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Statement of the main result

In this chapter, we address the question of how to attach Galois representations to weight
one (classical) modular forms. The main result, proved by Deligne and Serre in the seventies
(cf. [DS74]), is the existence of a complex Galois representation of GQ attached to each
weight one eigenform. This result builds upon the existence of `-adic Galois representations
attached to eigenforms of weight ≥ 2, but requires new insight to successfully make use of
these representations in order to construct the desired one. In what follows, we will give some
ideas of the strategy of the proof and how all ingredients fit together; the interested reader
can look at the original work of Deligne and Serre to read all the details of the proof.

Theorem 0.1 (Deligne–Serre). Let N ≥ 1 be an integer and ε : Z/NZ → C a Dirichlet
character such that ε(−1) = −1. Let f be a modular form of weight k = 1, level N , character
ε. Assume that f is an eigenform for all Tp with p - N , with eigenvalue ap. Then there exists
a continuous, semi-simple representation

ρf : GQ → GL2(C)

such that Tr(ρf (Frobp)) = ap and det(ρf (Frobp)) = ε(p) for all p - N .

Moreover, ρf is irreducible if and only if f is cuspidal.

Remark 0.2. 1. In the statement of the theorem, the element Frobp ∈ GQ denotes some
lift of the Frobenius element in Gal(Fp/Fp), after fixing an embedding Q ↪→ Qp. Implicit
in the statement is the fact that the image of ρf (Frobp) ∈ GQ does not depend on the
choice of the lift.

2. Let ρ : GQ → GL2(C) be a continuous representation (with respect to the Krull topology
in GQ and the Euclidean topology on C). Then the image of ρ in GL2(C) is finite.
Indeed, the key fact is that GL2(C) contains open neighbourhoods of Id which contain
no subgroup other than {Id}. Let E be such an open set. Then since ρ is continuous,
ρ−1(E) is an open neighbourhood of id ∈ GQ. Being open with respect to the Krull
topology means that there exists K/Q finite normal extension of fields such that GK ⊂
ρ−1(E). Thus ρ(GK) ⊂ ρ(ρ−1(E)) ⊂ E. Since the only subgroup contained in E is
the trivial subgroup, we obtain that ρ(GK) = {Id}. In particular, GK ⊂ ker ρ, and the
image of ρ is isomorphic to GQ/ ker ρ ↪→ GQ/GK ' Gal(K/Q), which is a finite set.
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3. The semisimplicity condition, together with the fact that the set {Frobp : p is a prime}
of lifts of Frobenius is dense in GQ, implies that the representation ρf is uniquely
determined by the condition Tr(ρf (Frobp)) = ap for all p - N .

Remark 0.3. If f is not a cuspidal form, it is easy to prove the existence of the Galois
representation ρf . Indeed, in this case f is an Eisenstein series, and it was already known
to Hecke that there exist Dirichlet characters χ1, χ2 of (Z/NZ)× such that χ1χ2 = ε and
χ1(p) + χ2(p) = ap for all p - N . Thus, it suffices to consider the (reducible) representation
ρf = χ1 ⊕ χ2. Thus we will focus on proving the existence of the Galois representation ρf in
the case when f is cuspidal.

Through the rest of the chapter, we denote byMk(Γ1(N)) the space of modular forms of weight
k with respect to Γ1(N). For each prime number p, we denote by Tp the p-th Hecke operator
acting on Mk(Γ1(N)). Sometimes we will consider Hecke operators acting on different spaces
Mk(Γ1(N)), Mk′(Γ1(N)); we will take care of specifying at each point on which space does
Tp act and hope it does not cause confusion.

Essentially, we can divide the proof of the existence of ρf into four main steps:

1. Raise the level of f by multiplication with an Eisenstein series (preserving the property
of being an eigenform modulo `); and use the existence result of Galois representations
in weight ≥ 2 (Theorem 1.1) to prove the existence of a Galois representation attached
to f with coefficients in F` for a suitable infinite set of primes ` - N ;

2. Lift to C, assuming a bound on the size of the image of the Galois representations in
the previous step, which is independent on `;

3. Provide a bound on the size of the image of the Galois representations in the first step
which is independent on `.

We devote one section to describe each of the steps in detail. In the last section we will also
show that the representation ρf is irreducible when f is cuspidal, thus completing the proof
of Theorem 0.1.

