) = (hp(χ̂, T )), (for this one use that
in Oχ[[T ]] one have that if a(f) ⊂ (g) with f, g ∈ Oχ[[T ]] and a an ideal of Oχ[[T ]] of finite index then g divides
f , see [4, Lemma3, Appendix]).2.

The other divisibility follows for the analytic class number formula proving the IMC.
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