From the Generalized Fermat Equation to Hilbert modular forms with prescribed inertial types

(work in progress with L. Dembélé and J. Voight)

Nuno Freitas
MPIM Bonn
January 2015

Part (I)

The Generalized Fermat Equation

Motivation

Consider the Generalized Fermat Equation

$$
A x^{p}+B y^{q}=C z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.

Motivation

Consider the Generalized Fermat Equation

$$
A x^{p}+B y^{q}=C z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.
Conjecture
Fix $A, B, C \in \mathbb{Z}$ pairwise coprime. There exist only finitely many triples $\left(a^{p}, b^{q}, c^{r}\right)$ with $(a, b, c) \in(\mathbb{Z} \backslash\{0\})^{3}$ and p, q, r primes such that:
(i) $1 / p+1 / q+1 / r<1$
(ii) $\operatorname{gcd}(a, b, c)=1$
(iii) $A a^{p}+B b^{q}=C c^{r}$

Solutions like $1^{p}+2^{3}=3^{2}$ are counted only once.

Motivation

Consider the Generalized Fermat Equation

$$
A x^{p}+B y^{q}=C z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.
Conjecture
Fix $A, B, C \in \mathbb{Z}$ pairwise coprime. There exist only finitely many triples $\left(a^{p}, b^{q}, c^{r}\right)$ with $(a, b, c) \in(\mathbb{Z} \backslash\{0\})^{3}$ and p, q, r primes such that:
(i) $1 / p+1 / q+1 / r<1$
(ii) $\operatorname{gcd}(a, b, c)=1$
(iii) $A a^{p}+B b^{q}=C c^{r}$

Solutions like $1^{p}+2^{3}=3^{2}$ are counted only once. If we also fix (p, q, r) the conjecture holds due to work of Darmon-Granville.

Motivation

Consider the Generalized Fermat Equation

$$
A x^{p}+B y^{q}=C z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.
Conjecture
Fix $A, B, C \in \mathbb{Z}$ pairwise coprime. There exist only finitely many triples $\left(a^{p}, b^{q}, c^{r}\right)$ with $(a, b, c) \in(\mathbb{Z} \backslash\{0\})^{3}$ and p, q, r primes such that:
(i) $1 / p+1 / q+1 / r<1$
(ii) $\operatorname{gcd}(a, b, c)=1$
(iii) $A a^{p}+B b^{q}=C c^{r}$

Solutions like $1^{p}+2^{3}=3^{2}$ are counted only once. If we also fix (p, q, r) the conjecture holds due to work of Darmon-Granville.
Question: Can one use Hilbert modular forms to solve more cases?

The modular method over totally real fields

The main steps of the modular method are:

- Construction of a Frey curve: Attach one (or more) Frey elliptic curve E / K to a putative solution of a Fermat-type equation, where K is some totally real field;

The modular method over totally real fields

The main steps of the modular method are:

- Construction of a Frey curve: Attach one (or more) Frey elliptic curve E / K to a putative solution of a Fermat-type equation, where K is some totally real field;
- Modularity/Irreducibility/Level Lowering: Prove modularity of E and irreducibility of $\bar{\rho}_{E, p}$. Conclude via level lowering results that $\bar{\rho}_{E, p}$ corresponds to a Hilbert modular form whose level is independent of the choice of the solution;

The modular method over totally real fields

The main steps of the modular method are:

- Construction of a Frey curve: Attach one (or more) Frey elliptic curve E / K to a putative solution of a Fermat-type equation, where K is some totally real field;
- Modularity/Irreducibility/Level Lowering: Prove modularity of E and irreducibility of $\bar{\rho}_{E, p}$. Conclude via level lowering results that $\bar{\rho}_{E, p}$ corresponds to a Hilbert modular form whose level is independent of the choice of the solution;
- Contradiction: Compute all the Hilbert newforms in the predicted spaces. Show that

$$
\bar{\rho}_{E, p} \sim \bar{\rho}_{\mathrm{f}, p}
$$

does not hold for any of the computed newforms \mathfrak{f}.

Example: a result for $r=13$

Theorem (Dieulefait-F.)

Let $d=3,5,7$ or 11 and γ be an integer divisible only by primes $\ell \not \equiv 1(\bmod 13)$. Set $\mathcal{L}=\{2,3,5,7,11,13,19,23,29,71\}$. Then, the equation

$$
x^{13}+y^{13}=d \gamma z^{p}, \quad p \notin \mathcal{L}
$$

has no non-trivial solutions such that $\operatorname{gcd}(a, b, c)=1$ and $13 \nmid c$.

Example: a result for $r=13$

Theorem (Dieulefait-F.)

Let $d=3,5,7$ or 11 and γ be an integer divisible only by primes $\ell \not \equiv 1(\bmod 13)$. Set $\mathcal{L}=\{2,3,5,7,11,13,19,23,29,71\}$. Then, the equation

$$
x^{13}+y^{13}=d \gamma z^{p}, \quad p \notin \mathcal{L}
$$

has no non-trivial solutions such that $\operatorname{gcd}(a, b, c)=1$ and $13 \nmid c$.
Observations

- The condition $13 \nmid c$ is due to the presence of the trivial solution ($1,-1,0$)

Example: a result for $r=13$

Theorem (Dieulefait-F.)

