From the Generalized Fermat Equation to Hilbert modular forms with prescribed inertial types

(work in progress with L. Dembélé and J. Voight)

Nuno Freitas

MPIM Bonn

January 2015

Part (I)

The Generalized Fermat Equation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the Generalized Fermat Equation

$$Ax^{p} + By^{q} = Cz^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}$$

・ロト・日本・モト・モート ヨー うへで

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.

Consider the Generalized Fermat Equation

$$Ax^{p} + By^{q} = Cz^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.

Conjecture

Fix $A, B, C \in \mathbb{Z}$ pairwise coprime. There exist only finitely many triples (a^p, b^q, c^r) with $(a, b, c) \in (\mathbb{Z} \setminus \{0\})^3$ and p, q, r primes such that:

(i)
$$1/p + 1/q + 1/r < 1$$

(ii) gcd(a, b, c) = 1

(iii) $Aa^p + Bb^q = Cc^r$

Solutions like $1^p + 2^3 = 3^2$ are counted only once.

Consider the Generalized Fermat Equation

$$Ax^p + By^q = Cz^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.

Conjecture

Fix $A, B, C \in \mathbb{Z}$ pairwise coprime. There exist only finitely many triples (a^p, b^q, c^r) with $(a, b, c) \in (\mathbb{Z} \setminus \{0\})^3$ and p, q, r primes such that:

(i)
$$1/p + 1/q + 1/r < 1$$

(ii) gcd(a, b, c) = 1

(iii) $Aa^p + Bb^q = Cc^r$

Solutions like $1^p + 2^3 = 3^2$ are counted only once. If we also fix (p, q, r) the conjecture holds due to work of Darmon–Granville.

Consider the Generalized Fermat Equation

$$Ax^{p} + By^{q} = Cz^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}$$

with $A, B, C \in \mathbb{Z}$ non-zero pairwise coprime.

Conjecture

Fix $A, B, C \in \mathbb{Z}$ pairwise coprime. There exist only finitely many triples (a^p, b^q, c^r) with $(a, b, c) \in (\mathbb{Z} \setminus \{0\})^3$ and p, q, r primes such that:

(i)
$$1/p + 1/q + 1/r < 1$$

(ii) gcd(a, b, c) = 1

(iii) $Aa^p + Bb^q = Cc^r$

Solutions like $1^p + 2^3 = 3^2$ are counted only once. If we also fix (p, q, r) the conjecture holds due to work of Darmon–Granville.

Question: Can one use Hilbert modular forms to solve more cases?

The modular method over totally real fields

The main steps of the modular method are:

Construction of a Frey curve: Attach one (or more) Frey elliptic curve E/K to a putative solution of a Fermat-type equation, where K is some totally real field;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The modular method over totally real fields

The main steps of the modular method are:

- Construction of a Frey curve: Attach one (or more) Frey elliptic curve E/K to a putative solution of a Fermat-type equation, where K is some totally real field;
- ► Modularity/Irreducibility/Level Lowering: Prove modularity of *E* and irreducibility of *p*_{E,p}. Conclude via level lowering results that *p*_{E,p} corresponds to a Hilbert modular form whose level is independent of the choice of the solution;

The modular method over totally real fields

The main steps of the modular method are:

- Construction of a Frey curve: Attach one (or more) Frey elliptic curve E/K to a putative solution of a Fermat-type equation, where K is some totally real field;
- ► Modularity/Irreducibility/Level Lowering: Prove modularity of *E* and irreducibility of *p*_{E,p}. Conclude via level lowering results that *p*_{E,p} corresponds to a Hilbert modular form whose level is independent of the choice of the solution;
- Contradiction: Compute all the Hilbert newforms in the predicted spaces. Show that

$$\overline{\rho}_{E,p} \sim \overline{\rho}_{\mathfrak{f},p}$$

does not hold for any of the computed newforms f.

Theorem (Dieulefait–F.)

Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes $\ell \not\equiv 1 \pmod{13}$. Set $\mathcal{L} = \{2, 3, 5, 7, 11, 13, 19, 23, 29, 71\}$. Then, the equation

$$x^{13} + y^{13} = d\gamma z^{p}, \qquad p \notin \mathcal{L}$$

has no non-trivial solutions such that gcd(a, b, c) = 1 and $13 \nmid c$.

Theorem (Dieulefait–F.)

Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes $\ell \not\equiv 1 \pmod{13}$. Set $\mathcal{L} = \{2, 3, 5, 7, 11, 13, 19, 23, 29, 71\}$. Then, the equation

$$x^{13} + y^{13} = d\gamma z^{p}, \qquad p \notin \mathcal{L}$$

has no non-trivial solutions such that gcd(a, b, c) = 1 and $13 \nmid c$.

Observations

The condition 13 ∤ c is due to the presence of the trivial solution (1, -1, 0)

Theorem (Dieulefait–F.)

Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes $\ell \not\equiv 1 \pmod{13}$. Set $\mathcal{L} = \{2, 3, 5, 7, 11, 13, 19, 23, 29, 71\}$. Then, the equation

$$x^{13} + y^{13} = d\gamma z^{p}, \qquad p \notin \mathcal{L}$$

has no non-trivial solutions such that gcd(a, b, c) = 1 and $13 \nmid c$.

Observations

- The condition 13 ∤ c is due to the presence of the trivial solution (1, -1, 0)
- ► There are Frey curves that are singular when evaluated at (1,-1,0) but they are defined over a larger field and the computations of the newforms are out of reach!
- The largest cuspidal space of HMF required in the proof has dimension around 4800

Theorem (Dieulefait–F.)

Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes $\ell \not\equiv 1 \pmod{13}$. Set $\mathcal{L} = \{2, 3, 5, 7, 11, 13, 19, 23, 29, 71\}$. Then, the equation

$$x^{13} + y^{13} = d\gamma z^{p}, \qquad p \notin \mathcal{L}$$

has no non-trivial solutions such that gcd(a, b, c) = 1 and $13 \nmid c$.

Observations

- The condition 13 ∤ c is due to the presence of the trivial solution (1, -1, 0)
- ► There are Frey curves that are singular when evaluated at (1,-1,0) but they are defined over a larger field and the computations of the newforms are out of reach!
- The largest cuspidal space of HMF required in the proof has dimension around 4800

Theorem (F.)

There is some constant M such that if $p > (1 + 3^{18})^2$ and $p \nmid M$ then the equation $x^7 + y^7 = 3z^p$ has no non-trivial solutions (a, b, c) such that gcd(a, b) = 1.

Observations

▶ Note that 7 | *c* is allowed.

Theorem (F.)

There is some constant M such that if $p > (1 + 3^{18})^2$ and $p \nmid M$ then the equation $x^7 + y^7 = 3z^p$ has no non-trivial solutions (a, b, c) such that gcd(a, b) = 1.

Observations

- Note that $7 \mid c$ is allowed.
- The largest dimensional in this case was around 10000. This was close to the limit of what is possible to compute!

Theorem (F.)

There is some constant M such that if $p > (1 + 3^{18})^2$ and $p \nmid M$ then the equation $x^7 + y^7 = 3z^p$ has no non-trivial solutions (a, b, c) such that gcd(a, b) = 1.

Observations

- Note that 7 | *c* is allowed.
- The largest dimensional in this case was around 10000. This was close to the limit of what is possible to compute!

Question: Can we say something about $x^{19} + y^{19} = Cz^{p?}$

Theorem (F.)

There is some constant M such that if $p > (1 + 3^{18})^2$ and $p \nmid M$ then the equation $x^7 + y^7 = 3z^p$ has no non-trivial solutions (a, b, c) such that gcd(a, b) = 1.

Observations

- Note that 7 | *c* is allowed.
- The largest dimensional in this case was around 10000. This was close to the limit of what is possible to compute!

Question: Can we say something about $x^{19} + y^{19} = Cz^{p?}$

Answer: For this we need to compute newforms inside a space of cuspforms of dimension above 400000?! With the current state of implementations only to initiate a Hecke operator requires tens or hundreds GB of RAM!

Part (II) Galois inertial types

Galois Inertial types

Let K be a totally real field. For q a prime in K write I_q for the inertia group at q.

Definition

Let \mathfrak{f} be a cuspidal HMF over K of parallel weight 2 and level \mathcal{N} . Let $\sigma_{\mathfrak{f},\mathfrak{q}}: W_{K_{\mathfrak{q}}} \to \mathrm{GL}_2(\mathbb{C})$ be its associated Weil representation at \mathfrak{q} . We will say that the restriction

$$\tau_{\mathfrak{q}} := \sigma_{\mathfrak{f},\mathfrak{q}}|_{I_{\mathfrak{q}}}$$

is an inertial type at q.

