p-adic interpolation of modular forms of infinite slope Seminari de Teoria de Nombres

Andrea Conti

January 24, 2023

p-adic interpolation of modular forms of infinite slope

Modular forms

A modular form f is a holomorphic function on the complex upper half-plane

$$\mathcal{H} = \{z \in \mathbb{C} \,|\, \Im(z) > 0\}$$

that satisfies a weight $k \ge 1$ transformation property with respect to a congruence subgroup Γ of $SL_2(\mathbb{Z})$ of level $N \ge 1$:

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for every $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, plus a holomorphy condition at cusps.

Our Γ will always be $\Gamma_0(N)$, $\Gamma_1(N)$, or some combination of the two. We can expand f as a Fourier series in $q = e^{2\pi i z}$:

$$f = \sum_{i>0} a_i q^i$$

Modular forms

A modular form f is a holomorphic function on the complex upper half-plane

$$\mathcal{H} = \{z \in \mathbb{C} \,|\, \Im(z) > 0\}$$

that satisfies a weight $k \ge 1$ transformation property with respect to a congruence subgroup Γ of $SL_2(\mathbb{Z})$ of level $N \ge 1$:

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for every $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, plus a holomorphy condition at cusps.

Our Γ will always be $\Gamma_0(N)$, $\Gamma_1(N)$, or some combination of the two. We can expand f as a Fourier series in $q = e^{2\pi i z}$:

$$f = \sum_{i>0} a_i q^i$$

Modular forms

A modular form f is a holomorphic function on the complex upper half-plane

$$\mathcal{H} = \{z \in \mathbb{C} \,|\, \Im(z) > 0\}$$

that satisfies a weight $k \ge 1$ transformation property with respect to a congruence subgroup Γ of $SL_2(\mathbb{Z})$ of level $N \ge 1$:

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

for every $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, plus a holomorphy condition at cusps.

Our Γ will always be $\Gamma_0(N)$, $\Gamma_1(N)$, or some combination of the two. We can expand f as a Fourier series in $q = e^{2\pi i z}$:

$$f=\sum_{i\geq 0}a_iq^i$$

The space of modular forms of fixed level and weight admits an action of an algebra of *Hecke operators* : an operator T_{ℓ} for every prime $\ell \nmid N$, and operators U_p for primes $p \mid N$.

If f is an eigenvector for the Hecke action (=an eigenform) and $a_1 = 1$, then a_ℓ (for $p \mid N, a_p$) is the Hecke eigenvalue for the operator T_ℓ (for $p \mid N, U_p$).

For every field *K*, write $G_K = \operatorname{Gal}(\overline{K}/K)$.

For every prime p, we can "attach" to f a 2-dimensional \mathbb{Q}_p -vector space with a continuous action

$$\rho_{f,p}\colon G_{\mathbb{Q}}\to \mathrm{GL}(V),$$

that satisfies, for every prime $\ell \nmid Np$:

 $\triangleright \rho_{f,p}$ is unramified at ℓ ,

• the trace of $\rho_{f,p}(\operatorname{Frob}_{\ell})$ is a_{ℓ} .

The space of modular forms of fixed level and weight admits an action of an algebra of *Hecke operators* : an operator T_{ℓ} for every prime $\ell \nmid N$, and operators U_p for primes $p \mid N$.

If f is an eigenvector for the Hecke action (=an eigenform) and $a_1 = 1$, then a_ℓ (for $p \mid N, a_p$) is the Hecke eigenvalue for the operator T_ℓ (for $p \mid N, U_p$).

For every field *K*, write $G_K = \operatorname{Gal}(\overline{K}/K)$.

For every prime p, we can "attach" to f a 2-dimensional \mathbb{Q}_p -vector space with a continuous action

$$\rho_{f,p}\colon G_{\mathbb{Q}}\to \mathrm{GL}(V),$$

that satisfies, for every prime $\ell \nmid Np$:

 $\triangleright \rho_{f,p}$ is unramified at ℓ ,

• the trace of $\rho_{f,p}(\operatorname{Frob}_{\ell})$ is a_{ℓ} .

The space of modular forms of fixed level and weight admits an action of an algebra of *Hecke operators* : an operator T_{ℓ} for every prime $\ell \nmid N$, and operators U_p for primes $p \mid N$.