1 Step 1: Deligne-Serre lifting lemma and eigenforms mod `

Throughout this section, we fix a cuspidal modular form f as in the statement of Theorem
0.1. If we normalise f so that the first Fourier coefficient equals 1, the Fourier expansion of
f is f(z) =

∑∞
n=1 anq

n, where as usual we denote q := e2πiz. In other words, the Fourier
coefficient an coincides with the eigenvalues of Tn at f when gcd(n,N) = 1. Denote by Kf

the field generated over Q by the set {an : n ∈ N}, and by Of the ring of integers of Kf .

As mentioned in the introduction, an essential ingredient in the proof of Theorem 0.1 is the
existence result of Galois representations attached to modular eigenforms of weight k ≥ 2.
Let us recall the statement here:
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Theorem 1.1 (Deligne). Let f ∈ Mk(Γ1(N)) be a modular form, with nebentypus ε, which
is an eigenform for Tp, for all p - N , with eigenvalue ap. Let K be a finite extension of
Q containing ap and ε(p) for all prime p - N . Let λ be a finite place of K, of residue
characteristic `, and denote by Kλ the completion of K at λ.

Then there exists a continuous, semi-simple, linear representation

ρf,λ : GQ → GL2(Kλ)

which is unramified outside N` and such that

Tr(ρf,λ(Frobp)) = ap and det(ρf,λ(Frobp)) = ε(p)pk−1 if p - N`.

The first key idea in the proof of Theorem 0.1 is the following: for each modular form g of
weight k, the product fg is a modular form of weight k + 1, so it may be possible to apply
Theorem 1.1 to it. Of course, difficulties arise immediately: even if f and g were eigenforms
for Tp (acting on the spaces of modular forms corresponding to f and g), the product does
not have to be an eigenform for Tp (acting on the space of modular forms corresponding to
fg). Moreover, even if it were the case that fg is an eigenform for Tp, the eigenvalue would
no longer be the eigenvalue ap of f .

The second key idea is that, instead of working over number fields or their completions, we
can look first at the situation over finite fields, taking advantage of the triviality of Eisenstein
series modulo ` for suitable primes `. Recall that, for each even integer k > 2, the Eisenstein
series of weight k is defined as

Ek(z) =
1

2ζ(k)

∑
m1,m2

′ 1

(m1z +m2)k
,

where the summation runs through all pairs (m1,m2) ∈ Z × Z such that (m1,m2) 6= (0, 0).
We know that f · Ek is a modular form in Sk+1(Γ1(N)). Let us write the Fourier expansion
Ek(z) =

∑∞
n=0 cnq

n (note that c0 = 1 because of the chosen normalisation). Then a key
observation is that, if (`− 1)|k, we have the congruences

cn ≡ 0 (mod `) for all n ≥ 1.

Let K be a finite extension of Q containing the eigenvalues ap of f for Tp acting on Sk(Γ1(N)),
for all p - N , and choose a prime λ of K of residue characteristic `. By abuse of notation,
denote also by λ the maximal ideal of the valuation ring Oλ of the completion Kλ of K at λ.
We obtain that

f · Ek ≡ f (mod λ),

where (abusing language) we are identifying f · Ek and f with their Fourier expansions as
power series in the variable q. Thus f ·Ek is not an eigenform, but is congruent to an eigenform
(that is, to f) modulo λ.

Let us look closer at this last statement. Let ` be a prefixed prime and choose k such that
(` − 1)|k. We know that f is an eigenform for all Tp with p - N ; more precisely, Tpf = apf
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for all p - N . Write f · Ek =
∑∞

n=1 bnq
n, and recall that the action of the Hecke operator Tp

on f and f · Ek can be written in terms of Fourier expansions as follows:

Tpf =
∞∑
n=1

apnq
n + ε(p)

∞∑
n=1

anq
pn.

Tp(f · Ek) =

∞∑
n=1

bpnq
n + ε(p)pk+1−1

∞∑
n=1

bnq
pn.

Since (` − 1)|k, we obtain that pk ≡ 1 (mod λ), and thus Tpf ≡ Tp(f · Ek) (mod λ). This
allows us to conclude that

Tp(f · Ek) ≡ Tpf ≡ apf ≡ apf · Ek (mod λ).