Galois Inertial types

Let K be a totally real field. For q a prime in K write I_q for the inertia group at q.

Definition

Let \mathfrak{f} be a cuspidal HMF over K of parallel weight 2 and level \mathcal{N} . Let $\sigma_{\mathfrak{f},\mathfrak{q}}: W_{K_{\mathfrak{q}}} \to \mathrm{GL}_2(\mathbb{C})$ be its associated Weil representation at \mathfrak{q} . We will say that the restriction

$$\tau_{\mathfrak{q}} := \sigma_{\mathfrak{f},\mathfrak{q}}|_{I_{\mathfrak{q}}}$$

is an inertial type at q.

Problem 1: Given \mathfrak{f} and $\mathfrak{q} \mid \mathcal{N}$ compute the type of \mathfrak{f} at \mathfrak{q} ?

Problem 2: Given \mathcal{N} and a type τ_q at $q \mid \mathcal{N}$. Compute all $\mathfrak{f} \in S_2(\mathcal{N})$ with type τ_q without computing the whole $S_2(\mathcal{N})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Problem 1 has been solved over \mathbb{Q} by Loeffler–Weinstein:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Problem 1 has been solved over \mathbb{Q} by Loeffler–Weinstein: given a cuspidal newform $f \in \Gamma_1(N)$, they compute the restriction of the associated Galois representation $\rho_{f,\lambda}$ to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ for every $p \mid N$ (and λ prime to p).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

We shall soon see an example ..

Problem 1 has been solved over \mathbb{Q} by Loeffler–Weinstein: given a cuspidal newform $f \in \Gamma_1(N)$, they compute the restriction of the associated Galois representation $\rho_{f,\lambda}$ to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ for every $p \mid N$ (and λ prime to p).

We shall soon see an example..

MOST supercuspidal inertial types have the following shape

$$\tau_{\mathfrak{q}} := (\operatorname{Ind}_{W_{M}}^{W_{K_{\mathfrak{q}}}} \chi) | I_{\mathfrak{q}}$$

where $M/K_{\mathfrak{p}}$ is quadratic and χ is a character of W_M such that $\chi \neq \chi^{\sigma}$, where σ is the non-trivial element of $\operatorname{Gal}(M/K_{\mathfrak{p}})$.

The space $S_2(132 = 2^2 \cdot 3 \cdot 11)$ is of dimension 19 and contains two newforms, say f, g.

Using the L–W implemented in SAGE we compute $\sigma_2(f)$, the automorphic type of f at 2:

・ロト・日本・モート モー うへぐ

The space $S_2(132 = 2^2 \cdot 3 \cdot 11)$ is of dimension 19 and contains two newforms, say f, g.

Using the L–W implemented in SAGE we compute $\sigma_2(f)$, the automorphic type of f at 2:

```
>new=Newforms(132,names='a');
>pi = LocalComponent(new[0], 2);
>pi.species()
'Supercuspidal'
>pi.characters()
[Character of unramified extension Q_2(s)*(s^2 + s + 1 = 0)
of level 1, mapping s |--> d, 2 |--> 1,
Character of unramified extension Q_2(s)*(s^2 + s + 1 = 0)
of level 1, mapping s |--> -d - 1, 2 |--> 1 ]
```

Then $\tau_2(f) = \operatorname{rec}(\sigma_2)$ corresponds to σ_2 via Local Langlands.

Part (III)

Quaternionic modular forms and Quaternionic types

Let B/K be a totally definite quaternion algebra of discriminant \mathcal{D} and $\mathcal{O} \subset \mathcal{O}_0(1) \subset B$ an Eichler order of level \mathcal{N} coprime to \mathcal{D} .

Let B/K be a totally definite quaternion algebra of discriminant \mathcal{D} and $\mathcal{O} \subset \mathcal{O}_0(1) \subset B$ an Eichler order of level \mathcal{N} coprime to \mathcal{D} . Consider the class set $Cl(\mathcal{O})$ of invertible right ideals of \mathcal{O} up to isomorphism,

Let B/K be a totally definite quaternion algebra of discriminant \mathcal{D} and $\mathcal{O} \subset \mathcal{O}_0(1) \subset B$ an Eichler order of level \mathcal{N} coprime to \mathcal{D} . Consider the class set $Cl(\mathcal{O})$ of invertible right ideals of \mathcal{O} up to isomorphism, $I \sim J$ if and only if $J = \nu I$ for some $\nu \in B^{\times}$.