If f is an eigenvector for the Hecke action (=an eigenform) and $a_1 = 1$, then a_ℓ (for $p \mid N, a_p$) is the Hecke eigenvalue for the operator T_ℓ (for $p \mid N, U_p$).

For every field K, write $G_K = \operatorname{Gal}(\overline{K}/K)$.

For every prime p, we can "attach" to f a 2-dimensional \mathbb{Q}_p -vector space with a continuous action

$$\rho_{f,p}\colon G_{\mathbb{Q}}\to \mathrm{GL}(V),$$

that satisfies, for every prime $\ell \nmid Np$:

 $\triangleright \rho_{f,p}$ is unramified at ℓ ,

• the trace of $\rho_{f,p}(\operatorname{Frob}_{\ell})$ is a_{ℓ} .

The space of modular forms of fixed level and weight admits an action of an algebra of *Hecke operators* : an operator T_{ℓ} for every prime $\ell \nmid N$, and operators U_p for primes $p \mid N$.

If f is an eigenvector for the Hecke action (=an eigenform) and $a_1 = 1$, then a_ℓ (for $p \mid N, a_p$) is the Hecke eigenvalue for the operator T_ℓ (for $p \mid N, U_p$).

For every field *K*, write $G_K = \operatorname{Gal}(\overline{K}/K)$.

For every prime p, we can "attach" to f a 2-dimensional \mathbb{Q}_p -vector space with a continuous action

$$\rho_{f,p}\colon G_{\mathbb{Q}}\to \mathrm{GL}(V),$$

that satisfies, for every prime $\ell \nmid Np$:

 $\triangleright \rho_{f,p}$ is unramified at ℓ ,

• the trace of $\rho_{f,p}(\operatorname{Frob}_{\ell})$ is a_{ℓ} .

The space of modular forms of fixed level and weight admits an action of an algebra of *Hecke operators* : an operator T_{ℓ} for every prime $\ell \nmid N$, and operators U_p for primes $p \mid N$.

If f is an eigenvector for the Hecke action (=an eigenform) and $a_1 = 1$, then a_ℓ (for $p \mid N, a_p$) is the Hecke eigenvalue for the operator T_ℓ (for $p \mid N, U_p$).

For every field *K*, write $G_K = \operatorname{Gal}(\overline{K}/K)$.

For every prime p, we can "attach" to f a 2-dimensional \mathbb{Q}_p -vector space with a continuous action

$$\rho_{f,p}\colon G_{\mathbb{Q}}\to \mathrm{GL}(V),$$

that satisfies, for every prime $\ell \nmid Np$:

- $\triangleright \rho_{f,p}$ is unramified at ℓ ,
- the trace of $\rho_{f,p}(\operatorname{Frob}_{\ell})$ is a_{ℓ} .

The space of modular forms of fixed level and weight admits an action of an algebra of *Hecke operators* : an operator T_{ℓ} for every prime $\ell \nmid N$, and operators U_p for primes $p \mid N$.

If f is an eigenvector for the Hecke action (=an eigenform) and $a_1 = 1$, then a_ℓ (for $p \mid N, a_p$) is the Hecke eigenvalue for the operator T_ℓ (for $p \mid N, U_p$).

For every field *K*, write $G_K = \operatorname{Gal}(\overline{K}/K)$.

For every prime p, we can "attach" to f a 2-dimensional \mathbb{Q}_p -vector space with a continuous action

$$\rho_{f,p}\colon G_{\mathbb{Q}}\to \mathrm{GL}(V),$$

that satisfies, for every prime $\ell \nmid Np$:

- $\triangleright \rho_{f,p}$ is unramified at ℓ ,
- the trace of $\rho_{f,p}(\operatorname{Frob}_{\ell})$ is a_{ℓ} .

Definition

A p-adic family of eigenforms of tame level N is a power series

$$\mathcal{F}(T,q) = \sum_{i\geq 0} a_i(T)q^i \in \overline{\mathbb{Z}}_p[[T,q]]$$

such that, for every $k \ge 2$, the specialization of \mathcal{F} at the arithmetic prime

$$w_k = (1 + T) - (1 + p)^k$$

is the q-expansion of a modular eigenform f_k of weight k and level Np^r for some $r \ge 1$.

To a family as above we can attach a continuous representation

$$G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

that specializes to $\rho_{f_k,p}$ at w_k . In particular, every point of the family carries a representation of $G_{\mathbb{Q}}$.