The next step will be to lift f · Ek (mod λ) to an modular form g of weight k + 1 which is
an eigenform. This is performed via the so called Deligne-Serre lifting Lemma. In [DS74] it
is stated in a very general context; here we write a particular version that fits our setting,
taken from [Wie].

For any k ≥ 2, N ∈ N, denote by Tk(N) the Z-algebra generated by the set of Hecke operators
{Tn : n ∈ N} inside the algebra of endomorphisms of Mk(Γ1(N)). and T′(N) the Z-algebra
generated by the set of Hecke operators {Tm : gcd(m,N) = 1}.

Note that any Hecke eigenform f =
∑∞

n=0 anq
n, normalised so that a1 = 1, gives rise to a

ring homomorphism
Ψf : Tk(N)→ Q

Tp 7→ ap

In fact, the map f ∈Mk(Γ1(N)) 7→ Ψf ∈ HomZ(Tk(N),C) is a bijection.

In our setting, we are working with modular forms f ∈Mk(Γ1(N)) which are eigenforms for
the operators Tp where p - N , but a priori they are not eigenforms for Tp when p|N . However,
if f is a newform which is an eigenform for all T ∈ T′(N), then it is also an eigenform for all
T ∈ T(N), and it makes sense to talk about the ring homomorphism Ψf .

The lifting lemma of Deligne and Serre will follow as a consequence of the structure of the
Hecke algebra Tk(N). More precisely, every maximal strictly ascending chain of prime ideals
of Tk(N) has the form (0) ⊂ p ⊂ m, where Tk(N)/m is a finite field of positive characteristic
and Tk(N)/p is an order in a number field.

Lemma 1.2 (Deligne-Serre Lifting Lemma). Let k ≥ 2, N ∈ N. Let Ψ : Tk(N) → Fp be a
ring homomorphism. Then there exists g =

∑∞
n=0 anq

n ∈Mk(Γ1(N)), eigenform for all Hecke
operators, and a prime p|p in an order O of a number field containing the set {an : n ∈ N},
such that for all n ∈ N, the reduction of an mod p coincides with Ψ(n).

Sketch of proof. Let m ⊂ Tk(N) be the kernel of Ψ. Since the image of Ψ is a subring in a
finite field (and thus a field), m is a maximal ideal. Let p ⊂ m be a nonzero minimal prime
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ideal. Then Ψ factors as

Tk(N)
Ψ //

Ψ̃

((

Tk(N)/m ⊂ Fp

Tk(N)/p = O ⊂ K

55

where O = Tk(N)/p is an order in some number field, say K. Then g(z) :=
∑∞

i=0 Ψ̃(n)qn is
a modular form in Mk(N) satisfying the required conditions.

Corollary 1.3. Let ` be a prime, let k, k′, N ∈ N with k′ ≥ 2, k ≡ k′ (mod ` − 1). Let
f =

∑∞
n=0 anq

n ∈ Mk(Γ1(N)) be a Hecke eigenform for all Tp with p - N , normalised,
and g ∈ Mk′(N) =

∑∞
n=0 a

′
nq
n be modular form. Call Kf := Q({an : n ∈ N}) (resp.

Kg := Q({a′n : n ∈ N})), Of (resp. Og) the ring of integers of Kf (resp. Kg). Assume there
exists primes λ ⊂ Of and λ′ ⊂ Og above ` such that, for all n ∈ N with gcd(n,N) = 1, the
reduction of an mod λ coincides with the reduction of a′n mod λ′.

Then there exists h =
∑∞

n=0 bnq
n ∈ Mk′(Γ1(N)), eigenform for all Hecke operators, nor-

malised, and a prime λ′′|`, such that for all n ∈ N with gcd(n,N) = 1, the reduction of an
mod λ coincides with the reduction of bn modulo λ′′.

