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Motivation

Fermat’s Last Theorem
The only solutions (a, b, c) to the equation

xp + yp + zp = 0, a, b, c ∈ Z p ≥ 3 prime

satisfy abc = 0.

Theorem (Jarvis–Meekin)

The only solutions (a, b, c) to the equation

xp + yp + zp = 0, a, b, c ∈ Q(
√

2), p ≥ 5 prime

satisfy abc = 0.



Motivation

Fermat’s Last Theorem
The only solutions (a, b, c) to the equation

xp + yp + zp = 0, a, b, c ∈ Z p ≥ 3 prime

satisfy abc = 0.

Theorem (Jarvis–Meekin)

The only solutions (a, b, c) to the equation

xp + yp + zp = 0, a, b, c ∈ Q(
√

2), p ≥ 5 prime

satisfy abc = 0.



Motivation

Theorem (Wiles, Taylor–Wiles)

Semistable elliptic curves over Q are modular.

Theorem (Breuil–Conrad–Diamond–Taylor)

All elliptic curves over Q are modular.

Theorem (Jarvis–Manoharmayum)

Semistable elliptic curves over Q(
√

2) are modular.

Definition
Let E be an elliptic curve over a totally real field K . We say that
E is modular if there is a Hilbert eigenform f over K of parallel
weight 2 and rational coefficients such that

L(E , s) = L(f, s)
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Motivation – proof of FLT:
Suppose a, b, c ∈ Z and p ≥ 5 satisfy

ap + bp + cp = 0, abc 6= 0, gcd(a, b, c) = 1.

Following Frey, let

E : y2 = x(x − ap)(x + bp).

Then
∆ = 16a2pb2pc2p, N = 2? ·

∏
`|abc
`6=2

`.

Write ρ̄p for the mod p representation attached to E . Define

N(ρp) =
N

Mp
, Mp =

∏
`||N

p|υ`(∆)

`.

By Wiles E is modular. By Mazur, ρp is irreducible. By Ribet’s
level lowering: ρp arises from a newform of weight 2 and level
N(ρp) = 2. There are no newforms of weight 2 and level 2!!
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Motivation

Question: Can the modular method be applied to the Fermat
equation over more number fields?

Question: Let d > 0 be a squarefree integer. Can we say anything
about the Fermat equation over Q(

√
d)?

Question: Can we prove modularity of the Frey curves over
Q(
√
d)?

These questions for quadratic fields were analysed by Jarvis and
Meekin. They find that

“. . . the numerology required to generalise the work of
Ribet and Wiles directly continues to hold for
Q(
√

2). . . there are no other real quadratic fields for
which this is true . . . ”
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What is the “required numerology” ?
The Fermat equation with exponent p over K is the equation

ap + bp + cp = 0, a, b, c ∈ OK .

We say (a, b, c) is trivial if abc = 0, otherwise non-trivial.

Let K be totally real and (a, b, c) a non-trivial solution over K .
Define the Frey curve

E := E(a,b,c) : y2 = x(x − ap)(x + bp)

1) E is not known to be modular. E is not semistable.

2) Suppose E is modular. After level lowering we obtain

ρ̄E ,p ∼ ρ̄f ,p for some p | p,

and we want f to be of level independent of the solution.

3) The final spaces of Hilbert newforms may be non-empy.
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Notation and Eichler-Shimura

Conjecture (“Eichler–Shimura”)

Let K be a totally real field. Let f be a Hilbert newform of level N
and parallel weight 2, and write Qf for its field of coefficients.
Suppose that Qf = Q. Then there is an elliptic curve Ef/K with
conductor N having the same L-function as f.

For K a totally real field let

S = {P : P is a prime of K above 2},
T = {P ∈ S : f (P/2) = 1}, U = {P ∈ S : 3 - ordP(2)},

where f (P/2) denotes the residual degree of P. We now do the
following assumption on K :

(ES)


either [K : Q] is odd;
or T 6= ∅;
the Conjecture above holds for K .
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Results – Fermat over totally real fields

Theorem (F.–Siksek)

Let K be a totally real field satisfying assumption (ES). Let S, T
and U be as before. Write O∗S for the set of S-units of K. Suppose
that for every solution (λ, µ) to the S-unit equation

λ+ µ = 1, λ, µ ∈ O∗S .

there is

(A) either some P ∈ T that satisfies

max{|ordP(λ)|, |ordP(µ)|} ≤ 4 ordP(2), (1)

(B) or some P ∈ U that satisfies both (3) and

ordP(λµ) ≡ ordP(2) (mod 3).