Definition

A p-adic family of eigenforms of tame level N is a power series

$$\mathcal{F}(\mathcal{T},q) = \sum_{i\geq 0} a_i(\mathcal{T})q^i \in \overline{\mathbb{Z}}_p[[\mathcal{T},q]]$$

such that, for every $k \ge 2$, the specialization of \mathcal{F} at the arithmetic prime

$$w_k = (1 + T) - (1 + p)^k$$

is the q-expansion of a modular eigenform f_k of weight k and level Np^r for some $r \ge 1$.

To a family as above we can attach a continuous representation

$$G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

that specializes to $\rho_{f_k,p}$ at w_k . In particular, every point of the family carries a representation of $G_{\mathbb{Q}}$.

Definition

A p-adic family of eigenforms of tame level N is a power series

$$\mathcal{F}(\mathcal{T},q) = \sum_{i\geq 0} a_i(\mathcal{T})q^i \in \overline{\mathbb{Z}}_p[[\mathcal{T},q]]$$

such that, for every $k \ge 2$, the specialization of \mathcal{F} at the arithmetic prime

$$w_k = (1 + T) - (1 + p)^k$$

is the q-expansion of a modular eigenform f_k of weight k and level Np^r for some $r \ge 1$.

To a family as above we can attach a continuous representation

$$G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

that specializes to $\rho_{f_k,p}$ at w_k . In particular, every point of the family carries a representation of G_Q .

Definition

A p-adic family of eigenforms of tame level N is a power series

$$\mathcal{F}(\mathcal{T},q) = \sum_{i\geq 0} a_i(\mathcal{T})q^i \in \overline{\mathbb{Z}}_p[[\mathcal{T},q]]$$

such that, for every $k \ge 2$, the specialization of \mathcal{F} at the arithmetic prime

$$w_k = (1 + T) - (1 + p)^k$$

is the q-expansion of a modular eigenform f_k of weight k and level Np^r for some $r \ge 1$.

To a family as above we can attach a continuous representation

$$G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

that specializes to $\rho_{f_k,p}$ at w_k . In particular, every point of the family carries a representation of G_Q .

An explicit example

The *slope* of a modular form is the *p*-adic valuation of a_p . The slope is finite iff $a_p \neq 0$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k-1,0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $ho_{f,p}$ is induced by a character $G_K o \overline{\mathbb{Q}}_p^{ imes}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_K \to \overline{\mathbb{Z}}_p[[T]]^{\times}$.

An explicit example

The *slope* of a modular form is the *p*-adic valuation of a_p . The slope is finite iff $a_p \neq 0$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k-1,0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $ho_{f,p}$ is induced by a character $G_K o \overline{\mathbb{Q}}_p^{ imes}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_{\mathcal{K}} \to \overline{\mathbb{Z}}_p[[\mathcal{T}]]^{\times}$.

An explicit example

The *slope* of a modular form is the *p*-adic valuation of a_p . The slope is finite iff $a_p \neq 0$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k-1,0). Then

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $ho_{f,
ho}$ is induced by a character $G_K o\overline{\mathbb{Q}}_{
ho}^{ imes}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_K \to \overline{\mathbb{Z}}_p[[\mathcal{T}]]^{\times}$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k - 1, 0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $ho_{f,p}$ is induced by a character $G_K o \overline{\mathbb{Q}}_p^{ imes}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_K \to \overline{\mathbb{Z}}_p[[\mathcal{T}]]^{\times}$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k - 1, 0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $ho_{f,p}$ is induced by a character $G_K o \overline{\mathbb{Q}}_p^{ imes}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_{\mathcal{K}} \to \overline{\mathbb{Z}}_{\rho}[[\mathcal{T}]]^{\times}$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k - 1, 0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $ho_{f,
ho}$ is induced by a character $G_K o \overline{\mathbb{Q}}_{
ho}^{ imes}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_{\mathcal{K}} \to \overline{\mathbb{Z}}_p[[\mathcal{T}]]^{\times}$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k - 1, 0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $\rho_{f,p}$ is induced by a character $G_K \to \overline{\mathbb{Q}}_p^{\times}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $G_{\mathcal{K}} \to \overline{\mathbb{Z}}_p[[\mathcal{T}]]^{\times}$.