Proof. Replacing N by a divisor, we may assume, without loss of generality, that f ∈Mk(N)
is a newform. Thus, it is a Hecke eigenform for all Tp, p prime. Denote by Ψf : Tk(N)→ C
the ring homomorphism characterised by Ψ(f)(Tp) = ap. By hypothesis k ≡ k′ (mod `− 1),
and ap (mod λ) = a′p (mod λ′), thus the quotient map Ψf : Tk(N) → Tk(N)/λ gives rise to
a ring morphism

Ψ : Tk′(N)→ Tk′(N)/λ′

Tp 7→ a′p (mod λ′).

Note that each Tp ∈ Tk′(N) maps to ap (mod λ), via an identification of Z[{an : n ∈
N}]/(λ ∩ Z[{an : n ∈ N}]) with Z[{a′n : n ∈ N}]/(λ′ ∩ Z[{a′n : n ∈ N}]) as a subring of
both Tk(N)/λTk(N) and Tk′(N)/λTk′(N). The hypothesis k ≡ k′ (mod ` − 1) is necessary
to ensure that Ψ respects the ring structure of Tk′(N).

We can apply Deligne-Serre’s lifting lemma to Ψ, and conclude that there exists a modular
form h =

∑
n bnq

n ∈ Mk(Γ1(N)), which is a normalised eigenform for all Hecke operators,
and a prime λ′′ of an order O of a number field, such that bn (mod λ′′) ≡ a′n (mod λ′) ≡ an
(mod λ).

Remark 1.4. Let ` be a prime, f ∈ Mk(Γ1(N)) as in the hypothesis and h ∈ Mk′(Γ1(N))
as in the conclusion of Corollary 1.3. Let ε (resp. ε′′) be the nebentypus of f (resp. h). The
fact that the diamond operators 〈p〉 with p - N belong to the Hecke algebra T ′k(N) (resp.
T ′k′(N)) imply that the values {an : gcd(n,N) = 1} (resp. {bn : gcd(n,N) = 1}) determine
ε (resp. ε′′) uniquely, c.f. [DI95, proof of Proposition 3.5.1]. Thus from the equalities bn
(mod λ′′) ≡ an (mod λ) for all n with gcd(n,N) = 1 we obtain that ε′′(p) (mod λ′′) ≡ ε(p)
(mod λ) for all p - N .
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Applying Corollary 1.3 to a prefixed prime ` and f ∈ S1(N), g = f · Ek ∈ Sk+1(N) (where
k ≡ 0 (mod `−1)), we obtain that there exists a modular form h ∈Mk+1(N) which is a Hecke
eigenform for all Hecke operators. Furthermore, if we denote by h(z) =

∑∞
n=0 bnq

n its Fourier
expansion, we know that for each prime λ of Of there exists a prime λ′′ ⊂ Z[{bn : n ∈ N}] such
that an (mod λ) ≡ bn (mod λ′′) for all n ∈ N with gcd(n,N) = 1 and ε(p) (mod λ) ≡ ε′′(p)
(mod λ′′) for all p - N , where ε (resp. ε′′) denote the nebentypus of f (resp. of h). Choose
one such prime λ′′.

We can apply Theorem 1.1 to the modular form h and the prime λ′′|`, and conclude that
there exists a Galois representation ρh,λ′′ : GQ → GL2(Kλ′′), which is semi-simple, unramified
outside N`, and such that Tr(ρh,λ′′(Frobp)) = bp and det(ρh,λ′′(Frobp)) = ε(p)pk if p - N`.

Reducing modulo λ′′, we obtain a Galois representation ρh,λ′′ : GQ → GL2(Fλ′′), where Fλ′′
is the residue field of Kλ′′ . Moreover, ρh,λ′′ satisfies that it is semi-simple, unramified outside
N` and Tr(ρh,λ′′(Frobp)) ≡ bp (mod λ′′) ≡ ap (mod λ), det(ρh,λ′′(Frobp)) ≡ ε(p) (mod λ′′)
whenever p - N`. Note that the properties of the representation ρh,λ′′ can be expressed in
terms of our original modular form f ; at this point we can forget about the chosen lift h and
everything related to it. We emphasize this fact by defining

ρf,` := ρh,λ′′ : GQ → GL2(F`)

(recall that we chose a prime λ′′ above `, so it is fixed). Note that the semisimplicity condition
implies that ρf,` can be defined over the field generated by the coefficients of the characteristic
polynomials charpoly(ρf,`(Frobp)), for p - N`. In particular, ρf,` can be defined over the field
Fλ generated over F` by the elements {an (mod λ) : gcd(n,N`) = 1}.

