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Part (I)

The Generalized Fermat Equation



Motivation

Consider the Generalized Fermat Equation

Axp + Byq = Cz r , p, q, r ∈ Z≥2

with A,B,C ∈ Z non-zero pairwise coprime.

Conjecture

Fix A,B,C ∈ Z pairwise coprime. There exist only finitely many
triples (ap, bq, c r ) with (a, b, c) ∈ (Z \ {0})3 and p, q, r primes
such that:

(i) 1/p + 1/q + 1/r < 1

(ii) gcd(a, b, c) = 1

(iii) Aap + Bbq = Cc r

Solutions like 1p + 23 = 32 are counted only once. If we also fix
(p, q, r) the conjecture holds due to work of Darmon–Granville.

Question: Can one use Hilbert modular forms to solve more cases?
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The modular method over totally real fields

The main steps of the modular method are:

I Construction of a Frey curve: Attach one (or more) Frey
elliptic curve E/K to a putative solution of a Fermat-type
equation, where K is some totally real field;

I Modularity/Irreducibility/Level Lowering: Prove
modularity of E and irreducibility of ρE ,p. Conclude via level
lowering results that ρE ,p corresponds to a Hilbert modular
form whose level is independent of the choice of the solution;

I Contradiction: Compute all the Hilbert newforms in the
predicted spaces. Show that

ρE ,p ∼ ρf,p

does not hold for any of the computed newforms f.
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Example: a result for r = 13

Theorem (Dieulefait–F.)

Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes
` 6≡ 1 (mod 13). Set L = {2, 3, 5, 7, 11, 13, 19, 23, 29, 71}. Then,
the equation

x13 + y13 = dγzp, p 6∈ L

has no non-trivial solutions such that gcd(a, b, c) = 1 and 13 - c .

Observations

I The condition 13 - c is due to the presence of the trivial
solution (1,−1, 0)

I There are Frey curves that are singular when evaluated at
(1,−1, 0) but they are defined over a larger field and the
computations of the newforms are out of reach!

I The largest cuspidal space of HMF required in the proof has
dimension around 4800
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Example: a result for r = 7

Theorem (F.)

There is some constant M such that if p > (1 + 318)2 and p - M
then the equation x7 + y7 = 3zp has no non-trivial solutions
(a, b, c) such that gcd(a, b) = 1.

Observations

I Note that 7 | c is allowed.

I The largest dimensional in this case was around 10000. This
was close to the limit of what is possible to compute!

Question: Can we say something about x19 + y19 = Czp?

Answer: For this we need to compute newforms inside a space of
cuspforms of dimension above 400000?! With the current state of
implementations only to initiate a Hecke operator requires tens or
hundreds GB of RAM!
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Part (II)

Galois inertial types



Galois Inertial types

Let K be a totally real field. For q a prime in K write Iq for the
inertia group at q.

Definition
Let f be a cuspidal HMF over K of parallel weight 2 and level N .
Let σf,q : WKq → GL2(C) be its associated Weil representation at
q. We will say that the restriction

τq := σf,q|Iq

is an inertial type at q.

Problem 1: Given f and q | N compute the type of f at q ?

Problem 2: Given N and a type τq at q | N . Compute all
f ∈ S2(N ) with type τq without computing the whole S2(N ).
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Computing types of classical modular form

Problem 1 has been solved over Q by Loeffler–Weinstein: given a
cuspidal newform f ∈ Γ1(N), they compute the restriction of the
associated Galois representation ρf ,λ to Gal(Qp/Qp) for every
p | N (and λ prime to p).

We shall soon see an example..

MOST supercuspidal inertial types have the following shape

τq := (Ind
WKq

WM
χ)|Iq

where M/Kp is quadratic and χ is a character of WM such that
χ 6= χσ, where σ is the non-trivial element of Gal(M/Kp).
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Computing types of classical modular forms

The space S2(132 = 22 · 3 · 11) is of dimension 19 and contains
two newforms, say f , g .