Then there is some constant BK such that for all p > BK , the
Fermat equation with exponent p has no non-trivial solutions.



Results – Fermat over real quadratic fields

Theorem (F.–Siksek)

Let d ≥ 2 be squarefree, satisfying one of the following conditions

(i) d ≡ 3 (mod 8),

(ii) d ≡ 6 or 10 (mod 16),

(iii) d ≡ 2 (mod 16) and d has a prime divisor q ≡ 5 or 7
(mod 8),

(iv) d ≡ 14 (mod 16) and d has some prime divisor q ≡ 3 or 5
(mod 8).

Write K = Q(
√
d). Then there is an effectively computable

constant BK such that for all primes p > BK , the Fermat equation
with exponent p has no non-trivial solutions.

Moreover, for d > 5 satisfying d ≡ 5 (mod 8), supposing that K
satisfies assumption (ES), the same conclusion holds.
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Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions (2,−1),
(−1, 2) and (1/2, 1/2). These always satisfy (A) if T 6= ∅ and (B)
if U 6= ∅. We call them irrelevant solutions.

Let d 6≡ 1 (mod 8) be squarefree. We computed the relevant
solutions to the S-unit equation over Q(

√
d):

d relevant elements of ΛS up to extra conditions
the action of S3 and Galois conjugation

d = 2
(
√

2, 1−
√

2), (−16 + 12
√

2, 17− 12
√

2),

(4 + 2
√

2,−3 + 2
√

2), (−2 + 2
√

2, 3− 2
√

2)

d = 3 (2 +
√

3,−1−
√

3), (8 + 4
√

3,−7− 4
√

3)

d = 5

(
(1 +
√

5)/2, (1−
√

5)/2
)

, (−8 + 4
√

5, 9− 4
√

5),

(−1 +
√

5, 2−
√

5)

d = 6 (−4 + 2
√

6, 5− 2
√

6)
d ≡ 3 (mod 8)

none
d 6= 3

d ≡ 5 (mod 8)
none

d 6= 5

d ≡ 7 (mod 8) (22s+1 + 2s+1w
√
d, 1− 22s+1 − 2s+1w

√
d)

4s − 1 = dw2

s ≥ 2, w 6= 0

d ≡ 2 (mod 16)
(−22s + 2sw

√
d, 1 + 22s − 2sw

√
d)

4s + 2 = dw2

d 6= 2 s ≥ 2, w 6= 0
d ≡ 6 (mod 16)

none
d 6= 6

d ≡ 10 (mod 16) none

d ≡ 14 (mod 16) (22s + 2sw
√

d, 1− 22s − 2sw
√
d)

4s − 2 = dw2

s ≥ 2, w 6= 0



Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions (2,−1),
(−1, 2) and (1/2, 1/2). These always satisfy (A) if T 6= ∅ and (B)
if U 6= ∅. We call them irrelevant solutions.
Let d 6≡ 1 (mod 8) be squarefree. We computed the relevant
solutions to the S-unit equation over Q(

√
d):

d relevant elements of ΛS up to extra conditions
the action of S3 and Galois conjugation

d = 2
(
√

2, 1−
√

2), (−16 + 12
√

2, 17− 12
√

2),

(4 + 2
√

2,−3 + 2
√

2), (−2 + 2
√

2, 3− 2
√

2)

d = 3 (2 +
√

3,−1−
√

3), (8 + 4
√

3,−7− 4
√

3)

d = 5

(
(1 +
√

5)/2, (1−
√

5)/2
)

, (−8 + 4
√

5, 9− 4
√

5),

(−1 +
√

5, 2−
√

5)

d = 6 (−4 + 2
√

6, 5− 2
√

6)
d ≡ 3 (mod 8)

none
d 6= 3

d ≡ 5 (mod 8)
none

d 6= 5

d ≡ 7 (mod 8) (22s+1 + 2s+1w
√
d, 1− 22s+1 − 2s+1w

√
d)