This procedure can be applied at all primes ` - N . In this way, we obtain a family of Galois
representations ρf,` : GQ → GL2(F`) indexed by the prime `. In the next section, we explain
how to use this family to obtain a representation ρf : GQ → GL2(C).

2 Lift to C

Let f be a modular form satisfying the hypothesis of Theorem 0.1. We keep the notations
from the previous section; in particular, Kf = Q({an : n ∈ N}). In the previous section we
saw that, for each prime ` - N , we have a Galois representation ρf,` : GQ → GL2(Fλ), where
λ|` is a prime of Of and Fλ is the residue field Of/λ, such that Tr(ρf,`(Frobp)) ≡ ap (mod λ)
and det(ρf,`(Frobp)) ≡ ε(p) (mod λ) if p - N`.

Fix a number field K ⊇ Kf , and let L denote the (infinite) set of primes ` which are totally
split in K/Q. For each ` ∈ L and each λ|` prime of Of , we have that Fλ is the prime field
with ` elements.

In the rest of the section, we will make the following assumption, which will be proved in
Section 3.

Assumption 2.1. There exists A ∈ R>0 such that, for all ` ∈ L,

|ρf,`(GQ)| ≤ A.
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The fact that the image of ρf,` is bounded independently of ` will play a very important role
in lifting it to characteristic zero. Indeed, we will exploit the following well-known result:

Proposition 2.2. Let ` > 5 be a prime, Fλ a finite field of characteristic ` and let ρ : GQ →
GL2(Fλ) be such that ` - |ρ`(GQ)|. Then there exists a representation ρ : GQ → GL2(Kλ),
where Kλ is the fraction field of the ring of Witt vectors of Fλ, such that ρ (mod λ) coincides
with ρ. Moreover, ρ is unramified outside the ramification set of ρ.

Proof. Let K be the fixed field of Q by ker ρ, and let G = Gal(K/Q) (which is a finite group).
We may regard ρ as a representation of G. It is a standard result that if G is a finite group with
` - |G|, then any representation of G with coefficients in Fλ can be lifted to a representation
with coefficients in the ring of Witt vectors of Fλ. This result follows from the fact that the
reduction mod λ of an absolutely irreducible representation of G is absolutely irreducible,
together with the formula relating |G| and the degrees of all irreducible representations of G,
and complete reducibility (cf. [Fei67, (4.4) of §4]). The last assertion follows from the fact
that ρ factors through Gal(K/Q).

Remark 2.3. We may (and will) assume, without loss of generality, that for all natural
numbers n ≤ A, the n-th roots of unity belong to K. Indeed, let A be a constant such that,
for all ` ∈ L, |ρf,`(GQ)| ≤ A. For each n ∈ N, denote by µn the group of n-th roots of unity

contained in a fixed algebraic closure K of K, and consider the field K ′ = K(
⋃
n≤A µn). Then

K ′ ⊇ Kf , and we can consider the set L′ of primes of K ′ which are totally split in K ′/Q.
Note that L′ ⊂ L is still an infinite set of primes.

For each ` > A belonging to L, choose a lift ρf,` : GQ → GL2(Z`), which exists by Proposition
2.2. We know that, for any p - N`, Tr(ρf,`(Frobp)) ≡ ap (mod `) and det(ρf,`(Frobp)) = ε(p)
(mod `). Our aim now is to prove that, in fact, ρf,` can be defined over a number field (at
least for some prime `), by means of Chebotarev’s Density Theorem. Consider the (finite) set
of polynomials

Y := {(1− αT )(1− βT ) ∈ K[T ] : α, β ∈ K are roots of unity of order ≤ A}.

Lemma 2.4. Let ` ∈ L, p - N` a prime, and denote by M := ρf,`(Frobp) ∈ GL2(Z`). Then
the characteristic polynomial of M coincides with 1−apT + ε(p)T 2 (and in particular belongs
to Y ⊂ K[T ]).