Definition

A quaternionic modular form for ${\it B}$ of parallel weight 2 and level ${\cal N}$ is a map

$$f: \mathsf{Cl}(\mathcal{O}) \to \mathbb{C}.$$

We write $M(\mathcal{O})$ for the \mathbb{C} -vector space consisting of these forms.

Theorem

For primes $\mathfrak{p} \nmid \mathcal{ND}$ there are commuting Hecke operator $\mathcal{T}_{\mathfrak{p}}$ acting on $\mathcal{M}(\mathcal{O})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant \mathcal{D} . Suppose $\operatorname{Cl}^+(K)$ is trivial. Let \mathcal{O} be Eichler order of level \mathcal{N} coprime to \mathcal{D} . Let $S(\mathcal{O}) \subset M(\mathcal{O})$ be the subspace orthogonal to the constant functions. Then, there is an injective map of Hecke modules

 $S(\mathcal{O}) \hookrightarrow \mathcal{S}_2(\mathcal{DN})$

whose image consists of Hilbert cuspforms which are new at all primes $\mathfrak{p} \mid \mathcal{D}.$

 By this correspondence it is possible to compute HMF by using appropriate quaternion algebras.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant \mathcal{D} . Suppose $\operatorname{Cl}^+(K)$ is trivial. Let \mathcal{O} be Eichler order of level \mathcal{N} coprime to \mathcal{D} . Let $S(\mathcal{O}) \subset M(\mathcal{O})$ be the subspace orthogonal to the constant functions. Then, there is an injective map of Hecke modules

 $S(\mathcal{O}) \hookrightarrow \mathcal{S}_2(\mathcal{DN})$

whose image consists of Hilbert cuspforms which are new at all primes $\mathfrak{p} \mid \mathcal{D}.$

- By this correspondence it is possible to compute HMF by using appropriate quaternion algebras.
- ► the Jacquet-Langlands correspondence implies that one only see forms that are *discrete series*, meaning either special or supercuspidal at primes in D;

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant \mathcal{D} . Suppose $\operatorname{Cl}^+(K)$ is trivial. Let \mathcal{O} be Eichler order of level \mathcal{N} coprime to \mathcal{D} . Let $S(\mathcal{O}) \subset M(\mathcal{O})$ be the subspace orthogonal to the constant functions. Then, there is an injective map of Hecke modules

 $S(\mathcal{O}) \hookrightarrow \mathcal{S}_2(\mathcal{DN})$

whose image consists of Hilbert cuspforms which are new at all primes $\mathfrak{p} \mid \mathcal{D}.$

- By this correspondence it is possible to compute HMF by using appropriate quaternion algebras.
- ► the Jacquet-Langlands correspondence implies that one only see forms that are *discrete series*, meaning either special or supercuspidal at primes in D;

Take the definite quaternion algebra $B = \left(\frac{-1, -33}{\mathbb{Q}}\right)$ of discriminant $D = 66 = 2 \cdot 3 \cdot 11$,

Take the definite quaternion algebra $B=\left(\frac{-1,-33}{\mathbb{Q}}\right)$ of discriminant $D=66=2\cdot 3\cdot 11,$ so

$$i^2 = -1, \quad j^2 = -33, \quad ji = -ij.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Take the definite quaternion algebra $B = \left(\frac{-1, -33}{\mathbb{Q}}\right)$ of discriminant $D = 66 = 2 \cdot 3 \cdot 11$, so

$$i^2 = -1, \quad j^2 = -33, \quad ji = -ij.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider the maximal order $\mathcal{O}_0(1) = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$

Take the definite quaternion algebra $B = \begin{pmatrix} -1, -33 \\ \mathbb{Q} \end{pmatrix}$ of discriminant $D = 66 = 2 \cdot 3 \cdot 11$, so

$$i^2 = -1, \quad j^2 = -33, \quad ji = -ij.$$

Consider the maximal order $\mathcal{O}_0(1) = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$ where $k = \frac{1+i+j+ij}{2}$ satisfies $k^2 - k + 17 = 0$. Set $\mathcal{N} = (1)$ thus $\mathcal{O} = \mathcal{O}_0(\mathcal{N}) = \mathcal{O}_0(1)$. We find that $\#Cl(\mathcal{O}) = 4$, with representatives