4s − 1 = dw2

s ≥ 2, w 6= 0

d ≡ 2 (mod 16)
(−22s + 2sw

√
d, 1 + 22s − 2sw

√
d)

4s + 2 = dw2

d 6= 2 s ≥ 2, w 6= 0
d ≡ 6 (mod 16)

none
d 6= 6

d ≡ 10 (mod 16) none

d ≡ 14 (mod 16) (22s + 2sw
√

d, 1− 22s − 2sw
√
d)

4s − 2 = dw2

s ≥ 2, w 6= 0



Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions (2,−1),
(−1, 2) and (1/2, 1/2). These always satisfy (A) if T 6= ∅ and (B)
if U 6= ∅. We call them irrelevant solutions.
Let d 6≡ 1 (mod 8) be squarefree. We computed the relevant
solutions to the S-unit equation over Q(

√
d):

d relevant elements of ΛS up to extra conditions
the action of S3 and Galois conjugation

d = 2
(
√

2, 1−
√

2), (−16 + 12
√

2, 17− 12
√

2),

(4 + 2
√

2,−3 + 2
√

2), (−2 + 2
√

2, 3− 2
√

2)

d = 3 (2 +
√

3,−1−
√

3), (8 + 4
√

3,−7− 4
√

3)

d = 5

(
(1 +
√

5)/2, (1−
√

5)/2
)

, (−8 + 4
√

5, 9− 4
√

5),

(−1 +
√

5, 2−
√

5)

d = 6 (−4 + 2
√

6, 5− 2
√

6)
d ≡ 3 (mod 8)

none
d 6= 3

d ≡ 5 (mod 8)
none

d 6= 5

d ≡ 7 (mod 8) (22s+1 + 2s+1w
√
d, 1− 22s+1 − 2s+1w

√
d)

4s − 1 = dw2

s ≥ 2, w 6= 0

d ≡ 2 (mod 16)
(−22s + 2sw

√
d, 1 + 22s − 2sw

√
d)

4s + 2 = dw2

d 6= 2 s ≥ 2, w 6= 0
d ≡ 6 (mod 16)

none
d 6= 6

d ≡ 10 (mod 16) none

d ≡ 14 (mod 16) (22s + 2sw
√
d, 1− 22s − 2sw

√
d)

4s − 2 = dw2

s ≥ 2, w 6= 0



Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions (2,−1),
(−1, 2) and (1/2, 1/2). These always satisfy (A) if T 6= ∅ and (B)
if U 6= ∅. We call them irrelevant solutions.
Let d 6≡ 1 (mod 8) be squarefree. We computed the relevant
solutions to the S-unit equation over Q(

√
d):

d relevant elements of ΛS up to extra conditions
the action of S3 and Galois conjugation

d = 2
(
√

2, 1−
√

2), (−16 + 12
√

2, 17− 12
√

2),

(4 + 2
√

2,−3 + 2
√

2), (−2 + 2
√

2, 3− 2
√

2)

d = 3 (2 +
√

3,−1−
√

3), (8 + 4
√

3,−7− 4
√

3)

d = 5

(
(1 +
√

5)/2, (1−
√

5)/2
)

, (−8 + 4
√

5, 9− 4
√

5),

(−1 +
√

5, 2−
√

5)

d = 6 (−4 + 2
√

6, 5− 2
√

6)
d ≡ 3 (mod 8)

none
d 6= 3

d ≡ 5 (mod 8)
none

d 6= 5

d ≡ 7 (mod 8) (22s+1 + 2s+1w
√
d, 1− 22s+1 − 2s+1w

√
d)

4s − 1 = dw2

s ≥ 2, w 6= 0

d ≡ 2 (mod 16)
(−22s + 2sw

√
d, 1 + 22s − 2sw

√
d)

4s + 2 = dw2

d 6= 2 s ≥ 2, w 6= 0
d ≡ 6 (mod 16)

none
d 6= 6

d ≡ 10 (mod 16) none

d ≡ 14 (mod 16) (22s + 2sw
√
d, 1− 22s − 2sw

√
d)

4s − 2 = dw2

s ≥ 2, w 6= 0



1) Modularity of the Frey curves

After progress with modularity lifting by Gee, Barnet-Lamb,
Geraghty, Breuil, Diamond, . . .