Proof. Since |ρf,`(GQ)| ≤ A, we have that the reduction mod ` of the matrix M has order
n ≤ A. Therefore the reduction mod ` of the characteristic polynomial PM (T ) of M is of the
shape (1− Tθ1)(1− Tθ2), where θ1, θ2 are n-th roots of unity in F`. Thus, there exists some
P`(T ) ∈ Y (depending on `) such that PM (T ) ≡ P`(T ) (mod `).

Recall that Tr(M) ≡ ap (mod `) and det(M) ≡ ε(p) (mod `). Therefore we have the con-
gruence

P`(T ) ≡ 1− apT + ε(p)T 2. (1)

In this way, we can obtain a family of polynomials {P`(T ) : ` ∈ L, p - N`} ⊂ Y such that
Equation (1) holds for all ` ∈ L, p - N`. Since L is an infinite set and Y is finite, there
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exists a P (T ) ∈ Y such that P (T ) = P`(T ) for infinitely many primes `. In particular, the
congruences P (T ) ≡ 1 − apT + ε(p)T 2 ≡ PM (T ) (mod `) hold for infinitely many primes `,
and must therefore be equalities, proving the assertion of the Lemma.

Proposition 2.5. Let ` > A be a prime number in L. Then the representation ρf,` can be
defined over K. Moreover, if `′ > A is another prime in L, then ρf,` and ρf,`′ are isomorphic
as complex representations.

Proof. Recall that the set {Frobp : p - N`} is dense in GQ, and charpoly(ρf,`(Frobp)) ∈ K[T ]
by the previous lemma. Moreover, the image of ρf,` is finite (since the set of characteristic
polynomials {charpoly(ρf,`(Frobp)) : p - N`} ⊂ Y is finite). In particular, the representation
ρf,` is semi-simple. Thus it can thus be defined over K. The last assertion follows from the
fact that, for all p - N``′, charpoly(ρf,`(Frobp)) = charpoly(ρf,`′(Frobp)).

Define ρf : GQ → GL2(K) to be the representation ρf,`, for any ` > A, belonging to L; the
proposition above shows that this definition is independent of the choice of `.

Corollary 2.6. The representation ρf is unramified outside N .

Proof. By Proposition 2.5, we know that ρf is isomorphic to ρf,` for any ` > A, ` ∈ L. Fix
one such prime: then ρf is unramified outside N` by construction. Fixing a different prime
`′, we conclude that ρf is unramified outside N`′; thus it is unramified outside N .

Remark 2.7. We still need to show that ρf is irreducible if and only if it is cuspidal. We
will prove this in the next section.

3 Bounds on the image of the mod ` Galois representations

The aim of this section is to prove that Assumption 2.1 holds for the family of Galois rep-
resentations {ρf,`}` obtained in Section 1. Moreover, we will show that the representation
ρf obtained in the previous section from a cuspidal modular form f is irreducible. We treat
these two issues together, because they both require the use of a result from analytic number
theory, that will be introduced in this section.

We start with the proof of Assumption 2.1. First of all, we will see a result of group-theoretic
nature, that reduces the problem of bounding the cardinality of semi-simple subgroups G` ∈
GL2(F`) in a family of {G`}` independently of ` to checking the property C(η,M) defined
below.

Definition 3.1 (Property C(η,M)). Let η,M > 0. We say a subgroup G ⊆ GL2(F`) satisfies
C(η,M) if there exists H ⊂ G such that:

• |H| ≥ (1− η)|G|;

• The set {det(1− hT ) : h ∈ H} has at most M elements.
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Example 3.2. Let G ⊂ GL2(F`). Take M to be the cardinality of the set {det(1 − gT ) :
g ∈ G} (which is a finite set). Then G satisfies the property C(η,M) for any η > 0, taking
H = G.

Proposition 3.3. For each prime `, let G` ⊂ GL2(F`) be a semi-simple subgroup. Assume
there exist η < 1/2, M ≥ 0 such that: For all prime `, G` satisfies C(η,M). Then there
exists A = A(η,M) > 0 such that, for all `,

|G`| ≤ A.

Proof. We will distinguish several cases, according to Dickson’s classification of subgroups of
GL2(F`):

1. G` is contained in a Cartan subgroup

(
∗ 0
0 ∗

)
;

2. G` is contained in the normaliser of Cartan subgroup

〈(
∗ 0
0 ∗

)
,

(
0 ∗
∗ 0

)〉
;

3. The projection of G by the map GL2(F`) → PGL2(F`) is isomorphic to A4, S4 or A5

(exceptional cases).