Let $d=3,5,7$ or 11 and γ be an integer divisible only by primes $\ell \not \equiv 1(\bmod 13)$. Set $\mathcal{L}=\{2,3,5,7,11,13,19,23,29,71\}$. Then, the equation

$$
x^{13}+y^{13}=d \gamma z^{p}, \quad p \notin \mathcal{L}
$$

has no non-trivial solutions such that $\operatorname{gcd}(a, b, c)=1$ and $13 \nmid c$.

Observations

- The condition $13 \nmid c$ is due to the presence of the trivial solution ($1,-1,0$)
- There are Frey curves that are singular when evaluated at $(1,-1,0)$ but they are defined over a larger field and the computations of the newforms are out of reach!
- The largest cuspidal space of HMF required in the proof has dimension around 4800

Example: a result for $r=13$

Theorem (Dieulefait-F.)

Let $d=3,5,7$ or 11 and γ be an integer divisible only by primes $\ell \not \equiv 1(\bmod 13)$. Set $\mathcal{L}=\{2,3,5,7,11,13,19,23,29,71\}$. Then, the equation

$$
x^{13}+y^{13}=d \gamma z^{p}, \quad p \notin \mathcal{L}
$$

has no non-trivial solutions such that $\operatorname{gcd}(a, b, c)=1$ and $13 \nmid c$.

Observations

- The condition $13 \nmid c$ is due to the presence of the trivial solution ($1,-1,0$)
- There are Frey curves that are singular when evaluated at $(1,-1,0)$ but they are defined over a larger field and the computations of the newforms are out of reach!
- The largest cuspidal space of HMF required in the proof has dimension around 4800

Example: a result for $r=7$

Theorem (F.)
There is some constant M such that if $p>\left(1+3^{18}\right)^{2}$ and $p \nmid M$ then the equation $x^{7}+y^{7}=3 z^{p}$ has no non-trivial solutions
(a, b, c) such that $\operatorname{gcd}(a, b)=1$.
Observations

- Note that $7 \mid c$ is allowed.

Example: a result for $r=7$

Theorem (F.)
There is some constant M such that if $p>\left(1+3^{18}\right)^{2}$ and $p \nmid M$ then the equation $x^{7}+y^{7}=3 z^{p}$ has no non-trivial solutions (a, b, c) such that $\operatorname{gcd}(a, b)=1$.

Observations

- Note that $7 \mid c$ is allowed.
- The largest dimensional in this case was around 10000. This was close to the limit of what is possible to compute!

Example: a result for $r=7$

Theorem (F.)
There is some constant M such that if $p>\left(1+3^{18}\right)^{2}$ and $p \nmid M$ then the equation $x^{7}+y^{7}=3 z^{p}$ has no non-trivial solutions (a, b, c) such that $\operatorname{gcd}(a, b)=1$.

Observations

- Note that $7 \mid c$ is allowed.
- The largest dimensional in this case was around 10000. This was close to the limit of what is possible to compute!

Question: Can we say something about $x^{19}+y^{19}=C z^{p}$?

Example: a result for $r=7$

Theorem (F.)
There is some constant M such that if $p>\left(1+3^{18}\right)^{2}$ and $p \nmid M$ then the equation $x^{7}+y^{7}=3 z^{p}$ has no non-trivial solutions
(a, b, c) such that $\operatorname{gcd}(a, b)=1$.
Observations

- Note that $7 \mid c$ is allowed.
- The largest dimensional in this case was around 10000 . This was close to the limit of what is possible to compute!

Question: Can we say something about $x^{19}+y^{19}=C z^{p}$?
Answer: For this we need to compute newforms inside a space of cuspforms of dimension above 400000?! With the current state of implementations only to initiate a Hecke operator requires tens or hundreds $G B$ of RAM!

Part (II)

Galois inertial types

Galois Inertial types

Let K be a totally real field. For \mathfrak{q} a prime in K write $I_{\mathfrak{q}}$ for the inertia group at \mathfrak{q}.

Definition

Let \mathfrak{f} be a cuspidal HMF over K of parallel weight 2 and level \mathcal{N}. Let $\sigma_{\mathfrak{f}, \mathfrak{q}}: W_{K_{\mathfrak{q}}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ be its associated Weil representation at \mathfrak{q}. We will say that the restriction

$$
\tau_{\mathfrak{q}}:=\sigma_{\mathfrak{f}, \mathfrak{q}} \mid \iota_{\mathfrak{q}}
$$

is an inertial type at \mathfrak{q}.

Galois Inertial types

Let K be a totally real field. For \mathfrak{q} a prime in K write $I_{\mathfrak{q}}$ for the inertia group at \mathfrak{q}.