$$I_1 = 5\mathcal{O}, \ I_2 = 5\mathcal{O} + (2 + i + k)\mathcal{O},$$

 $I_3 = 5\mathcal{O} + (3 + 2i + k)\mathcal{O}, \ I_4 = 5\mathcal{O} + (2 + i + k)\mathcal{O}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Take the definite quaternion algebra $B = \begin{pmatrix} -1, -33 \\ \mathbb{Q} \end{pmatrix}$ of discriminant $D = 66 = 2 \cdot 3 \cdot 11$, so

$$i^2 = -1, \quad j^2 = -33, \quad ji = -ij.$$

Consider the maximal order $\mathcal{O}_0(1) = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$ where $k = \frac{1+i+j+ij}{2}$ satisfies $k^2 - k + 17 = 0$. Set $\mathcal{N} = (1)$ thus $\mathcal{O} = \mathcal{O}_0(\mathcal{N}) = \mathcal{O}_0(1)$. We find that $\# Cl(\mathcal{O}) = 4$, with representatives

$$l_1 = 5\mathcal{O}, \ l_2 = 5\mathcal{O} + (2 + i + k)\mathcal{O},$$

 $l_3 = 5\mathcal{O} + (3 + 2i + k)\mathcal{O}, \ l_4 = 5\mathcal{O} + (2 + i + k)\mathcal{O}.$

Thus $M(\mathcal{O}) = Map(Cl(\mathcal{O}), \mathbb{C}) \cong \mathbb{C}^4$.

For each *n* coprime to $D = 66 = 2 \cdot 3 \cdot 11$, we can write down Hecke operators. For example,

$$T(7) = \begin{pmatrix} 0 & 2 & 2 & 4 \\ 3 & 2 & 0 & 3 \\ 3 & 0 & 2 & 3 \\ 4 & 2 & 2 & 0 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

has characteristic polynomial (t-8)(t-2)(t+2)(t+4).

For each *n* coprime to $D = 66 = 2 \cdot 3 \cdot 11$, we can write down Hecke operators. For example,

$$T(7) = \begin{pmatrix} 0 & 2 & 2 & 4 \\ 3 & 2 & 0 & 3 \\ 3 & 0 & 2 & 3 \\ 4 & 2 & 2 & 0 \end{pmatrix}$$

has characteristic polynomial (t-8)(t-2)(t+2)(t+4). The eigenvalue $a_7 = 7 + 1 = 8$ corresponds to an Eisenstein series; the remaining three correspond to an eigenbasis for $S_2(\Gamma_0(66))^{\text{new}}$.

For each *n* coprime to $D = 66 = 2 \cdot 3 \cdot 11$, we can write down Hecke operators. For example,

$$T(7) = \begin{pmatrix} 0 & 2 & 2 & 4 \\ 3 & 2 & 0 & 3 \\ 3 & 0 & 2 & 3 \\ 4 & 2 & 2 & 0 \end{pmatrix}$$

has characteristic polynomial (t-8)(t-2)(t+2)(t+4). The eigenvalue $a_7 = 7 + 1 = 8$ corresponds to an Eisenstein series; the remaining three correpond to an eigenbasis for $S_2(\Gamma_0(66))^{\text{new}}$.

Obervation

Note dim $S_2(\Gamma_0(66)) = 9$ but the matrix above is 4x4; this is because the JL correspondence allows to work directly on the *D*-new subspace; this is already the whole $S_2(\Gamma_0(66))^{\text{new}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

Let B_q be the unique division quaternion algebra over K_q with maximal order \mathcal{O}_q . A **local quaternionic type at** q is an irreducible finite dimensional representation $\rho : \mathcal{O}_q^* \to GL(V)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition

Let B_q be the unique division quaternion algebra over K_q with maximal order \mathcal{O}_q . A **local quaternionic type at** q is an irreducible finite dimensional representation $\rho : \mathcal{O}_q^* \to GL(V)$.

Let B/K be definite of discriminant \mathcal{D} , \mathcal{O} Eichler of level \mathcal{N} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

Let $B_{\mathfrak{q}}$ be the unique division quaternion algebra over $\mathcal{K}_{\mathfrak{q}}$ with maximal order $\mathcal{O}_{\mathfrak{q}}$. A **local quaternionic type at** \mathfrak{q} is an irreducible finite dimensional representation $\rho : \mathcal{O}_{\mathfrak{q}}^* \to \operatorname{GL}(V)$.