Theorem (Le Hung–F.–Siksek)

Let K be a totally real field. There are at most finitely many
j-invariants of elliptic curves over K that are non-modular.

Corollary

There is some constant AK , depending only on K, such that for
p ≥ AK the Frey curve E : Y 2 = X (X − ap)(X + bp) is modular.

Theorem (Le Hung–F.–Siksek)

Let C/K be a an elliptic curve over a real quadratic field K. Then
C is modular over K.
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Back to the original proof

N(ρp) =
N

Mp
, Mp =

∏
`||N

p|υ`(∆)

`.

Let q 6= 2 be a prime. Suppose a, b, c ∈ Z satisfy

ap + bp + cp = 0, abc 6= 0, gcd(a, b, c) = (q).

Let
E : y2 = x(x − ap)(x + bp).

By Tate’s algorithm, E has additive reduction at q. So q2 || N.
Thus N(ρp) = 2q2.

Number of newforms of weight 2 and level 2q2 is roughly q2/6.

Fortunate Fact: h(Q) = 1.
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Class Group
Let K be a totally real number field.

Convention: Choose prime ideals p1, . . . , ph - 6 that are
representatives for the class group Cl(K ) and have smallest
possible norm.

Suppose (a, b, c) is a solution to the Fermat equation

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0.

Write gcd(a, b, c) = aOK + bOK + cOK . Then, in Cl(K )

[gcd(a, b, c)] = [pi ], for some i .

By appropriate scaling gcd(a, b, c) = pi for some i .

Then, by Tate’s algorithm the conductor of the Frey curve is

N = p2
i ·
∏
P|2

PuP ·
∏
q-2pi

q, thus N(ρp) = p2
i ·
∏
P|2

PuP .
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Level Lowering—after Fujiwara, Jarvis and Rajaei
Let E/K an elliptic curve of conductor N . Denote by ∆q the
discriminant of a local minimal model for E at q. Let

Mp :=
∏
q‖N ,

p|ordq(∆q)

q, N(ρ̄E ,p) :=
N
Mp

. (2)

Theorem (Level Lowering recipe)

With the above notation, suppose the following

(i) p ≥ 5 and p is unramified in K,

(ii) E is modular,

(iii) ρE ,p is irreducible,

(iv) E is semistable at all p | p,

(v) p | ordp(∆p) for all p | p.

Then, there is a Hilbert eigenform f of parallel weight 2 that is new
at level N(ρ̄E ,p) and some λ | p in Qf such that ρE ,p ∼ ρf,λ.
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Level Lowering for the Frey curves

Recall that to a solution of

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0,

we associate the Frey curve E : Y 2 = X (X − ap)(X + bp).

Write ρp for the representation arising from the p-torsion of E .

Fact
There is a constant C ′K such that ρp is irreducible for all p > C ′K .

Corollary (of Level Lowering)

There is some constant BK such that if p > BK then ρp arises
from a Hilbert eigenform f of level N(ρp).

Theorem
Let K be a totally real field satisfying assumption (ES). There is a
constant CK such that for p > CK then f corresponds to an elliptic
curve E ′ defined over K with full 2-torsion.



Level Lowering for the Frey curves

Recall that to a solution of

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0,

we associate the Frey curve E : Y 2 = X (X − ap)(X + bp).

Write ρp for the representation arising from the p-torsion of E .

Fact
There is a constant C ′K such that ρp is irreducible for all p > C ′K .

Corollary (of Level Lowering)

There is some constant BK such that if p > BK then ρp arises
from a Hilbert eigenform f of level N(ρp).

Theorem
Let K be a totally real field satisfying assumption (ES). There is a
constant CK such that for p > CK then f corresponds to an elliptic
curve E ′ defined over K with full 2-torsion.



Level Lowering for the Frey curves

Recall that to a solution of

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0,

we associate the Frey curve E : Y 2 = X (X − ap)(X + bp).

Write ρp for the representation arising from the p-torsion of E .

Fact
There is a constant C ′K such that ρp is irreducible for all p > C ′K .

Corollary (of Level Lowering)

There is some constant BK such that if p > BK then ρp arises
from a Hilbert eigenform f of level N(ρp).

