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Motivation

Theorem (Wiles, Taylor-Wiles 1994)

Semistable elliptic curves defined over Q are modular.

Theorem (Wiles 1994)

The only solutions to the equation

ap + bp + cp = 0, a, b, c ∈ Q, p ≥ 3 prime

satisfy abc = 0.
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Motivation

Theorem (Jarvis and Manoharmayum 2004)

Semistable elliptic curves over Q(
√

2) and Q(
√

17) are modular.

Theorem (Jarvis and Meekin 2004)

The only solutions to the equation

ap + bp + cp = 0, a, b, c ∈ Q(
√

2), p ≥ 5 prime

satisfy abc = 0.

“...the numerology required to generalise the work of Ribet and
Wiles directly continues to hold for Q(

√
2)... however, we will

explain that there are no other real quadratic fields for which this
is true...”
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Theoretical Pillars

The proof of Fermat’s Last Theorem and more generally, successful
proofs of non-existence of solutions over Q to certain exponential
Diophantine equations rest on the following theoretical pillars:

(i) A Frey elliptic curve construction;

(ii) Wiles, Breuil, Conrad, Diamond, Taylor: elliptic curves /Q are
modular;

(iii) Mazur’s isogeny theorem;

(iv) Ribet’s level lowering theorem.

Can replace (ii) and (iv) with Serre’s modularity conjecture /Q
(Khare and Wintenberger).
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Frey elliptic curves recipes

Generalised Fermat equation of signature (p, p, p):

Axp +Byp +Cyp = 0, where A, B, C are fixed and p is prime.

→ E : Y 2 = X (X −Axp)(X +Byp), ∆E = 24(ABC )2(xyz)2p.

Superelliptic equations such as:

F (x , y) = zp, where F is a given irreducible binary cubic.

→ E : Y 2 = X 3 + 3H(x , y)X + G (x , y),

∆E = 4(3H(x , y))3 + 27G (x , y)2 = −27 ·∆F · F (x , y)2

∆E = −27 ·∆F · z2p.
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The key properties of a Frey curve E are the following

1 the coefficients of E depend on the putative solution to our
Diophantine equation;

2 ∆E ,min = C · Dp, where C does not depend on the
putative solution, but just on the equation itself.

3 E has multiplicative reduction at primes dividing D.
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The big picture in the classical case

ap + bp + cp = 0→ Ep,a,b,c : Y 2 = X (X − ap)(X + bp)

Figure 1: Source: M. H. Şengün’s PhD Thesis

Arrows on the RHS go both ways because, in the classical case, for
p > 3 mod p modular forms are just reductions of modular forms.
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Understanding of modularity (or automorphy) in the setting of
general number fields is highly conjectural. In recent work,
assuming two conjectures, Şengün and Siksek manage to replicate
to some extent the aforementioned successes for Fermat’s equation
over general number fields.



Introduction The Frey Curve and its mod p Galois rep. Surjectivity of ρ Conclusions

Conjecture ((1) Serre’s modularity conjecture)

This conjecture predicts the existence of a weight 2 mod p
eigenform of level N over K which is associated to every odd,
absolutely irreducible continous representation ρ : GK → GL2(Fp)
of Serre conductor N , such that det(ρ) = χp and is finite flat at
every p|p of K .

Conjecture ((2) Eichler-Shimura)

This is a conjecture in the Langlands Programme which says that
every weight 2 newform (for GL2) over K with integer Hecke
eigenvalues has an associated elliptic curve over K or a fake elliptic
curve over K .
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Notation

ZK - the ring of integers of a number field K

We consider the Fermat equation with prime exponent p ∈ Z

xp + yp + zp = 0, (1)

with x , y , z ∈ K .

A solution (a, b, c) ∈ K 3 to (1) is called non-trivial if abc 6= 0.
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Theorem (Şengün, Siksek -2017)

Let K = Q(
√
−d) be an imaginary quadratic field where d is a

squarefree positive integer satisfying −d = 2 or 3 (mod 4).
Assume that conjectures 1 and 2 hold. Then, there exists a
constant BK such that for p > BK , Fermat’s equation

xp + yp + zp = 0

does not have non-trivial solutions in K .

Remark

The constant BK is ineffective.
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The strategy of Şengün and Siksek’s proof

• Suppose that Fermat’s equation has a non-trivial solution
(a, b, c) ∈ Z3

K . Consider E := Ea,b,c : Y 2 = X (X − ap)(X + bp).

• Prove that for p large enough, the residual representation
ρE ,p : GK → Aut(E [p]) satisfies all the hypothesis of Serre’s
modularity conjecture, in particular that it is abs. irreducible (uses
Merel uniform boundness theorem).

• Apply S.M.C. to obtain a mod p eigenform of trivial weight and
level independent on a, b and c .

• Show that for p large enough the mod p eigenform lifts to a
complex eigenform f.
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The strategy of Ş. & S. cont...