Let B/K be definite of discriminant \mathcal{D} , \mathcal{O} Eichler of level \mathcal{N} . Definition Let $Cl(\mathcal{O}) = \{[l_i]\}$ and set $\Gamma_i = \mathcal{O}_L(l_i)^*$. Let ρ be a type at $\mathfrak{q} \mid \mathcal{D}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

Let $B_{\mathfrak{q}}$ be the unique division quaternion algebra over $\mathcal{K}_{\mathfrak{q}}$ with maximal order $\mathcal{O}_{\mathfrak{q}}$. A **local quaternionic type at** \mathfrak{q} is an irreducible finite dimensional representation $\rho : \mathcal{O}_{\mathfrak{q}}^* \to \operatorname{GL}(V)$.

Let B/K be definite of discriminant \mathcal{D} , \mathcal{O} Eichler of level \mathcal{N} .

Definition

Let $Cl(\mathcal{O}) = \{[I_i]\}$ and set $\Gamma_i = \mathcal{O}_L(I_i)^*$. Let ρ be a type at $\mathfrak{q} \mid \mathcal{D}$. A quaternionic form of weight 2, level \mathcal{N} and type ρ is a map

$$f \in M(\mathcal{O}, \rho) = \bigoplus_{i} \operatorname{Map}_{\Gamma_{i}}(\operatorname{Cl}(\mathcal{O}), V) \cong \bigoplus_{i} V^{\Gamma_{i}}$$

For $\mathfrak{p} \nmid \mathcal{DN}$ there are Hecke operators $T_{\mathfrak{p}}$ acting on $M(\mathcal{O}, \rho)$.

Recall that B = (-1,-33) is ramified at 2, so B₂ is a division algebra. Let J₂ ⊂ O_{B2} be the unique maximal two-sided ideal; the quotient is O_{B2}/J₂ ≃ F₄.

• Choose a cubic character $\chi : \mathbb{F}_4^{\times} \to \langle \zeta_3 \rangle \subset \mathbb{C}^{\times}$.

- Recall that B = (^{-1,-33}/_Q) is ramified at 2, so B₂ is a division algebra. Let J₂ ⊂ O_{B2} be the unique maximal two-sided ideal; the quotient is O_{B2}/J₂ ≃ F₄.
- Choose a cubic character $\chi : \mathbb{F}_4^{\times} \to \langle \zeta_3 \rangle \subset \mathbb{C}^{\times}$.

- Recall that B = (^{-1,-33}/_Q) is ramified at 2, so B₂ is a division algebra. Let J₂ ⊂ O_{B2} be the unique maximal two-sided ideal; the quotient is O_{B2}/J₂ ≃ F₄.
- Choose a cubic character $\chi : \mathbb{F}_4^{\times} \to \langle \zeta_3 \rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation ρ₂ : O[×]_{B₂} → GL₁(V) for V = C; This type corresponds via JL to the automorphic type σ₂(f) obtained with the L–W algorithm (f has level 132).

- Recall that B = (^{-1,-33}/_Q) is ramified at 2, so B₂ is a division algebra. Let J₂ ⊂ O_{B2} be the unique maximal two-sided ideal; the quotient is O_{B2}/J₂ ≃ F₄.
- Choose a cubic character $\chi : \mathbb{F}_4^{\times} \to \langle \zeta_3 \rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation ρ₂ : O[×]_{B₂} → GL₁(V) for V = C; This type corresponds via JL to the automorphic type σ₂(f) obtained with the L–W algorithm (f has level 132).

• We have $\Gamma_1 = \Gamma_4 = \langle i \rangle$ has order 4 and $\#\Gamma_2 = \#\Gamma_3 = 6$.

- Recall that B = (^{-1,-33}/_Q) is ramified at 2, so B₂ is a division algebra. Let J₂ ⊂ O_{B2} be the unique maximal two-sided ideal; the quotient is O_{B2}/J₂ ≃ F₄.
- Choose a cubic character $\chi : \mathbb{F}_4^{\times} \to \langle \zeta_3 \rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation ρ₂ : O[×]_{B₂} → GL₁(V) for V = C; This type corresponds via JL to the automorphic type σ₂(f) obtained with the L–W algorithm (f has level 132).

- We have $\Gamma_1 = \Gamma_4 = \langle i \rangle$ has order 4 and $\#\Gamma_2 = \#\Gamma_3 = 6$.
- $V^{\Gamma_i} = \mathbb{C}$ for i = 1, 4 and $V^{\Gamma_i} = \{0\}$ for i = 2, 3
- Thus $M(\mathcal{O}, \rho)$ has dimension 2.