Definition

Let \mathfrak{f} be a cuspidal HMF over K of parallel weight 2 and level \mathcal{N}. Let $\sigma_{\mathfrak{f}, \mathfrak{q}}: W_{K_{\mathfrak{q}}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ be its associated Weil representation at \mathfrak{q}. We will say that the restriction

$$
\tau_{\mathfrak{q}}:=\sigma_{\mathfrak{f}, \mathfrak{q}} \mid \iota_{\mathfrak{q}}
$$

is an inertial type at \mathfrak{q}.
Problem 1: Given \mathfrak{f} and $\mathfrak{q} \mid \mathcal{N}$ compute the type of \mathfrak{f} at \mathfrak{q} ?
Problem 2: Given \mathcal{N} and a type $\tau_{\mathfrak{q}}$ at $\mathfrak{q} \mid \mathcal{N}$. Compute all $\mathfrak{f} \in S_{2}(\mathcal{N})$ with type $\tau_{\mathfrak{q}}$ without computing the whole $S_{2}(\mathcal{N})$.

Computing types of classical modular form

Computing types of classical modular form

Problem 1 has been solved over \mathbb{Q} by Loeffler-Weinstein:

Computing types of classical modular form

Problem 1 has been solved over \mathbb{Q} by Loeffler－Weinstein：given a cuspidal newform $f \in \Gamma_{1}(N)$ ，they compute the restriction of the associated Galois representation $\rho_{f, \lambda}$ to $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ for every $p \mid N$（and λ prime to p ）．

We shall soon see an example．．

Computing types of classical modular form

Problem 1 has been solved over \mathbb{Q} by Loeffler-Weinstein: given a cuspidal newform $f \in \Gamma_{1}(N)$, they compute the restriction of the associated Galois representation $\rho_{f, \lambda}$ to $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ for every $p \mid N$ (and λ prime to p).

We shall soon see an example..
MOST supercuspidal inertial types have the following shape

$$
\tau_{\mathfrak{q}}:=\left.\left(\operatorname{Ind}_{W_{M}}^{W_{K_{\mathfrak{q}}}} \chi\right)\right|_{\mathfrak{q}}
$$

where M / K_{p} is quadratic and χ is a character of W_{M} such that $\chi \neq \chi^{\sigma}$, where σ is the non-trivial element of $\operatorname{Gal}\left(M / K_{\mathfrak{p}}\right)$.

Computing types of classical modular forms

The space $S_{2}\left(132=2^{2} \cdot 3 \cdot 11\right)$ is of dimension 19 and contains two newforms, say f, g.

Using the L-W implemented in SAGE we compute $\sigma_{2}(f)$, the automorphic type of f at 2 :

Computing types of classical modular forms

The space $S_{2}\left(132=2^{2} \cdot 3 \cdot 11\right)$ is of dimension 19 and contains two newforms, say f, g.

Using the L-W implemented in SAGE we compute $\sigma_{2}(f)$, the automorphic type of f at 2 :
>new=Newforms(132, names='a');
>pi = LocalComponent(new[0], 2);
$>$ pi.species()
'Supercuspidal'
>pi.characters()
[Character of unramified extension $Q_{-} 2(s) *\left(s^{\wedge} 2+s+1=0\right)$ of level 1, mapping s |--> d, 2 |--> 1, Character of unramified extension Q_2(s)*($\left.s^{\wedge} 2+s+1=0\right)$ of level 1, mapping s |--> -d - 1, 2 |--> 1]

Then $\tau_{2}(f)=\operatorname{rec}\left(\sigma_{2}\right)$ corresponds to σ_{2} via Local Langlands.

Part (III)

Quaternionic modular forms and Quaternionic types

Quaternionic modular forms

Let B / K be a totally definite quaternion algebra of discriminant \mathcal{D} and $\mathcal{O} \subset \mathcal{O}_{0}(1) \subset B$ an Eichler order of level \mathcal{N} coprime to \mathcal{D}.

Quaternionic modular forms

Let B / K be a totally definite quaternion algebra of discriminant \mathcal{D} and $\mathcal{O} \subset \mathcal{O}_{0}(1) \subset B$ an Eichler order of level \mathcal{N} coprime to \mathcal{D}. Consider the class set $\mathrm{Cl}(\mathcal{O})$ of invertible right ideals of \mathcal{O} up to isomorphism,

Quaternionic modular forms

Let B / K be a totally definite quaternion algebra of discriminant \mathcal{D} and $\mathcal{O} \subset \mathcal{O}_{0}(1) \subset B$ an Eichler order of level \mathcal{N} coprime to \mathcal{D}. Consider the class set $\mathrm{Cl}(\mathcal{O})$ of invertible right ideals of \mathcal{O} up to isomorphism, $I \sim J$ if and only if $J=\nu I$ for some $\nu \in B^{\times}$.

Definition
A quaternionic modular form for B of parallel weight 2 and level \mathcal{N} is a map

$$
f: \mathrm{Cl}(\mathcal{O}) \rightarrow \mathbb{C}
$$

We write $M(\mathcal{O})$ for the \mathbb{C}-vector space consisting of these forms.

Theorem

For primes $\mathfrak{p} \nmid \mathcal{N D}$ there are commuting Hecke operator $T_{\mathfrak{p}}$ acting on $M(\mathcal{O})$.

