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Parametrizations of
elliptic curves by Shimura
curves and by classical
modular curves
Lea Terracini

Introduction

This is an expository paper following Kenneth Ribet and Shuzo Taka-
hashi, cf. [9]. Let N = DM , where D is a product of an even number
of distinct primes and M is an integer prime to D. Let f be a new-
form in S2(Γ0(N), Q). By Jacquet-Langlands correspondence, f cor-
responds to a newform f ′ in S2(ΦD

0 (M)), where ΦD
0 (M) is the group

of norm 1 elements in an Eichler order of the quaternion algebra over
Q of discriminant D (see for example [5]). There are elliptic curves
A and A′, associated to f and f ′ respectively, and they are covered
by a modular and a Shimura curve respectively. The results in [9]
compare the degrees δ and δ′ of the two coverings. It is a well-known
fact that these degrees have to do with congruences of f in some

Partially supported by MTM2006-04895.

15
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suitable spaces of modular forms. It turns out that the ratio δ/δ′ can
be described in terms of the orders cp of the groups of components
of the fiber at p of the Néron model of A and A′, for p dividing D,
and an “error term”(which the authors explicitely describe) whose
support consists only of primes � for which the Galois module A[�] is
reducible.

A partial generalization of this result in the case where A has
non-semistable reduction at some prime � has been obtained in [10,
see Corollary 4.7 and the discussion below].

2.1 Degree of parametrization

Classical case

Let f =
∑

anqn be a newform in S2(Γ0(N), Q). Shimura associated
to f an elliptic curve A over Q, which is a quotient of J0(N):

ξ : J0(N) −→ A.

By composing with the standard map X0(N) ↪→ J0(N) we get a
covering

π : X0(N)→ A

The degree of parametrization of A is the degree δ = δ(N) of the
covering π.

The degree δ can also be viewed in the following way: the map ξ
induces on dual varieties a map

ξ̌ : Ǎ −→ ˇJ0(N)

jacobians of curves are canonically self dual, so that

ξ̌ : A −→ J0(N)

ξ � ξ̌ ∈ End(A) is the multiplication by the integer δ.
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Importance of δ for congruences

Primes p dividing δ(N) are congruence primes for f :

p|δ(N) ⇐⇒ there is a Hecke eigenform g ∈ S2(Γ0(N), Q)
such that f ≡ g mod p.

(Ribet [7, 6], Zagier [11], et al. around 1980 )

The quaternionic case

Suppose now N = DM with (D,M) = 1 and D product of an even
number of distinct primes, so that the quaternion algebra B over Q
of discriminant D is undefined.

Let R(M) be an Eichler order of level M in B and let ΦD
0 (M) be

the group of elements of norm 1 in R(M).

By Jacquet-Langlands correspondence there is a Hecke eigenform
f ′ ∈ S2(ΦD

0 (M)), M -new, having the same eigenvalues as f for all
the Hecke operators.

There is an abelian variety A′ associated to f ′, isogenous to A,
and a map

ξ′ : JD
0 (M) −→ A′.

Then one can define the degree of this parametrization

δD(M) = ξ′ � ξ̌′ ∈ Z.

Interpretation of δD(M) in terms of congruences

p|δD(M) ⇐⇒ there is a Hecke eigenform g ∈ S2(Γ0(N), Q)D−new

such that f ≡ g mod p.

Let Φ(A, p) be the group of components of the fiber at p of the
Néron model of A, and

cp = |Φ(A, p)| = ordp(Δ) where δ is the minimal discriminant of A.
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It is known (level-lowering results, for example Ribet [8]) that cp

controls congruences between f and p-old forms in S2(Γ0(N)).

2.2 The main result

These considerations yield to the following heuristic formula:

δD(M) =
δ(N)∏
p|D cp

or (recursively), considering a factorization N = DpqM

δDpq(M) =
δD(pqM)

cpcq

This formula is in general FALSE.

For example consider M = 1, D = 1, pq = 14. There is a unique
newform f in S2(Γ0(14)). One has δ(14) = 1, δ14(1) = 1, c2 = 6,
c7 = 3 (tables of Antwerp IV, [1])

To state the correct version of the formula we need some nota-
tions:

J = JD
0 (Mpq) J ′ = JDpq

0 (M)
ξ : J → A ξ′ : J ′ → A′

cp = |Φ(A, p)| c′p = |Φ(A′, p)|

2.2.1 Teorema 1. One has

δDpq(M) =
δD(pqM)

c′pcq
E(D, p, q,M)2

where the “error term”E(D, p, q,M) ∈ Z is a positive divisor of
c′pcq.

2. Suppose M is square free but not a prime number and let � be a
prime dividing E(D, p, q,M). Then the Gal(Q/Q)-module A[�]
is reducible.
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2.3 Proof of Assertion 1

In order to prove Assertion 1, the authors give an explicit description
of E(D, p, q,M).

If V is an abelian variety over Q and � is a prime, let

Φ(V, �) = group of components of the fiber at �

of the Néron model of V

Then the following facts are known:

• Φ(V, �) is a finite étale group scheme over Spec(F�), i.e. it is
finite abelian with a canonical action of Gal(F�/F�);

• if V = A is an elliptic curve with multiplicative reduction at �
then Φ(A, �) is cyclic

• the association V �→ Φ(V, �) is functorial

The maps ξ : J → A, ξ′ : J ′ → A′ induce

ξ∗ : Φ(J, q) −→ Φ(A, q) ξ′∗ : Φ(J
′, p) −→ Φ(A′, p).

2.3.1 Teorema One has

δDpq(M) =
δD(pqM)

c′pcq
E(D, p, q,M)2

where
E(D, p, q,M) = |image(ξ∗)| · |cokernel(ξ′∗)|.