- Recall that B = (-1,-33) is ramified at 2, so B₂ is a division algebra. Let J₂ ⊂ O_{B2} be the unique maximal two-sided ideal; the quotient is O_{B2}/J₂ ≃ F₄.
- Choose a cubic character $\chi : \mathbb{F}_4^{\times} \to \langle \zeta_3 \rangle \subset \mathbb{C}^{\times}$.
- Lift it to a representation ρ₂ : O[×]_{B₂} → GL₁(V) for V = C; This type corresponds via JL to the automorphic type σ₂(f) obtained with the L–W algorithm (f has level 132).
- We have $\Gamma_1 = \Gamma_4 = \langle i \rangle$ has order 4 and $\#\Gamma_2 = \#\Gamma_3 = 6$.
- $V^{\Gamma_i} = \mathbb{C}$ for i = 1, 4 and $V^{\Gamma_i} = \{0\}$ for i = 2, 3
- Thus $M(\mathcal{O}, \rho)$ has dimension 2.
- For example, since $7 \nmid 66$ we obtain the Hecke operator

$$T(7) = \begin{pmatrix} 0 & 2\zeta_3^{-1} \\ -2\zeta_3 & 0 \end{pmatrix}$$

with characteristic polynomial (t-2)(t+2).

<ロ>

• Let B/K be definite of discriminant $\mathcal{D} = \mathfrak{q} \cdot \mathcal{D}'$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D} .

- Let B/K be definite of discriminant $\mathcal{D} = \mathfrak{q} \cdot \mathcal{D}'$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D} .
- Let ρ be a local quaternionic type at q which corresponds to the automorphic type σ(ρ) via Jacquet-Langlands.
- Let τ_ρ be the Galois inertial type corresponding to σ(ρ) via Local Langlands;

• Write $\operatorname{cond}(\tau_{\rho}) = \mathfrak{q}^n$ for some $n \ge 1$.

- Let B/K be definite of discriminant $\mathcal{D} = \mathfrak{q} \cdot \mathcal{D}'$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D} .
- Let ρ be a local quaternionic type at q which corresponds to the automorphic type σ(ρ) via Jacquet-Langlands.
- Let τ_ρ be the Galois inertial type corresponding to σ(ρ) via Local Langlands;
- Write $\operatorname{cond}(\tau_{\rho}) = \mathfrak{q}^n$ for some $n \ge 1$.

"Theorem"

There is a Hecke-equivariant map

$$\mathcal{M}(\mathcal{O},\rho)\xrightarrow{\sim} \mathcal{S}_2(\mathfrak{q}^n\mathcal{D}'\mathcal{N},\tau_\rho)\subset \mathcal{S}_2(\mathfrak{q}^n\mathcal{D}'\mathcal{N})^{\mathfrak{q}-\mathsf{new}}$$

- Let B/K be definite of discriminant $\mathcal{D} = \mathfrak{q} \cdot \mathcal{D}'$;
- Let \mathcal{O} Eichler of level \mathcal{N} coprime to \mathcal{D} .
- Let ρ be a local quaternionic type at q which corresponds to the automorphic type σ(ρ) via Jacquet-Langlands.
- Let τ_ρ be the Galois inertial type corresponding to σ(ρ) via Local Langlands;
- Write $\operatorname{cond}(\tau_{\rho}) = \mathfrak{q}^n$ for some $n \ge 1$.

"Theorem"

There is a Hecke-equivariant map

$$\mathcal{M}(\mathcal{O},\rho) \xrightarrow{\sim} \mathcal{S}_2(\mathfrak{q}^n \mathcal{D}' \mathcal{N}, \tau_{\rho}) \subset \mathcal{S}_2(\mathfrak{q}^n \mathcal{D}' \mathcal{N})^{\mathfrak{q}-\mathrm{new}}$$

where $S_2(\mathfrak{q}^n \mathcal{D}' \mathcal{N}, \tau_\rho)$ is generated by the newforms in $S_2(\mathfrak{q}^n \mathcal{D}' \mathcal{N})^{\mathfrak{q}-\text{new}}$ with inertia type τ_ρ .

We want to compute $S_2(132)^{\text{new}} \subset S_2(132)$.

We want to compute $S_2(132)^{\text{new}} \subset S_2(132)$.