Let ψ be a Grössencharacter of an imaginary quadratic field K, of infinity type (k - 1, 0). Then

 $\sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N_{K/\mathbb{Q}}(\mathfrak{a})},$

where the sum is over fractional ideals of K prime to the conductor of ψ and $N_{K/\mathbb{Q}}$ denotes the norm, is the *q*-expansion of an eigenform f of weight k. We say that f is a CM form (for *complex multiplication*). The slope of f can be infinite!

The associated $\rho_{f,p}$ is induced by a character $G_{\mathcal{K}} \to \overline{\mathbb{Q}}_{p}^{\times}$.

By explicitly varying ψ , we get a family \mathcal{F} of CM eigenforms (Hida). The associated $\rho_{\mathcal{F}}$ is induced by a character $\mathcal{G}_{\mathcal{K}} \to \overline{\mathbb{Z}}_{\rho}[[\mathcal{T}]]^{\times}$.

Given any form $f = \sum_{i \ge 1} a_i q^i$ (or family) and a Dirichlet character δ of conductor M, we can *twist* the form (or family) by δ :

$$\delta f = \sum_{i\geq 0} \delta(i) a_i q^i.$$

Then $\rho_{\delta f,p} = \rho_{f,p} \otimes \delta$.

If $p \mid M$, the slope of δf is infinite.

Given any form $f = \sum_{i \ge 1} a_i q^i$ (or family) and a Dirichlet character δ of conductor M, we can *twist* the form (or family) by δ :

$$\delta f = \sum_{i\geq 0} \delta(i) a_i q^i.$$

Then $\rho_{\delta f,p} = \rho_{f,p} \otimes \delta$.

If $p \mid M$, the slope of δf is infinite.

Every eigenform of finite slope (i.e. with $a_p \neq 0$) lives in a p-adic family.

Question (Coleman-Mazur) : what about eigenforms of infinite slope?

For families of infinite slope to have some meaning, we have to replace the interpolation of a_p with that of the eigenvalues of the "semistable Frobenius".

Theorem? (C.)

Every eigenform of finite slope (i.e. with $a_p \neq 0$) lives in a p-adic family.

Question (Coleman-Mazur) : what about eigenforms of infinite slope?

For families of infinite slope to have some meaning, we have to replace the interpolation of a_p with that of the eigenvalues of the "semistable Frobenius".

Theorem? (C.)

Every eigenform of finite slope (i.e. with $a_p \neq 0$) lives in a p-adic family.

Question (Coleman-Mazur) : what about eigenforms of infinite slope?

For families of infinite slope to have some meaning, we have to replace the interpolation of a_p with that of the eigenvalues of the "semistable Frobenius".

Theorem? (C.)

Every eigenform of finite slope (i.e. with $a_p \neq 0$) lives in a p-adic family.

Question (Coleman-Mazur) : what about eigenforms of infinite slope?

For families of infinite slope to have some meaning, we have to replace the interpolation of a_p with that of the eigenvalues of the "semistable Frobenius".

Theorem? (C.)

If the slope of f is infinite, then

- \bigcirc either *f* is a twist of an eigenform of finite slope by a Dirichlet character,
- (a) or $p^2 \mid M$ and π_p is a supercuspidal representation.

We can rephrase the main theorem : all families of *p*-supercuspidal forms are CM.

If the slope of f is infinite, then

- \bigcirc either f is a twist of an eigenform of finite slope by a Dirichlet character,
- **2** or $p^2 \mid M$ and π_p is a supercuspidal representation.

We can rephrase the main theorem : all families of *p*-supercuspidal forms are CM.

If the slope of f is infinite, then

- \bigcirc either f is a twist of an eigenform of finite slope by a Dirichlet character,
- **2** or $p^2 \mid M$ and π_p is a supercuspidal representation.

We can rephrase the main theorem : all families of *p*-supercuspidal forms are CM.

If the slope of f is infinite, then

- \bigcirc either f is a twist of an eigenform of finite slope by a Dirichlet character,
- **2** or $p^2 \mid M$ and π_p is a supercuspidal representation.

We can rephrase the main theorem : all families of *p*-supercuspidal forms are CM.

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$?

Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\mathbb{C}_{\rho} = \widehat{\overline{\mathbb{Q}}}_{\rho}$$
$$B_{\mathrm{dR}}^{+} \cong \mathbb{C}_{\rho}[[t]], B_{\mathrm{dR}} = B_{\mathrm{dR}}^{+}[1/t]$$
$$B_{\mathrm{crist}}, B_{e} = B_{\mathrm{cris}}^{\varphi=1}$$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$? Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\begin{split} \mathbb{C}_{p} &= \widehat{\overline{\mathbb{Q}}}_{p} \\ B_{\mathrm{dR}}^{+} &\cong \mathbb{C}_{p}[[t]], B_{\mathrm{dR}} = B_{\mathrm{dR}}^{+}[1/t] \\ B_{\mathrm{cris}}, \ B_{e} &= B_{\mathrm{cris}}^{\varphi=1} \end{split}$$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$? Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\mathbb{C}_{p} = \widehat{\overline{\mathbb{Q}}}_{p}$$
$$B_{dR}^{+} \cong \mathbb{C}_{p}[[t]], B_{dR} = B_{dR}^{+}[1/t]$$
$$B_{cris}, B_{e} = B_{cris}^{\varphi=1}$$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$? Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\mathbb{C}_{\rho} = \widehat{\overline{\mathbb{Q}}}_{\rho}$$
$$B_{\mathrm{dR}}^{+} \cong \mathbb{C}_{\rho}[[t]], B_{\mathrm{dR}} = B_{\mathrm{dR}}^{+}[1/t]$$
$$B_{\mathrm{cris}}, B_{e} = B_{\mathrm{cris}}^{\varphi=1}$$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

p-adic Hodge theory

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$? Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\mathbb{C}_{p} = \widehat{\overline{\mathbb{Q}}}_{p}$$
$$B_{dR}^{+} \cong \mathbb{C}_{p}[[t]], B_{dR} = B_{dR}^{+}[1/t]$$
$$B_{cris}, B_{e} = B_{cris}^{\varphi=1}$$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

A B-pair is a pair (W_e, W_{dR}^+) consisting of a B_e -semilinear representation W_e of $G_{\mathbb{Q}_p}$ and a $G_{\mathbb{Q}_p}$ -stable lattice W_{dR}^+ inside of $W_e \otimes_{B_e} B_{dR}$.

p-adic Hodge theory

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$? Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\mathbb{C}_{p} = \widehat{\overline{\mathbb{Q}}}_{p}$$

 $B_{\mathrm{dR}}^{+} \cong \mathbb{C}_{p}[[t]], B_{\mathrm{dR}} = B_{\mathrm{dR}}^{+}[1/t]$
 $B_{\mathrm{cris}}, B_{e} = B_{\mathrm{cris}}^{\varphi=1}$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

A B-pair is a pair (W_e, W_{dR}^+) consisting of a B_e -semilinear representation W_e of $G_{\mathbb{Q}_p}$ and a $G_{\mathbb{Q}_p}$ -stable lattice W_{dR}^+ inside of $W_e \otimes_{B_e} B_{dR}$.

p-adic Hodge theory

How to characterize the representations attached to (p-adic families) of eigenforms among all continuous representations of $G_{\mathbb{Q}}$? Use *p*-adic Hodge theory : recall Fontaine's rings of periods

$$\mathbb{C}_{p} = \widehat{\overline{\mathbb{Q}}}_{p}$$

 $B_{\mathrm{dR}}^{+} \cong \mathbb{C}_{p}[[t]], B_{\mathrm{dR}} = B_{\mathrm{dR}}^{+}[1/t]$
 $B_{\mathrm{cris}}, B_{e} = B_{\mathrm{cris}}^{\varphi=1}$

All are equipped with actions of $G_{\mathbb{Q}_p}$.

Definition

A B-pair is a pair (W_e, W_{dR}^+) consisting of a B_e -semilinear representation W_e of $G_{\mathbb{Q}_p}$ and a $G_{\mathbb{Q}_p}$ -stable lattice W_{dR}^+ inside of $W_e \otimes_{B_e} B_{dR}$.

To a continuous \mathbb{Q}_p -linear representation V of $G_{\mathbb{Q}_p}$ we attach the B-pair

$$W(V) = (V \otimes_{\mathbb{Q}_p} B_e, V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}^+).$$

(For general coefficients, similar construction)

This gives a functor $\operatorname{Rep}_{E}(G_{\mathbb{Q}_{p}}) \to \operatorname{B-Pairs}$, but the latter category is larger !