Obviously

Theorem 2⇒ Assertion 1 of Theorem 1.

2.4 Proof of Theorem 2

The proof of Theorem 2 relies on comparisons between the character
groups of algebraic tori which are functorially associated to J ′/Fp

and
J/Fq

.
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General setting

If V is an abelian variety over Q and � is a prime, let

T = toric part of the fiber at � of the Néron model for V

and let X (V, �) be its character group:

X (V, �) = Hom
F�
(T, Gm).

Then

• X (V, �) is a free abelian group with compatible actions of:
Gal(F�/F�) and EndQ(V ).

• If V has semistable reduction at � then there is a canonical bilin-
ear pairing (monodromy pairing), introduced by Grothendieck
[3]:

uV : X (V, �)×X (V̌ , �) −→ Z

giving rise to a natural exact sequence

0→ X (V, �)→ Hom(X (V, �), Z)→ Φ(V, �)→ 0.

Steps for proving Theorem 2

Let δ = δD(pqM) and δ′ = δDpq(M).

• One reduces the claim to show that

δ′c′p
|cokerξ′∗|2

=
δcq

|cokerξ∗|2

• Let
L = the “f-part”of X (J, q)
L′ = the “f’-part”of X (J ′, p)

Then L (resp. L′) is a no torsion subgroup of X (J, q) (resp.
X (J ′, p)) containing the image of ξ∗ : X (A, q)→ X (J, q) (resp.
the image of ξ′∗ : X (A′, p)→ X (J ′, p)).
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• Consider the diagram with exact rows:

0 → X (A, q) → Hom(X (A, q), Z) → Φ(A, q) → 0
↑ ↑ ↑

0 → X (J, q) → Hom(X (J, q), Z) → Φ(J, q) → 0

It is easy to show that

|coker(ξ∗)| = [L : X (A, q)]
|coker(ξ′∗)| = [L′ : X (A′, p)]

so that the claim reduces to

δ′c′p
[L′ : X (A′, p)] =

δcq

[L : X (A, q)]
.

• By multiplicity 1, L (and L′) have rank 1.
Fix a generator g of L and a generator x of X (A, q).

• The maps

ξ∗ : X (A, q) → X (J, q) induced by ξ

ξ∗ : X (J, q) → X (A, q) induced by ξ̌

are self-adjoint w.r.t. monodromy, and ξ∗ �ξ∗ = δ, so that

δcq = δuA(x, x) = uA(x, ξ∗ξ∗x) = uJ(ξ∗x, ξ∗x)
= [L : X (A, q)]2uJ(g, g)

and analogously δ′c′p = [L′ : X (A′, p)]2uJ ′(g′, g′).

Then the claim reduces to show that

uJ(g, g) = uJ ′(g′, g′)

where g is a generator of L and g′ is a generator of L′.

• We need to connect in some way g and g′,

Key point (Ribet [8] for D = 1, generalized by K. Buzzard
[2]):
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there is a canonical exact sequence

0→ X (J ′, p) i→ X (J, q)→ X (J ′′, q)×X (J ′′, q)→ 0

where J ′′ = JD
0 (qM).

The sequence is compatible with the Hecke action and mon-
odromy pairing.

• then i embeds L′ in L, and L/i(L′) is torsion, but since X (J ′′, q)
has no torsion, i restricts to an isomorphism L′ � L.

• Then we can pick g = i(g′) and the claim is proved.

2.5 Proof of Assertion 2

Let � be a prime such that A[�] is irreducible.

Then there exists an isogeny A→ A′ whose degree is not divisible by
�, so that

A[�] � A′[�] as GQ −modules.

and ord�(cp) = ord�(c′p) for every prime p.

We define e as the �-part of E

e(D, p, q,M) = �ord�E(D,p,q,M).

Then e(D, p, q,M) = e(D, q, p,M).

1 Proposition

e(D, p, q,M) = |coker(ξ′∗ : Φ(J
′, p)→ Φ(A′, p))|�.

(Notice that q does not appear in the right hand)

Prova:

By Theorem 2 this amounts to prove that the �-part of Im(ξ∗ :
Φ(J, q)→ Φ(A, q)) is trivial.
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FACT: Φ(J, q) is Eisenstein. (Ribet [8] for D = 1 and generalized to
Shimura curve by Buzzard [2] and Jordan-Livné [4])

Then Im(ξ∗) is annihilated by ar(f)− r − 1 for every prime r.

⇒ its �-part is trivial, otherwise ar ≡ r + 1 mod � for every prime r

which is a contradiction, because A[�] is irreducible. �

Then we can consider varying decompositions N = DpqM .

Put M = M ′rs. (By hypothesis M ′ is square-free but not prime!).

Then
e(Drs, p, q,M ′) = e(Dqs, p, r, M ′)

because each one is the order of the �-part of

cocker(ξ′∗ : Φ(J
Dpqrs(M ′), p)→ Φ(A′, p)).

By Assertion 1

(
δpqrsD(M ′)cpcqcrcs

δD(pqrsM ′)

)
�

=
e(Drs, p, q,M ′)2e(D, r, s,M ′pq)2

‖
e(Dqs, p, r, M ′)2e(D, q, s,M ′pr)2

so that e(D, r, s,M ′pq) = e(D, q, s,M ′pr).

In conclusion, it follows that if � divides e(D, p, q,M) then � di-
vides cr for every prime r dividing N = DpqM .

By a previous result of Ribet [8], then f should be congruent mod-
ulo � to a form in S2(SL2(Z)). But S2(SL2(Z)) is zero; therefore
e(D, p, q,M) = 1.
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