Quaternionic modular forms

Quaternionic modular forms

Theorem (Eichler-Shimizu-Jacquet-Langlands)
Let B / K be a quaternion algebra of discriminant \mathcal{D}. Suppose $\mathrm{Cl}^{+}(K)$ is trivial. Let \mathcal{O} be Eichler order of level \mathcal{N} coprime to \mathcal{D}. Let $S(\mathcal{O}) \subset M(\mathcal{O})$ be the subspace orthogonal to the constant functions. Then, there is an injective map of Hecke modules

$$
S(\mathcal{O}) \hookrightarrow \mathcal{S}_{2}(\mathcal{D N})
$$

whose image consists of Hilbert cuspforms which are new at all primes $\mathfrak{p} \mid \mathcal{D}$.

- By this correspondence it is possible to compute HMF by using appropriate quaternion algebras.

Quaternionic modular forms

Theorem (Eichler-Shimizu-Jacquet-Langlands)

Let B / K be a quaternion algebra of discriminant \mathcal{D}. Suppose $\mathrm{Cl}^{+}(K)$ is trivial. Let \mathcal{O} be Eichler order of level \mathcal{N} coprime to \mathcal{D}. Let $S(\mathcal{O}) \subset M(\mathcal{O})$ be the subspace orthogonal to the constant functions. Then, there is an injective map of Hecke modules

$$
S(\mathcal{O}) \hookrightarrow \mathcal{S}_{2}(\mathcal{D N})
$$

whose image consists of Hilbert cuspforms which are new at all primes $\mathfrak{p} \mid \mathcal{D}$.

- By this correspondence it is possible to compute HMF by using appropriate quaternion algebras.
- the Jacquet-Langlands correspondence implies that one only see forms that are discrete series, meaning either special or supercuspidal at primes in \mathcal{D};

Quaternionic modular forms

Theorem (Eichler-Shimizu-Jacquet-Langlands)

Let B / K be a quaternion algebra of discriminant \mathcal{D}. Suppose $\mathrm{Cl}^{+}(K)$ is trivial. Let \mathcal{O} be Eichler order of level \mathcal{N} coprime to \mathcal{D}. Let $S(\mathcal{O}) \subset M(\mathcal{O})$ be the subspace orthogonal to the constant functions. Then, there is an injective map of Hecke modules

$$
S(\mathcal{O}) \hookrightarrow \mathcal{S}_{2}(\mathcal{D N})
$$

whose image consists of Hilbert cuspforms which are new at all primes $\mathfrak{p} \mid \mathcal{D}$.

- By this correspondence it is possible to compute HMF by using appropriate quaternion algebras.
- the Jacquet-Langlands correspondence implies that one only see forms that are discrete series, meaning either special or supercuspidal at primes in \mathcal{D};

Example over \mathbb{Q}

Take the definite quaternion algebra $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ of discriminant $D=66=2 \cdot 3 \cdot 11$,

Example over \mathbb{Q}

Take the definite quaternion algebra $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ of discriminant $D=66=2 \cdot 3 \cdot 11$, so

$$
i^{2}=-1, \quad j^{2}=-33, \quad j i=-i j
$$

Example over \mathbb{Q}

Take the definite quaternion algebra $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ of discriminant $D=66=2 \cdot 3 \cdot 11$, so

$$
i^{2}=-1, \quad j^{2}=-33, \quad j i=-i j .
$$

Consider the maximal order $\mathcal{O}_{0}(1)=\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k$

Example over \mathbb{Q}

Take the definite quaternion algebra $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ of discriminant $D=66=2 \cdot 3 \cdot 11$, so

$$
i^{2}=-1, \quad j^{2}=-33, \quad j i=-i j
$$

Consider the maximal order $\mathcal{O}_{0}(1)=\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k$ where $k=\frac{1+i+j+i j}{2}$ satisfies $k^{2}-k+17=0$.
Set $\mathcal{N}=(1)$ thus $\mathcal{O}=\mathcal{O}_{0}(\mathcal{N})=\mathcal{O}_{0}(1)$.
We find that $\# C I(\mathcal{O})=4$, with representatives

$$
\begin{gathered}
I_{1}=5 \mathcal{O}, I_{2}=5 \mathcal{O}+(2+i+k) \mathcal{O} \\
I_{3}=5 \mathcal{O}+(3+2 i+k) \mathcal{O}, I_{4}=5 \mathcal{O}+(2+i+k) \mathcal{O}
\end{gathered}
$$

Example over \mathbb{Q}

Take the definite quaternion algebra $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ of discriminant $D=66=2 \cdot 3 \cdot 11$, so

$$
i^{2}=-1, \quad j^{2}=-33, \quad j i=-i j
$$

Consider the maximal order $\mathcal{O}_{0}(1)=\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k$ where $k=\frac{1+i+j+i j}{2}$ satisfies $k^{2}-k+17=0$.
Set $\mathcal{N}=(1)$ thus $\mathcal{O}=\mathcal{O}_{0}(\mathcal{N})=\mathcal{O}_{0}(1)$.
We find that $\# C I(\mathcal{O})=4$, with representatives

$$
\begin{gathered}
I_{1}=5 \mathcal{O}, I_{2}=5 \mathcal{O}+(2+i+k) \mathcal{O} \\
I_{3}=5 \mathcal{O}+(3+2 i+k) \mathcal{O}, I_{4}=5 \mathcal{O}+(2+i+k) \mathcal{O}
\end{gathered}
$$

Thus $M(\mathcal{O})=\operatorname{Map}(\mathrm{Cl}(\mathcal{O}), \mathbb{C}) \cong \mathbb{C}^{4}$.