Using the L–W implemented in SAGE we compute σ2(f ), the
automorphic type of f at 2:

>new=Newforms(132,names=’a’);

>pi = LocalComponent(new[0], 2);

>pi.species()

’Supercuspidal’

>pi.characters()

[Character of unramified extension Q_2(s)*(s^2 + s + 1 = 0),

of level 1, mapping s |--> d, 2 |--> 1,

Character of unramified extension Q_2(s)*(s^2 + s + 1 = 0),

of level 1, mapping s |--> -d - 1, 2 |--> 1 ]

Then τ2(f ) = rec(σ2) corresponds to σ2 via Local Langlands.
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Part (III)

Quaternionic modular forms and
Quaternionic types



Quaternionic modular forms

Let B/K be a totally definite quaternion algebra of discriminant D
and O ⊂ O0(1) ⊂ B an Eichler order of level N coprime to D.

Consider the class set Cl(O) of invertible right ideals of O up to
isomorphism, I ∼ J if and only if J = νI for some ν ∈ B×.

Definition
A quaternionic modular form for B of parallel weight 2 and
level N is a map

f : Cl(O)→ C.

We write M(O) for the C-vector space consisting of these forms.

Theorem
For primes p - ND there are commuting Hecke operator Tp acting
on M(O).
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Quaternionic modular forms

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant D. Suppose
Cl+(K ) is trivial. Let O be Eichler order of level N coprime to D.

Let S(O) ⊂ M(O) be the subspace orthogonal to the constant
functions. Then, there is an injective map of Hecke modules

S(O) ↪→ S2(DN )

whose image consists of Hilbert cuspforms which are new at all
primes p | D.

I By this correspondence it is possible to compute HMF by
using appropriate quaternion algebras.

I the Jacquet-Langlands correspondence implies that one only
see forms that are discrete series, meaning either special or
supercuspidal at primes in D;



Quaternionic modular forms

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant D. Suppose
Cl+(K ) is trivial. Let O be Eichler order of level N coprime to D.

Let S(O) ⊂ M(O) be the subspace orthogonal to the constant
functions. Then, there is an injective map of Hecke modules

S(O) ↪→ S2(DN )

whose image consists of Hilbert cuspforms which are new at all
primes p | D.

I By this correspondence it is possible to compute HMF by
using appropriate quaternion algebras.

I the Jacquet-Langlands correspondence implies that one only
see forms that are discrete series, meaning either special or
supercuspidal at primes in D;



Quaternionic modular forms

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant D. Suppose
Cl+(K ) is trivial. Let O be Eichler order of level N coprime to D.

Let S(O) ⊂ M(O) be the subspace orthogonal to the constant
functions. Then, there is an injective map of Hecke modules

S(O) ↪→ S2(DN )

whose image consists of Hilbert cuspforms which are new at all
primes p | D.

I By this correspondence it is possible to compute HMF by
using appropriate quaternion algebras.

I the Jacquet-Langlands correspondence implies that one only
see forms that are discrete series, meaning either special or
supercuspidal at primes in D;



Quaternionic modular forms

Theorem (Eichler–Shimizu–Jacquet–Langlands)

Let B/K be a quaternion algebra of discriminant D. Suppose
Cl+(K ) is trivial. Let O be Eichler order of level N coprime to D.

Let S(O) ⊂ M(O) be the subspace orthogonal to the constant
functions. Then, there is an injective map of Hecke modules

S(O) ↪→ S2(DN )

whose image consists of Hilbert cuspforms which are new at all
primes p | D.

I By this correspondence it is possible to compute HMF by
using appropriate quaternion algebras.

I the Jacquet-Langlands correspondence implies that one only
see forms that are discrete series, meaning either special or
supercuspidal at primes in D;



Example over Q

Take the definite quaternion algebra B =
(
−1,−33

Q

)
of discriminant

D = 66 = 2 · 3 · 11,

so

i2 = −1, j2 = −33, ji = −ij .

Consider the maximal order O0(1) = Z + Zi + Zj + Zk where
k = 1+i+j+ij

2 satisfies k2 − k + 17 = 0.

Set N = (1) thus O = O0(N ) = O0(1).

We find that #Cl(O) = 4, with representatives

I1 = 5O, I2 = 5O + (2 + i + k)O,
I3 = 5O + (3 + 2i + k)O, I4 = 5O + (2 + i + k)O.