4. G` ⊃ SL2(F`) (huge);

The analysis in all cases can be found in [DS74]; here we will just consider a couple of cases,
to illustrate the procedure.

Assume for example that G` is contained in a Cartan subgroup

(
∗ 0
0 ∗

)
. Let P (T ) ∈ F`(T )

be a fixed polynomial of degree 2 with independent term equal to 1. Since G` is semi-
simple, there are at most two elements in G with this characteristic polynomial. Since G`
satisfies C(η,M), there exists a subgroup, say H`, such that (1) |H`| ≥ (1 − η)|G`| and (2)
|{det(1 − hT ) : h ∈ H`}| ≤ M . Inequality (2) implies that |H`| ≤ 2M . Moreover, replacing
this inequality in (1), we obtain the following bound for |G`|, which is independent of `:

|G`| ≤ 2M/(1− η).

Let us consider also the case in the list of Dickson when G` has the biggest possible cardinality,
that is, when G` ⊇ SL2(F`). Let r := (G` : SL2(F`)). Then we can compute the cardinality
of G` as

|G`| = r`(`+ 1)(`− 1).

Fix a quadratic polynomial P (T ) ∈ F`[T ] with independent term equal to 1. If P (T ) has two
different roots in F`, we have that there are at most `2 + ` elements of G` with characteristic
polynomial P (T ). If P (T ) has a double root in F`, then there are at most `2 elements of G`
with characteristic polynomial P (T ). Finally, if P (T ) is irreducible in F`[T ], then there are
at most `2 − 1 elements of G` with characteristic polynomial P (T ).
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Since G` satisfies C(η,M), there exists a subgroup, say H`, such that (1) |H`| ≥ (1− η)|G`|
and (2) |{det(1− hT ) : h ∈ H`}| ≤M . We can bound the cardinality of H` from above as

|H`| ≤M(`2 + `)

and from below as
|H`| ≥ (1− η)|G`| = (1− η)r`(`+ 1)(`− 1)

Combining these two inequalities we obtain a bound for `, namely

` ≤ 1 +
M

1− η

Therefore, the case G` ⊃ SL2(F`) can only occur finitely many times, provided that, for each
member of the family {G`}`, condition C(η,M) holds.

To apply Proposition 3.3 to the setting of this chapter, we need to check that there exist
at least one positive number η < 1/2 and one positive number M such that for all ` ∈ L,
ρf,`(GQ) satisfies C(η,M). Actually, we will prove a much stronger result, as stated below:

Proposition 3.4. For each η < 1/2 there exists M(η) > 0, such that for all primes ` ∈ L,
ρf,`(GQ) ⊂ GL2(F`) satisfies C(η,M).

The proof is based on the following inequality, that can be obtained as a consequence of a
result of Rankin on the poles of

∑
n |an|2n−s where f =

∑∞
n=1 anq

n ∈ Sk(Γ1(N)) is a Hecke
eigenform for Tp with p - N1: For s→ k+,

∑
p-N

|ap|2p−s ≤ log

(
1

s− k

)
+O(1) (2)

Before we prove Proposition 3.4, we recall the notion of superior density: if X is a subset of
the set P of prime numbers, then

dens.sup(X) = lim sup
s→1+

∑
p∈X p

−1

log(1/(s− 1))
.

Sketch of the proof of Proposition 3.4. Let f =
∑

n anq
n ∈ S(Γ1(N)) a nonzero eigenform of

the Tp for p - N . We consider a filtration of the set of eigenvalues {ap : p - N prime} by their
size (i.e. the absolute value of ap, once we embed K into C). More precisely, for any positive
number c, consider the sets

Y (c) :={a ∈ K : |σ(a)| ≤ c for all embeddings σ : K ↪→ C}
X(c) :={p prime number : ap 6∈ Y (c)}.

1Namely, the result of Rankin states that the product
(∑

n |an|
2n−s

)
ζ(2s− 2k + 2)H(s), where H(s) is a

finite product taking care of the factors for p | N , can be extended to a meromorphic function in the complex
plane, with a single pole at s = k.
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Note that the sets {Y (c)}c>0 is an (increasing) sequence of finite sets, and the sets {X(c)}c>0

form a (decreasing) sequence of sets. For each c > 0, the set {ap : p 6∈ X(c)} ⊂ Y (c) is also a
finite set.