Definition (Colmez)

A continuous representation V of $G_{\mathbb{Q}_p}$ is trianguline if W(V) is a successive extension of B-pairs of rank 1.

To a continuous \mathbb{Q}_p -linear representation V of $G_{\mathbb{Q}_p}$ we attach the B-pair

$$W(V) = (V \otimes_{\mathbb{Q}_p} B_e, V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}^+).$$

(For general coefficients, similar construction)

This gives a functor $\operatorname{Rep}_{E}(G_{\mathbb{Q}_{p}}) \to \operatorname{B-Pairs}$, but the latter category is larger !

Definition (Colmez)

A continuous representation V of $G_{\mathbb{Q}_p}$ is trianguline if W(V) is a successive extension of B-pairs of rank 1.

To a continuous \mathbb{Q}_p -linear representation V of $G_{\mathbb{Q}_p}$ we attach the B-pair

$$W(V) = (V \otimes_{\mathbb{Q}_p} B_e, V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}^+).$$

(For general coefficients, similar construction)

This gives a functor $\operatorname{Rep}_{\mathcal{E}}(\mathcal{G}_{\mathbb{Q}_p}) \to \operatorname{B-Pairs}$, but the latter category is larger !

Definition (Colmez)

A continuous representation V of $G_{\mathbb{Q}_p}$ is trianguline if W(V) is a successive extension of B-pairs of rank 1.

To a continuous \mathbb{Q}_p -linear representation V of $G_{\mathbb{Q}_p}$ we attach the B-pair

$$W(V) = (V \otimes_{\mathbb{Q}_p} B_e, V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}^+).$$

(For general coefficients, similar construction)

This gives a functor $\operatorname{Rep}_{\mathcal{E}}(\mathcal{G}_{\mathbb{Q}_p}) \to \operatorname{B-Pairs}$, but the latter category is larger !

Definition (Colmez)

A continuous representation V of $G_{\mathbb{Q}_p}$ is trianguline if W(V) is a successive extension of B-pairs of rank 1.

To a continuous \mathbb{Q}_p -linear representation V of $G_{\mathbb{Q}_p}$ we attach the *B*-pair

$$W(V) = (V \otimes_{\mathbb{Q}_p} B_e, V \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}^+).$$

(For general coefficients, similar construction)

This gives a functor $\operatorname{Rep}_{\mathcal{E}}(\mathcal{G}_{\mathbb{Q}_p}) \to \operatorname{B-Pairs}$, but the latter category is larger !

Definition (Colmez)

A continuous representation V of $G_{\mathbb{Q}_p}$ is trianguline if W(V) is a successive extension of B-pairs of rank 1.

Theorem (Emerton+...)

A 2-dimensional continuous representation of $G_{\mathbb{Q}}$ is

- unramified at almost all primes,
- trianguline at p,

(+technical assumptions) if and only if corresponds, up to twist, to a point of a family of eigenforms of finite slope.

In general such a point does not correspond to a "classical" eigenform, but to an "overconvergent" one.

On the other hand, all representations attached to eigenforms are *potentially* trianguline : they become trianguline after restriction to G_E for some finite extension E/\mathbb{Q}_p .

Theorem (Emerton+...)

A 2-dimensional continuous representation of $G_{\mathbb{Q}}$ is

- unramified at almost all primes,
- trianguline at p,

(+technical assumptions) if and only if corresponds, up to twist, to a point of a family of eigenforms of finite slope.

In general such a point does not correspond to a "classical" eigenform, but to an "overconvergent" one.

On the other hand, all representations attached to eigenforms are *potentially* trianguline : they become trianguline after restriction to G_E for some finite extension E/\mathbb{Q}_p .

Theorem (Emerton+...)

A 2-dimensional continuous representation of $G_{\mathbb{Q}}$ is

- unramified at almost all primes,
- trianguline at p,

(+technical assumptions) if and only if corresponds, up to twist, to a point of a family of eigenforms of finite slope.

In general such a point does not correspond to a "classical" eigenform, but to an "overconvergent" one.

On the other hand, all representations attached to eigenforms are *potentially* trianguline : they become trianguline after restriction to G_E for some finite extension E/\mathbb{Q}_p .

To prove our main theorem : start with a family $\mathcal F$ of p-supercuspidal eigenforms. Let

$$\rho_{\mathcal{F}}\colon G_{\mathbb{Q}}\to \mathrm{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

be its associated Galois representation.