Thus M(O) = Map(Cl(O),C) ∼= C4.
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Example over Q (continued)

For each n coprime to D = 66 = 2 · 3 · 11, we can write down
Hecke operators. For example,

T (7) =


0 2 2 4
3 2 0 3
3 0 2 3
4 2 2 0


has characteristic polynomial (t − 8)(t − 2)(t + 2)(t + 4).

The eigenvalue a7 = 7 + 1 = 8 corresponds to an Eisenstein series;
the remaining three correpond to an eigenbasis for S2(Γ0(66))new.

Obervation
Note dim S2(Γ0(66)) = 9 but the matrix above is 4x4; this is
because the JL correspondence allows to work directly on the
D-new subspace; this is already the whole S2(Γ0(66))new.
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Quaternionic forms with types

Definition
Let Bq be the unique division quaternion algebra over Kq with
maximal order Oq. A local quaternionic type at q is an
irreducible finite dimensional representation ρ : O∗q → GL(V ).

Let B/K be definite of discriminant D, O Eichler of level N .

Definition
Let Cl(O) = {[Ii ]} and set Γi = OL(Ii )

∗. Let ρ be a type at q | D.
A quaternionic form of weight 2, level N and type ρ is a map

f ∈ M(O, ρ) =
⊕
i

MapΓi
(Cl(O),V ) ∼=

⊕
i

V Γi .

For p - DN there are Hecke operators Tp acting on M(O, ρ).
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Example over Q (continued)

I Recall that B =
(
−1,−33

Q

)
is ramified at 2, so B2 is a division

algebra. Let J2 ⊂ OB2 be the unique maximal two-sided ideal;
the quotient is OB2/J2

∼= F4.

I Choose a cubic character χ : F×4 → 〈ζ3〉 ⊂ C×.

I Lift it to a representation ρ2 : O×B2
→ GL1(V ) for V = C;

This type corresponds via JL to the automorphic type σ2(f )
obtained with the L–W algorithm (f has level 132).

I We have Γ1 = Γ4 = 〈i〉 has order 4 and #Γ2 = #Γ3 = 6.

I V Γi = C for i = 1, 4 and V Γi = {0} for i = 2, 3

I Thus M(O, ρ) has dimension 2.

I For example, since 7 - 66 we obtain the Hecke operator

T (7) =

(
0 2ζ−1

3

−2ζ3 0

)
with characteristic polynomial (t − 2)(t + 2).
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Quaternionic forms with types

I Let B/K be definite of discriminant D = q · D′;
I Let O Eichler of level N coprime to D.

I Let ρ be a local quaternionic type at q which corresponds to
the automorphic type σ(ρ) via Jacquet-Langlands.

I Let τρ be the Galois inertial type corresponding to σ(ρ) via
Local Langlands;

I Write cond(τρ) = qn for some n ≥ 1.

”Theorem”
There is a Hecke-equivariant map

M(O, ρ)
∼−→ S2(qnD′N , τρ) ⊂ S2(qnD′N )q−new.

where S2(qnD′N , τρ) is generated by the newforms in
S2(qnD′N )q−new with inertia type τρ.
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End of the running example over Q

We want to compute S2(132)new ⊂ S2(132).

The dimension of S2(132) is 19.

From previous computations and the above theorem we have

dim(M(O, ρ)) = 2

M(O, ρ)
∼−→ S2(22 · 3 · 11, τρ2) ⊂ S2(132).

Since S2(Γ0(132))new has dimension 2 we already get an eigenbasis
given by

f (q) = q − q3 + 2q5 + 2q7 + q9 − q11 + 6q13 + . . . ,

g(q) = q + q3 + 2q5 − 2q7 + q9 + q11 − 2q13 + . . . .

The Main Point
We have worked with matrices of size 2 instead of size 19!!
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Back to the Generalized Fermat Equation

Now consider again the equation

x19 + y19 = Czp (1)

Assume, not unrealistically, that

(i) We can work algorithmically with types over Q in general.

(ii) The algorithms can be extended to inertia types over totally
real fields.

We want to take advantage of the following lemma.

Lemma
To a solution of (1) we can attach a Frey curve E = E(a,b)/K ,
where K is the totally real cubic subfield of Q(ζ19). The prime 2 is
inert in K . The Frey curve E is supercuspidal at (2) and has Serre
conductor 24π2

19.
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