• Use Eichler-Shimura to match the form f to an elliptic curve Ef,
which does not depend on a, b, c nor on p.

• Using S-unit equations, they show that such an elliptic curve Ef

does not exist.
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What can we say about BK for some simple K?

Theorem (Ţ., 2017)

Assume Conjecture (1) (S.M.C.) holds for Q(i). Then, Fermat’s
Last Theorem holds over Q(i). In other words, for any integer
n ≥ 3, the equation

an + bn = cn

has no solutions a, b, c ∈ Q(i) \ {0}.
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Let K ∈ {Q(i),Q(
√
−2),Q(

√
−7)}.

Theorem (Ţ., 2017)

Assume Conjecture (1) (S.M.C.) holds for K . If p ≥ 5 is a rational
prime number, then the equation

ap + bp + cp = 0 (2)

has no solutions a, b, c ∈ K \ {0}.

Our techniques prove the result above for p ≥ 19 when
K ∈ {Q(i),Q(

√
−2)} and p ≥ 17 when K = Q(

√
−7) and we rely

on previous works on F.L.T. for small p.



Introduction The Frey Curve and its mod p Galois rep. Surjectivity of ρ Conclusions

Let K ∈ {Q(i),Q(
√
−2),Q(

√
−7)}.

Theorem (Ţ., 2017)
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Why these restrictions on K?

!!! We had to carry out some explicit computations in the
cohomology groups of locally symmetric spaces. These are
much simpler when the field has class number 1.

⇒ K ∈ {Q(i),Q(
√
−2),Q(

√
−3),Q(

√
−7),Q(

√
−11),

Q(
√
−19),Q(

√
−43),Q(

√
−67),Q(

√
−163)}.

To prove that ρE ,p is absolutely irreducible, we make use of
the fact that K has primes of residue field F2 above 2.

Be aware of

1p + εp + (ε2)p = 0 , where ε3 = 1, ε 6= 1.
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Asumme K is quadratic imaginary of class number 1

Let (a, b, c) ∈ K 3 be a non-trivial solution to the Fermat equation.
We can scale (a, b, c) such that the triple is integral and a, b, c are
coprime.
Let

E = Ea,b,c : Y 2 = X (X − ap)(X + bp).

Denote by ρ = ρE ,p : GK → Aut(E [p]) ∼= GL2(Fp), the
representation induced by the action of GK on the p-torsion E [p].

Plan

Prove that ρ satisfies the hypothesis required for Serre’s modularity
conjecture. Get an weight 2 eigenform for K at a level that does
not depend on p or a, b, c . Compute the space of those eigenforms
and hope for a contradiction. This will prove that (a, b, c) ∈ K 3

does not exist.
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E : Y 2 = X (X − ap)(X + bp)

c4 = 24(b2p − apcp) and ∆ = 24(abc)2p;

The determinant of ρ is the mod p cyclotomic character;

ρ is unramified at any prime that does not lie above 2 and p;

By the above, the Serre conductor N of ρ belongs to a finite
set that depends only on the field K .

ρ is finite flat at p for all p|p (if p > 2).
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Abs. irreducibility of ρ

To apply S.M.C. to the mod p representation ρ of the Frey curve
E , we need to prove that ρ is absolutely irreducible.

Theorem

For p > BK , ρ is irreducible.

Sketch of proof. Suppose that p does not ramify in K . If ρ is
reducible, then

ρ ∼
(
θ ∗
0 θ′

)
,

where θ, θ′ : GK → F∗p are characters, such that θθ′ = χp. Let N
be the conductor of ρ.
It is easy to show that if q - p is a prime of additive reduction, then

vq(Nθ) = vq(Nθ′) =
1

2
vq(N ).
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i) Suppose that p is coprime to Nθ or Nθ′ . By replacing E with a
p isogenous curve if necessary we can assume that p is coprime to
Nθ.

finitely many choices for Nθ;

θ is the character of a ray class group for which we have
finitely many candidates;

we use MAGMA to compute these gps. ⇒ bound ord(θ);

this gives a p torsion point for E defined over a filed of

absolute degree 2 · ord(θ) ;

ii) If p is not coprime with Nθ nor with Nθ′ , we use CFT and ideas
of A. David to bound p.
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• When E has potentially multiplicative reduction at a ⊂ ZK , a
prime above 2, the image of ρ contains an element of order p;
• any irreducible subgroup of GL2(Fp) that has elements of order p
contains SL2(Fp);
• K ∩Q(ζp) = Q, therefore det(ρ) = χp is surjective, which
implies that ρ is surjective.
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Conclusions

• In the proof of Fermat’s Last Theorem over Q, Serre’s
modularity conjecture predicts that the representation ρ comes
from an eigenform of weight 2 and level 2.
• over quad. imag. K , after applying S.M.C. we obtain a Hecke
eigenform in H1(Y0(N ),Fp).
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• We can show that for p ≥ 17, mod p eigenforms lift to complex
ones. The latter are called Bianchi modular forms.