Example over \mathbb{Q} (continued)

For each n coprime to $D=66=2 \cdot 3 \cdot 11$, we can write down Hecke operators. For example,

$$
T(7)=\left(\begin{array}{llll}
0 & 2 & 2 & 4 \\
3 & 2 & 0 & 3 \\
3 & 0 & 2 & 3 \\
4 & 2 & 2 & 0
\end{array}\right)
$$

has characteristic polynomial $(t-8)(t-2)(t+2)(t+4)$.

Example over \mathbb{Q} (continued)

For each n coprime to $D=66=2 \cdot 3 \cdot 11$, we can write down Hecke operators. For example,

$$
T(7)=\left(\begin{array}{llll}
0 & 2 & 2 & 4 \\
3 & 2 & 0 & 3 \\
3 & 0 & 2 & 3 \\
4 & 2 & 2 & 0
\end{array}\right)
$$

has characteristic polynomial $(t-8)(t-2)(t+2)(t+4)$.
The eigenvalue $a_{7}=7+1=8$ corresponds to an Eisenstein series; the remaining three correpond to an eigenbasis for $S_{2}\left(\Gamma_{0}(66)\right)^{\text {new }}$.

Example over \mathbb{Q} (continued)

For each n coprime to $D=66=2 \cdot 3 \cdot 11$, we can write down Hecke operators. For example,

$$
T(7)=\left(\begin{array}{llll}
0 & 2 & 2 & 4 \\
3 & 2 & 0 & 3 \\
3 & 0 & 2 & 3 \\
4 & 2 & 2 & 0
\end{array}\right)
$$

has characteristic polynomial $(t-8)(t-2)(t+2)(t+4)$.
The eigenvalue $a_{7}=7+1=8$ corresponds to an Eisenstein series; the remaining three correpond to an eigenbasis for $S_{2}\left(\Gamma_{0}(66)\right)^{\text {new }}$.
Obervation
Note $\operatorname{dim} S_{2}\left(\Gamma_{0}(66)\right)=9$ but the matrix above is 4×4; this is because the JL correspondence allows to work directly on the D-new subspace; this is already the whole $S_{2}\left(\Gamma_{0}(66)\right)^{\text {new }}$.

Quaternionic forms with types

Quaternionic forms with types

Definition

Let $B_{\mathfrak{q}}$ be the unique division quaternion algebra over $K_{\mathfrak{q}}$ with maximal order $\mathcal{O}_{\mathfrak{q}}$. A local quaternionic type at \mathfrak{q} is an irreducible finite dimensional representation $\rho: \mathcal{O}_{\mathfrak{q}}^{*} \rightarrow \mathrm{GL}(V)$.

Quaternionic forms with types

Definition

Let $B_{\mathfrak{q}}$ be the unique division quaternion algebra over $K_{\mathfrak{q}}$ with maximal order $\mathcal{O}_{\mathfrak{q}}$ ．A local quaternionic type at \mathfrak{q} is an irreducible finite dimensional representation $\rho: \mathcal{O}_{\mathfrak{q}}^{*} \rightarrow \mathrm{GL}(V)$ ．

Let B / K be definite of discriminant \mathcal{D}, \mathcal{O} Eichler of level \mathcal{N} ．

Quaternionic forms with types

Definition

Let $B_{\mathfrak{q}}$ be the unique division quaternion algebra over $K_{\mathfrak{q}}$ with maximal order $\mathcal{O}_{\mathfrak{q}}$. A local quaternionic type at \mathfrak{q} is an irreducible finite dimensional representation $\rho: \mathcal{O}_{\mathfrak{q}}^{*} \rightarrow \mathrm{GL}(V)$.

Let B / K be definite of discriminant \mathcal{D}, \mathcal{O} Eichler of level \mathcal{N}.
Definition
Let $\operatorname{Cl}(\mathcal{O})=\left\{\left[I_{i}\right]\right\}$ and set $\Gamma_{i}=\mathcal{O}_{L}\left(I_{i}\right)^{*}$. Let ρ be a type at $\mathfrak{q} \mid \mathcal{D}$.

Quaternionic forms with types

Definition

Let $B_{\mathfrak{q}}$ be the unique division quaternion algebra over $K_{\mathfrak{q}}$ with maximal order $\mathcal{O}_{\mathfrak{q}}$. A local quaternionic type at \mathfrak{q} is an irreducible finite dimensional representation $\rho: \mathcal{O}_{\mathfrak{q}}^{*} \rightarrow \mathrm{GL}(V)$.