The dimension of $S_2(132)$ is 19.

From previous computations and the above theorem we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We want to compute $S_2(132)^{\text{new}} \subset S_2(132)$. The dimension of $S_2(132)$ is 19.

From previous computations and the above theorem we have

 $\dim(\mathcal{M}(\mathcal{O},\rho)) = 2$ $\mathcal{M}(\mathcal{O},\rho) \xrightarrow{\sim} S_2(2^2 \cdot 3 \cdot 11, \tau_{\rho_2}) \subset S_2(132).$

We want to compute $S_2(132)^{\text{new}} \subset S_2(132)$. The dimension of $S_2(132)$ is 19.

From previous computations and the above theorem we have

 $\dim(M(\mathcal{O},\rho))=2$

$$M(\mathcal{O},\rho) \xrightarrow{\sim} S_2(2^2 \cdot 3 \cdot 11, \tau_{\rho_2}) \subset S_2(132).$$

Since $S_2(\Gamma_0(132))^{\text{new}}$ has dimension 2 we already get an eigenbasis given by

$$f(q) = q - q^3 + 2q^5 + 2q^7 + q^9 - q^{11} + 6q^{13} + \dots,$$

$$g(q) = q + q^3 + 2q^5 - 2q^7 + q^9 + q^{11} - 2q^{13} + \dots.$$

We want to compute $S_2(132)^{\text{new}} \subset S_2(132)$. The dimension of $S_2(132)$ is 19.

From previous computations and the above theorem we have

 $\dim(M(\mathcal{O},\rho))=2$

$$M(\mathcal{O},\rho) \xrightarrow{\sim} S_2(2^2 \cdot 3 \cdot 11, \tau_{\rho_2}) \subset S_2(132).$$

Since $S_2(\Gamma_0(132))^{\text{new}}$ has dimension 2 we already get an eigenbasis given by

$$f(q) = q - q^3 + 2q^5 + 2q^7 + q^9 - q^{11} + 6q^{13} + \dots,$$

$$g(q) = q + q^3 + 2q^5 - 2q^7 + q^9 + q^{11} - 2q^{13} + \dots.$$

We want to compute $S_2(132)^{\text{new}} \subset S_2(132)$.

The dimension of $S_2(132)$ is 19.

From previous computations and the above theorem we have

 $\dim(M(\mathcal{O},\rho))=2$

$$M(\mathcal{O},\rho) \xrightarrow{\sim} S_2(2^2 \cdot 3 \cdot 11, \tau_{\rho_2}) \subset S_2(132).$$

Since $S_2(\Gamma_0(132))^{\text{new}}$ has dimension 2 we already get an eigenbasis given by

$$\begin{split} f(q) &= q - q^3 + 2q^5 + 2q^7 + q^9 - q^{11} + 6q^{13} + \dots, \\ g(q) &= q + q^3 + 2q^5 - 2q^7 + q^9 + q^{11} - 2q^{13} + \dots. \end{split}$$

The Main Point

We have worked with matrices of size 2 instead of size 19!!

Now consider again the equation

$$x^{19} + y^{19} = Cz^p \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Now consider again the equation

$$x^{19} + y^{19} = Cz^p \tag{1}$$

Assume, not unrealistically, that

Now consider again the equation

$$x^{19} + y^{19} = Cz^p \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Assume, not unrealistically, that

(i) We can work algorithmically with types over $\mathbb Q$ in general.

Now consider again the equation

$$x^{19} + y^{19} = Cz^p \tag{1}$$

Assume, not unrealistically, that

- (i) We can work algorithmically with types over $\mathbb Q$ in general.
- (ii) The algorithms can be extended to inertia types over totally real fields.

Now consider again the equation

$$x^{19} + y^{19} = Cz^p \tag{1}$$

Assume, not unrealistically, that

- (i) We can work algorithmically with types over $\mathbb Q$ in general.
- (ii) The algorithms can be extended to inertia types over totally real fields.

We want to take advantage of the following lemma.

Lemma

To a solution of (1) we can attach a Frey curve $E = E_{(a,b)}/K$, where K is the totally real cubic subfield of $\mathbb{Q}(\zeta_{19})$. The prime 2 is inert in K. The Frey curve E is supercuspidal at (2) and has Serre conductor $2^4 \pi_{19}^2$. Happy Birthday!!! Nuria Vila Teresa Crespo Angela Arenas Enric Nart