Step 1 : $\rho_{\mathcal{F}}|_{G_{\mathbb{Q}_p}}$ is not trianguline, but there exists a quadratic extension E of \mathbb{Q}_p such that $\rho_{\mathcal{F}}|_{G_E}$ is trianguline.

To prove our main theorem : start with a family \mathcal{F} of *p*-supercuspidal eigenforms. Let

$$\rho_{\mathcal{F}}\colon G_{\mathbb{Q}}\to \mathrm{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

be its associated Galois representation.

Step 1: $\rho_{\mathcal{F}}|_{G_{\mathbb{Q}_p}}$ is not trianguline, but there exists a quadratic extension E of \mathbb{Q}_p such that $\rho_{\mathcal{F}}|_{G_E}$ is trianguline.

To prove our main theorem : start with a family \mathcal{F} of *p*-supercuspidal eigenforms. Let

$$\rho_{\mathcal{F}}\colon G_{\mathbb{Q}}\to \mathrm{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

be its associated Galois representation.

Step 1: $\rho_{\mathcal{F}}|_{G_{\mathbb{Q}_p}}$ is not trianguline, but there exists a quadratic extension E of \mathbb{Q}_p such that $\rho_{\mathcal{F}}|_{G_E}$ is trianguline.

To prove our main theorem : start with a family \mathcal{F} of *p*-supercuspidal eigenforms. Let

$$\rho_{\mathcal{F}}\colon G_{\mathbb{Q}}\to \mathrm{GL}_2(\overline{\mathbb{Z}}_p[[T]])$$

be its associated Galois representation.

Step 1: $\rho_{\mathcal{F}}|_{G_{\mathbb{Q}_p}}$ is not trianguline, but there exists a quadratic extension E of \mathbb{Q}_p such that $\rho_{\mathcal{F}}|_{G_E}$ is trianguline.

Proof of the main theorem

Step 2 : Combine Step 1 with the following :

Theorem (Berger–Chenevier)

Every 2-dimensional, potentially trianguline representation of $G_{\mathbb{Q}_p}$ is of one of the following types :

- trianguline,
- 2) a twist of a representation attached to an eigenform,
- **o** induced by a character of G_E , E a quadratic extension of \mathbb{Q}_p .

We obtain that $\rho_{\mathcal{F}}|_{G_{0_n}}$ is induced by a character

 $\chi\colon G_E\to \overline{\mathbb{Z}}_p[[T]]^{\times}.$

Proof of the main theorem

Step 2 : Combine Step 1 with the following :

Theorem (Berger–Chenevier)

Every 2-dimensional, potentially trianguline representation of $G_{\mathbb{Q}_p}$ is of one of the following types :

- trianguline,
- 2) a twist of a representation attached to an eigenform,
- **o** induced by a character of G_E , E a quadratic extension of \mathbb{Q}_p .

We obtain that $\rho_{\mathcal{F}}|_{\mathcal{G}_{\mathbb{Q}_p}}$ is induced by a character

$$\chi\colon G_E\to \overline{\mathbb{Z}}_p[[T]]^{\times}.$$

Step 3: pick a real quadratic field *L* such that $L \otimes_{\mathbb{Q}} \mathbb{Q}_p = E$.

Via Langlands base change (Arthur–Clozel) we can attach to \mathcal{F} a family \mathcal{F}_L of Hilbert modular forms for $\mathrm{GL}_{2/L}$, with associated representation

$$\rho_{\mathcal{F}_L} = \rho_{\mathcal{F}}|_{G_L}.$$

The restriction $\rho_{\mathcal{F}_I}|_{G_F}$ is the direct sum of χ and its conjugate.

Step 3: pick a real quadratic field *L* such that $L \otimes_{\mathbb{Q}} \mathbb{Q}_p = E$.

Via Langlands base change (Arthur–Clozel) we can attach to \mathcal{F} a family \mathcal{F}_L of Hilbert modular forms for $\operatorname{GL}_{2/L}$, with associated representation

$$\rho_{\mathcal{F}_L} = \rho_{\mathcal{F}}|_{\mathcal{G}_L}.$$

The restriction $\rho_{\mathcal{F}_I}|_{\mathcal{G}_F}$ is the direct sum of χ and its conjugate.