• The predicted complex eigenforms are cuspidal and using the
MAGMA implementation of an algorithm of Gunnels we can
compute the space of this forms (level N is fixed).

• For Q(i),Q(
√
−7) these spaces are empty, so we are done. For

Q(
√
−2), there’s more work to do. Namely, we find some

eigenforms, we prove that they correspond to some specific ell.
curves (and not fake ell. curves). We conclude using some
congruences mod p involving traces of Frobenia.
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What about d = 3, 11, 19, 43, 67 or 163?

Theorem (Ţ, 2018)

Let K = Q(
√
−d), when d ∈ {3, 11, 19, 43, 67, 163}. Assume

Serre’s modularity conjecture holds for K . For any prime p ≥ 19,
the Fermat equation

ap + bp + cp = 0,

does not have solutions in coprime a, b, c ∈ OK \ {0} such that
2 | abc.
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Affirmative answer to Serre’s uniformity question
implies ...

If one assumes an affirmative answer to Serre’s uniformity
question, which enquires whether if given a number field K , there
exists a constant BK such that for every elliptic curve E/K
without CM and every p > BK , the mod p representation ρE ,p is
surjective, then one can show the following.

Theorem

Let K = Q(
√
−d) be a quadratic imaginary number field of class

number 1 and suppose that Serre’s modularity and Serre’s
uniformity hold over K . There is an absolute constant C (K ) > 0
such that the only solutions to the Fermat equation
ap + bp + cp = 0 satisfy abc = 0 or a + b + c = 0.
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Question(s)

Let K be a fixed quadratic imaginary field and fix S , a finite set of
prime ideals in K . Denote by
ES = {E defined over K : E is semistable away from S}. Is there a
constant BK ,S such that for every prime p > BK ,S the implication

For E ∈ ES with ρE ,p is absolutely reducible ⇒ j(E ) is integral

holds?
Does anybody know if this is substantially easier than Serre’s
uniformity question?



Introduction The Frey Curve and its mod p Galois rep. Surjectivity of ρ Conclusions

Thank you very much for listening!
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It is time to give a more precise statement of Conjecture (1)

Conjecture (1)

Let ρ : GK → GL2(Fp) be an odd, irreducible, continuous
representation with Serre conductor N (prime-to-p part of its Artin
conductor) and trivial character (prime-to-p part of det(ρ)).
Assume that p is unramified in K and that ρ |GKp

arises from a

finite-flat group scheme over ZKp for every prime p|p. Then there
is a (weight 2) mod p eigenform θ over K of level N such that for
all primes q coprime to pN, we have

Tr(ρ(Frobq)) = θ(Tq).

Remark

We say that ρ is odd if the determinant of every complex
conjugation is −1. In our case, K is totally complex and we regard
ρ automatically as odd.
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GL2(K ) acts on the hyperbolic 3-space H3 via the embedding
GL2(K ) ↪→ GL2(K ⊗ R) ' GL2(C). Fix an ideal N ⊆ ZK and
define the compact open subgroup

U0(N) :=

{
γ ∈ GL2(ẐK ) : γ ≡

(
∗ ∗
0 ∗

)
mod N

}
.

The locally symmetric space

Y0(N) = GL2(K )\
((

GL2(Af
K )/U0(N)

)
×H3

)
is in this particular case just a Riemannian 3-fold

Y0(N) = Γ0(N)\H3,

where Γ0(N) is the usual congruence subgroup Γ0(N) of the
modular group GL2(ZK ).
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For i ∈ {1, 2} consider the i-th cohomology group H i (Y0(N),C).
For any prime q coprime to the level N, we can construct a linear
endomorphism Tq of H i (Y0(N),C), called a Hecke operator. Let

T(i)
C (N) be the commutative Z-algebra generated by these Hecke

operators inside the endomorphism algebra of H i (Y0(N),C).
A complex eigenform f over K of degree i and level N is a ring

homomorphism f : T(i)
C (N)→ C.

values of f generate a # field Qf .

f is trivial if f (Tq) = Norm(q) + 1, ∀q - N
f , g are equivalent if f (Tq) = g(Tq), for almost all q. f , g
are allowed to have different degrees and levels.

f is called new if it is not equivalent to one whose level is a
proper divisor of N.
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If p is a rational prime unramified in K and coprime to the level,
H i
(
Y0(N),Fp

)
also comes equipped ith Hecke operators Tq where

q - pN. They form an algebra T(i)

Fp
. A (weight 2) mod p

eigenform f over K of degree i and level N is a ring

homomorphism f : T(i)

Fp
(N)→ Fp.

Definition

We say that a mod p eigenform θ, of level N, lifts to a complex
eigenform if there exists a complex eigenform f , of the same degree
and level and a prime ideal p of Qf over p such that for every
prime q of K coprime to pN we have θ(Tq) = f (Tq) (mod p).
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