Let B / K be definite of discriminant \mathcal{D}, \mathcal{O} Eichler of level \mathcal{N}.
Definition
Let $\operatorname{Cl}(\mathcal{O})=\left\{\left[I_{i}\right]\right\}$ and set $\Gamma_{i}=\mathcal{O}_{L}\left(I_{i}\right)^{*}$. Let ρ be a type at $\mathfrak{q} \mid \mathcal{D}$. A quaternionic form of weight 2 , level \mathcal{N} and type ρ is a map

$$
f \in M(\mathcal{O}, \rho)=\bigoplus_{i} \operatorname{Map}_{\Gamma_{i}}(\mathrm{Cl}(\mathcal{O}), V) \cong \bigoplus_{i} V^{\Gamma_{i}}
$$

For $\mathfrak{p} \nmid \mathcal{D N}$ there are Hecke operators $T_{\mathfrak{p}}$ acting on $M(\mathcal{O}, \rho)$.

Example over \mathbb{Q} (continued)

Example over \mathbb{Q} (continued)

- Recall that $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ is ramified at 2 , so B_{2} is a division algebra. Let $J_{2} \subset \mathcal{O}_{B_{2}}$ be the unique maximal two-sided ideal; the quotient is $\mathcal{O}_{B_{2}} / J_{2} \cong \mathbb{F}_{4}$.
- Choose a cubic character $\chi: \mathbb{F}_{4}^{\times} \rightarrow\left\langle\zeta_{3}\right\rangle \subset \mathbb{C}^{\times}$.

Example over \mathbb{Q} (continued)

- Recall that $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ is ramified at 2 , so B_{2} is a division algebra. Let $J_{2} \subset \mathcal{O}_{B_{2}}$ be the unique maximal two-sided ideal; the quotient is $\mathcal{O}_{B_{2}} / J_{2} \cong \mathbb{F}_{4}$.
- Choose a cubic character $\chi: \mathbb{F}_{4}^{\times} \rightarrow\left\langle\zeta_{3}\right\rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation $\rho_{2}: \mathcal{O}_{B_{2}}^{\times} \rightarrow \mathrm{GL}_{1}(V)$ for $V=\mathbb{C}$;

Example over \mathbb{Q} (continued)

- Recall that $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ is ramified at 2 , so B_{2} is a division algebra. Let $J_{2} \subset \mathcal{O}_{B_{2}}$ be the unique maximal two-sided ideal; the quotient is $\mathcal{O}_{B_{2}} / J_{2} \cong \mathbb{F}_{4}$.
- Choose a cubic character $\chi: \mathbb{F}_{4}^{\times} \rightarrow\left\langle\zeta_{3}\right\rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation $\rho_{2}: \mathcal{O}_{B_{2}}^{\times} \rightarrow \mathrm{GL}_{1}(V)$ for $V=\mathbb{C}$; This type corresponds via JL to the automorphic type $\sigma_{2}(f)$ obtained with the L-W algorithm (f has level 132).

Example over \mathbb{Q} (continued)

- Recall that $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ is ramified at 2 , so B_{2} is a division algebra. Let $J_{2} \subset \mathcal{O}_{B_{2}}$ be the unique maximal two-sided ideal; the quotient is $\mathcal{O}_{B_{2}} / J_{2} \cong \mathbb{F}_{4}$.
- Choose a cubic character $\chi: \mathbb{F}_{4}^{\times} \rightarrow\left\langle\zeta_{3}\right\rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation $\rho_{2}: \mathcal{O}_{B_{2}}^{\times} \rightarrow \mathrm{GL}_{1}(V)$ for $V=\mathbb{C}$; This type corresponds via JL to the automorphic type $\sigma_{2}(f)$ obtained with the L-W algorithm (f has level 132).
- We have $\Gamma_{1}=\Gamma_{4}=\langle i\rangle$ has order 4 and $\# \Gamma_{2}=\# \Gamma_{3}=6$.

Example over \mathbb{Q} (continued)

- Recall that $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ is ramified at 2 , so B_{2} is a division algebra. Let $J_{2} \subset \mathcal{O}_{B_{2}}$ be the unique maximal two-sided ideal; the quotient is $\mathcal{O}_{B_{2}} / J_{2} \cong \mathbb{F}_{4}$.
- Choose a cubic character $\chi: \mathbb{F}_{4}^{\times} \rightarrow\left\langle\zeta_{3}\right\rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation $\rho_{2}: \mathcal{O}_{B_{2}}^{\times} \rightarrow \mathrm{GL}_{1}(V)$ for $V=\mathbb{C}$; This type corresponds via JL to the automorphic type $\sigma_{2}(f)$ obtained with the L-W algorithm (f has level 132).
- We have $\Gamma_{1}=\Gamma_{4}=\langle i\rangle$ has order 4 and $\# \Gamma_{2}=\# \Gamma_{3}=6$.
- $V^{\Gamma_{i}}=\mathbb{C}$ for $i=1,4$ and $V^{\Gamma_{i}}=\{0\}$ for $i=2,3$
- Thus $M(\mathcal{O}, \rho)$ has dimension 2.