Step 3: pick a real quadratic field *L* such that $L \otimes_{\mathbb{Q}} \mathbb{Q}_p = E$.

Via Langlands base change (Arthur–Clozel) we can attach to \mathcal{F} a family \mathcal{F}_L of Hilbert modular forms for $\operatorname{GL}_{2/L}$, with associated representation

$$\rho_{\mathcal{F}_L} = \rho_{\mathcal{F}}|_{\mathcal{G}_L}.$$

The restriction $\rho_{\mathcal{F}_I}|_{\mathcal{G}_F}$ is the direct sum of χ and its conjugate.

Theorem (Balasubramanyam–Ghate–Vatsal+Pilloni–Stroh+ ε)

If $\rho_{\mathcal{G}}|_{\mathcal{G}_{\mathcal{E}}}$ is the sum of two characters, then \mathcal{G} is a Hilbert CM family.

Therefore, \mathcal{F}_L is a Hilbert CM family.

Theorem (Balasubramanyam–Ghate–Vatsal+Pilloni–Stroh+ ε) If $\rho_{\mathcal{G}}|_{G_{\mathcal{E}}}$ is the sum of two characters, then \mathcal{G} is a Hilbert CM family.

Therefore, \mathcal{F}_L is a Hilbert CM family.

Theorem (Balasubramanyam–Ghate–Vatsal+Pilloni–Stroh+ ε) If $\rho_{\mathcal{G}}|_{\mathcal{G}_{\mathcal{E}}}$ is the sum of two characters, then \mathcal{G} is a Hilbert CM family.

Therefore, \mathcal{F}_L is a Hilbert CM family.

Theorem (Balasubramanyam–Ghate–Vatsal+Pilloni–Stroh+ ε) If $\rho_{\mathcal{G}}|_{\mathcal{G}_{\mathcal{E}}}$ is the sum of two characters, then \mathcal{G} is a Hilbert CM family.

Therefore, \mathcal{F}_L is a Hilbert CM family.

Theorem (Balasubramanyam–Ghate–Vatsal+Pilloni–Stroh+ ε) If $\rho_{\mathcal{G}}|_{\mathcal{G}_{\mathcal{E}}}$ is the sum of two characters, then \mathcal{G} is a Hilbert CM family.

Therefore, \mathcal{F}_L is a Hilbert CM family.

- It's possible that the same technique can be adapted to the case where the base field Q is replaced by a totally real field.
- Coleman–Stein construct a sequence of finite slope eigenforms of growing level that converges to an infinite slope twist of a finite slope eigenform.
- Diao-Liu prove that there cannot be a family of finite slope eigenforms of fixed level converging to an eigenform of infinite slope (also by working on the Galois side).
- When GL₂ is replaced with larger reductive groups, Williams–Barrera-Salazar construct families that are "partially" of infinite slope.

- It's possible that the same technique can be adapted to the case where the base field Q is replaced by a totally real field.
- Coleman–Stein construct a sequence of finite slope eigenforms of growing level that converges to an infinite slope twist of a finite slope eigenform.
- Diao-Liu prove that there cannot be a family of finite slope eigenforms of fixed level converging to an eigenform of infinite slope (also by working on the Galois side).
- When GL₂ is replaced with larger reductive groups, Williams–Barrera-Salazar construct families that are "partially" of infinite slope.

- It's possible that the same technique can be adapted to the case where the base field Q is replaced by a totally real field.
- Coleman–Stein construct a sequence of finite slope eigenforms of growing level that converges to an infinite slope twist of a finite slope eigenform.
- Diao-Liu prove that there cannot be a family of finite slope eigenforms of fixed level converging to an eigenform of infinite slope (also by working on the Galois side).
- When GL₂ is replaced with larger reductive groups, Williams–Barrera-Salazar construct families that are "partially" of infinite slope.

- It's possible that the same technique can be adapted to the case where the base field Q is replaced by a totally real field.
- Coleman–Stein construct a sequence of finite slope eigenforms of growing level that converges to an infinite slope twist of a finite slope eigenform.
- Diao-Liu prove that there cannot be a family of finite slope eigenforms of fixed level converging to an eigenform of infinite slope (also by working on the Galois side).
- When GL₂ is replaced with larger reductive groups, Williams–Barrera-Salazar construct families that are "partially" of infinite slope.

Gràcies per la vostra atenció!