Applying equation (2) to f , we obtain∑
p-N

|ap|2p−s ≤ log

(
1

s− 1

)
+O(1)

when s→ 1+.

Note that, if ap ∈ K is an eigenvalue, so is σ(ap) for any field embedding σ : K ↪→ C (indeed,
it is an eigenvalue of fσ). Thus we can apply the inequality above [K : Q] times (one to each
fσ, σ : K ↪→ C an embedding). Adding them all together we obtain∑

σ:K↪→C

∑
p-N

|σ(ap)|2p−s ≤ [K : Q] log

(
1

s− 1

)
+O(1). (3)

when s→ 1+.

If p ∈ X(c), there exists σ : K ↪→ C such that |σ(ap)|2 > c, and consequently we have that∑
σ:K↪→C |σ(ap)|2 > c. Replacing this inequality in (3) and neglecting the contribution of the

terms with p 6∈ X(c), we obtain

c
∑

p∈X(c)

p−s ≤ [K : Q] log

(
1

s− 1

)
+O(1)

when s→ 1+. In particular,

dens.sup(X(c)) ≤ [K : Q]/c.

Fix a positive number c > [K : Q]/η, and consider Xη = X(c). Then dens.sup(Xη) < η, and
the set {ap : p 6∈ Xη} is a finite set. Consider the set {P (T ) ∈ K[T ] : P (T ) = X2−apT+ε(p) :
p 6∈ Xη}, which is also a finite set, say of cardinality M . We claim that, for all ` ∈ L, the
group G` := ρf,`(GQ) satisfies condition C(η,M).

Indeed, consider the subgroup H` ⊆ G` defined as be the smallest subgroup, closed under
conjugation, and containing the set {ρf,`(Frobp) : p 6∈ Xη}. From the definition and Cheb-
otarev’s Density Theorem, it is clear that |H`| ≥ (1− η)|G`|. For the second condition, note
that for any p 6∈ Xη,

charpoly(ρf,`(Frobp)) ≡ 1− apT + ε(p)T 2 (mod λ),

for some prime λ|`. Therefore the set {charpoly(ρf,`(Frobp)) : p 6∈ Xη} has at most M
elements, satisfying thus the second condition in Definition 3.1.

To sum up, we have proven that, given a cuspidal modular form as in Theorem 0.1, there
exists a Galois representation ρf : GQ → GL2(C) satisfying Equality (1.1). To conclude the
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proof of Theorem 0.1, it suffices to show that ρf is irreducible. The reasoning is based on
Rankin’s estimate (2). Indeed, assume that ρf is reducible, thus ρf ' χ1 ⊕ χ2 for some
characters χ1, χ2 : GQ → C×, unramified outside N . To simplify notation, we identify them
with Dirichlet characters modulo N . Equation (1.1) implies that, for each p - N ,

χ1(p) + χ2(p) = ap and χ1(p)χ2(p) = ε(p).

Let us compute
∑

p-N |ap|2p−s in terms of χ1 and χ2; denoting by · the complex conjugation,
we get

|ap| = apap = (χ1(p) + χ2(p))(χ1(p) + χ2(p)) = 2 + χ1(p)χ2(p) + χ1(p)χ2(p),

since χiχi = 1 for i = 1, 2. Note that the character χ1χ2 (resp. χ1χ2) is not the trivial
character; otherwise we would have χ2 = χ1 and ε(−1) = χ1(−1)2 = (±1)2 = 1, which
contradicts the assumptions of Theorem 0.1.

Therefore we can estimate∑
p-N

|ap|2p−s = 2
∑
p-N

p−s +
∑
p-N

χ1(p)χ2(p)p−s +
∑
p-N

χ1(p)χ2(p)p−s

The last two term are equal to O(1) when s→ 1+, thus we have∑
p-N

|ap|2p−s = 2
∑
p-N

p−s +O(1)

= 2 log

(
1

s− 1

)
+O(1),

when s→ 1+, contradicting (2). This concludes the proof of Theorem 0.1.
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