Example over \mathbb{Q} (continued)

- Recall that $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ is ramified at 2 , so B_{2} is a division algebra. Let $J_{2} \subset \mathcal{O}_{B_{2}}$ be the unique maximal two-sided ideal; the quotient is $\mathcal{O}_{B_{2}} / J_{2} \cong \mathbb{F}_{4}$.
- Choose a cubic character $\chi: \mathbb{F}_{4}^{\times} \rightarrow\left\langle\zeta_{3}\right\rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation $\rho_{2}: \mathcal{O}_{B_{2}}^{\times} \rightarrow \mathrm{GL}_{1}(V)$ for $V=\mathbb{C}$; This type corresponds via JL to the automorphic type $\sigma_{2}(f)$ obtained with the L-W algorithm (f has level 132).
- We have $\Gamma_{1}=\Gamma_{4}=\langle i\rangle$ has order 4 and $\# \Gamma_{2}=\# \Gamma_{3}=6$.
- $V^{\Gamma_{i}}=\mathbb{C}$ for $i=1,4$ and $V^{\Gamma_{i}}=\{0\}$ for $i=2,3$
- Thus $M(\mathcal{O}, \rho)$ has dimension 2.
- For example, since $7 \nmid 66$ we obtain the Hecke operator

$$
T(7)=\left(\begin{array}{cc}
0 & 2 \zeta_{3}^{-1} \\
-2 \zeta_{3} & 0
\end{array}\right)
$$

with characteristic polynomial $(t-2)(t+2)$.

Quaternionic forms with types

Quaternionic forms with types

- Let B / K be definite of discriminant $\mathcal{D}=\mathfrak{q} \cdot \mathcal{D}^{\prime}$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D}.

Quaternionic forms with types

- Let B / K be definite of discriminant $\mathcal{D}=\mathfrak{q} \cdot \mathcal{D}^{\prime}$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D}.
- Let ρ be a local quaternionic type at \mathfrak{q} which corresponds to the automorphic type $\sigma(\rho)$ via Jacquet-Langlands.
- Let τ_{ρ} be the Galois inertial type corresponding to $\sigma(\rho)$ via Local Langlands;
- Write cond $\left(\tau_{\rho}\right)=\mathfrak{q}^{n}$ for some $n \geq 1$.

Quaternionic forms with types

- Let B / K be definite of discriminant $\mathcal{D}=\mathfrak{q} \cdot \mathcal{D}^{\prime}$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D}.
- Let ρ be a local quaternionic type at \mathfrak{q} which corresponds to the automorphic type $\sigma(\rho)$ via Jacquet-Langlands.
- Let τ_{ρ} be the Galois inertial type corresponding to $\sigma(\rho)$ via Local Langlands;
- Write $\operatorname{cond}\left(\tau_{\rho}\right)=\mathfrak{q}^{n}$ for some $n \geq 1$.
"Theorem"
There is a Hecke-equivariant map

$$
M(\mathcal{O}, \rho) \xrightarrow{\sim} S_{2}\left(\mathfrak{q}^{n} \mathcal{D}^{\prime} \mathcal{N}, \tau_{\rho}\right) \subset S_{2}\left(\mathfrak{q}^{n} \mathcal{D}^{\prime} \mathcal{N}\right)^{\mathfrak{q}-\text { new }}
$$

Quaternionic forms with types

- Let B / K be definite of discriminant $\mathcal{D}=\mathfrak{q} \cdot \mathcal{D}^{\prime}$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D}.
- Let ρ be a local quaternionic type at \mathfrak{q} which corresponds to the automorphic type $\sigma(\rho)$ via Jacquet-Langlands.
- Let τ_{ρ} be the Galois inertial type corresponding to $\sigma(\rho)$ via Local Langlands;
- Write $\operatorname{cond}\left(\tau_{\rho}\right)=\mathfrak{q}^{n}$ for some $n \geq 1$.

"Theorem"

There is a Hecke-equivariant map

$$
M(\mathcal{O}, \rho) \xrightarrow{\sim} S_{2}\left(\mathfrak{q}^{n} \mathcal{D}^{\prime} \mathcal{N}, \tau_{\rho}\right) \subset S_{2}\left(\mathfrak{q}^{n} \mathcal{D}^{\prime} \mathcal{N}\right)^{\mathfrak{q}-\text { new }}
$$

where $S_{2}\left(\mathfrak{q}^{n} \mathcal{D}^{\prime} \mathcal{N}, \tau_{\rho}\right)$ is generated by the newforms in $S_{2}\left(\mathfrak{q}^{n} \mathcal{D}^{\prime} \mathcal{N}\right)^{\mathfrak{q}-\text { new }}$ with inertia type τ_{ρ}.

End of the running example over \mathbb{Q}

We want to compute $S_{2}(132)^{\text {new }} \subset S_{2}(132)$.

End of the running example over \mathbb{Q}

We want to compute $S_{2}(132)^{\text {new }} \subset S_{2}(132)$.
The dimension of S_{2} (132) is 19 .
From previous computations and the above theorem we have

End of the running example over \mathbb{Q}

We want to compute $S_{2}(132)^{\text {new }} \subset S_{2}(132)$.
The dimension of S_{2} (132) is 19 .
From previous computations and the above theorem we have

$$
\begin{gathered}
\operatorname{dim}(M(\mathcal{O}, \rho))=2 \\
M(\mathcal{O}, \rho) \xrightarrow{\sim} S_{2}\left(2^{2} \cdot 3 \cdot 11, \tau_{\rho_{2}}\right) \subset S_{2}(132) .
\end{gathered}
$$

End of the running example over \mathbb{Q}

We want to compute $S_{2}(132)^{\text {new }} \subset S_{2}(132)$.
The dimension of $S_{2}(132)$ is 19 .
From previous computations and the above theorem we have

$$
\begin{gathered}
\operatorname{dim}(M(\mathcal{O}, \rho))=2 \\
M(\mathcal{O}, \rho) \xrightarrow{\sim} S_{2}\left(2^{2} \cdot 3 \cdot 11, \tau_{\rho_{2}}\right) \subset S_{2}(132) .
\end{gathered}
$$

Since $S_{2}\left(\Gamma_{0}(132)\right)^{\text {new }}$ has dimension 2 we already get an eigenbasis given by

$$
\begin{aligned}
& f(q)=q-q^{3}+2 q^{5}+2 q^{7}+q^{9}-q^{11}+6 q^{13}+\ldots, \\
& g(q)=q+q^{3}+2 q^{5}-2 q^{7}+q^{9}+q^{11}-2 q^{13}+\ldots
\end{aligned}
$$

End of the running example over \mathbb{Q}

We want to compute $S_{2}(132)^{\text {new }} \subset S_{2}(132)$.
The dimension of $S_{2}(132)$ is 19 .
From previous computations and the above theorem we have

$$
\begin{gathered}
\operatorname{dim}(M(\mathcal{O}, \rho))=2 \\
M(\mathcal{O}, \rho) \xrightarrow{\sim} S_{2}\left(2^{2} \cdot 3 \cdot 11, \tau_{\rho_{2}}\right) \subset S_{2}(132) .
\end{gathered}
$$

Since $S_{2}\left(\Gamma_{0}(132)\right)^{\text {new }}$ has dimension 2 we already get an eigenbasis given by

$$
\begin{aligned}
& f(q)=q-q^{3}+2 q^{5}+2 q^{7}+q^{9}-q^{11}+6 q^{13}+\ldots, \\
& g(q)=q+q^{3}+2 q^{5}-2 q^{7}+q^{9}+q^{11}-2 q^{13}+\ldots
\end{aligned}
$$

End of the running example over \mathbb{Q}

We want to compute $S_{2}(132)^{\text {new }} \subset S_{2}(132)$.
The dimension of $S_{2}(132)$ is 19 .
From previous computations and the above theorem we have

$$
\begin{gathered}
\operatorname{dim}(M(\mathcal{O}, \rho))=2 \\
M(\mathcal{O}, \rho) \xrightarrow{\sim} S_{2}\left(2^{2} \cdot 3 \cdot 11, \tau_{\rho_{2}}\right) \subset S_{2}(132) .
\end{gathered}
$$

Since $S_{2}\left(\Gamma_{0}(132)\right)^{\text {new }}$ has dimension 2 we already get an eigenbasis given by

$$
\begin{aligned}
& f(q)=q-q^{3}+2 q^{5}+2 q^{7}+q^{9}-q^{11}+6 q^{13}+\ldots, \\
& g(q)=q+q^{3}+2 q^{5}-2 q^{7}+q^{9}+q^{11}-2 q^{13}+\ldots
\end{aligned}
$$

The Main Point
We have worked with matrices of size 2 instead of size 19 !!

Back to the Generalized Fermat Equation

Now consider again the equation

$$
\begin{equation*}
x^{19}+y^{19}=C z^{p} \tag{1}
\end{equation*}
$$

Back to the Generalized Fermat Equation

Now consider again the equation

$$
\begin{equation*}
x^{19}+y^{19}=C z^{p} \tag{1}
\end{equation*}
$$

Assume, not unrealistically, that

Back to the Generalized Fermat Equation

Now consider again the equation

$$
\begin{equation*}
x^{19}+y^{19}=C z^{p} \tag{1}
\end{equation*}
$$

Assume, not unrealistically, that
(i) We can work algorithmically with types over \mathbb{Q} in general.

Back to the Generalized Fermat Equation

Now consider again the equation

$$
\begin{equation*}
x^{19}+y^{19}=C z^{p} \tag{1}
\end{equation*}
$$

Assume，not unrealistically，that
（i）We can work algorithmically with types over \mathbb{Q} in general．
（ii）The algorithms can be extended to inertia types over totally real fields．

Back to the Generalized Fermat Equation

Now consider again the equation

$$
\begin{equation*}
x^{19}+y^{19}=C z^{p} \tag{1}
\end{equation*}
$$

Assume, not unrealistically, that
(i) We can work algorithmically with types over \mathbb{Q} in general.
(ii) The algorithms can be extended to inertia types over totally real fields.

We want to take advantage of the following lemma.
Lemma
To a solution of (1) we can attach a Frey curve $E=E_{(a, b)} / K$, where K is the totally real cubic subfield of $\mathbb{Q}\left(\zeta_{19}\right)$. The prime 2 is inert in K. The Frey curve E is supercuspidal at (2) and has Serre conductor $2^{4} \pi_{19}^{2}$.

Happy Birthday!!!

Nuria Vila
Teresa Crespo
Angela Arenas
Enric Nart