Theorem
Let K be a totally real field satisfying assumption (ES). There is a
constant CK such that for p > CK then f corresponds to an elliptic
curve E ′ defined over K with full 2-torsion.



Level Lowering for the Frey curves

Recall that to a solution of

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0,

we associate the Frey curve E : Y 2 = X (X − ap)(X + bp).

Write ρp for the representation arising from the p-torsion of E .

Fact
There is a constant C ′K such that ρp is irreducible for all p > C ′K .

Corollary (of Level Lowering)

There is some constant BK such that if p > BK then ρp arises
from a Hilbert eigenform f of level N(ρp).

Theorem
Let K be a totally real field satisfying assumption (ES). There is a
constant CK such that for p > CK then f corresponds to an elliptic
curve E ′ defined over K with full 2-torsion.



Level Lowering for the Frey curves

Recall that to a solution of

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0,

we associate the Frey curve E : Y 2 = X (X − ap)(X + bp).

Write ρp for the representation arising from the p-torsion of E .

Fact
There is a constant C ′K such that ρp is irreducible for all p > C ′K .

Corollary (of Level Lowering)

There is some constant BK such that if p > BK then ρp arises
from a Hilbert eigenform f of level N(ρp).

Theorem
Let K be a totally real field satisfying assumption (ES). There is a
constant CK such that for p > CK then f corresponds to an elliptic
curve E ′ defined over K with full 2-torsion.



Elliptic Curves with Full 2-Torsion

Corollary

For p > CK then there is an elliptic curve E ′/K of conductor
N(ρp) with full 2-torsion such that

ρp ∼ ρ′p

where ρ′p arises from the p-torsion of E ′.

Objective: We want to control elliptic curves E ′ with full 2-torsion
and conductor

N(ρp) = p2 ·
∏
P|2

PuP , p ∈ {p1, . . . , ph}.

We can write E ′ as

E ′ : y2 = x(x − r)(x + s), r + s + t = 0, r , s, t ∈ OK\{0}.
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Elliptic Curves with Full 2-Torsion

We want elliptic curves E ′ with full 2-torsion and conductor

N(ρp) = p2 ·
∏
P|2

PuP , p ∈ {p1, . . . , ph}.

E ′ : y2 = x(x − r)(x + s), r + s + t = 0, r , s, t ∈ OK\{0}.

Write

(r) = pα·
∏

qλq ·
∏
P|2

P? (s) = pβ·
∏

qµq ·
∏
P|2

P? (t) = pγ ·
∏

qνq ·
∏
P|2

P?

where q - (2) · p. From Tate’s Algorithm:

For all q,
λq = µq = νq ∈ 2Z.

min{α, β, γ} ∈ 2Z + 1.
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Then

(r) = p ·
(
pu ·

∏
qδq
)2∏

P|2

P?.

Hence
[p] = [a]2

∏
P|2

[P]? in Cl(K ).
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2) Removing the dependence of N(ρp) on the solution
Started with (a, b, c) a solution to the Fermat equation

ap + bp + cp = 0, a, b, c ∈ OK , abc 6= 0.

Noted that in Cl(K )

[gcd(a, b, c)] = [p],

where p is one of the representatives p1, . . . , ph of Cl(K ).
We scaled a, b, c so that gcd(a, b, c) = p.
We found (for p > CK ) [gcd(a, b, c)] = [p] = [a]2

∏
P|2[P]?.

Thus

[gcd(a, b, c)] = [p′]2
∏
P|2

[P]?, p′ ∈ {p1, . . . , ph}.

Can rescale (a, b, c) so that

gcd(a, b, c) = p′
2
∏
P|2

P?.
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We scaled a, b, c so that gcd(a, b, c) = p.

We found (for p > CK ) [gcd(a, b, c)] = [p] = [a]2
∏

P|2[P]?.
Thus

[gcd(a, b, c)] = [p′]2
∏
P|2

[P]?, p′ ∈ {p1, . . . , ph}.

Can rescale (a, b, c) so that

gcd(a, b, c) = p′
2
∏
P|2

P?.
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Corollary (of Level Lowering)

There is a constant DK such that for p > DK there is an elliptic
curve E ′/K of conductor N(ρp) =

∏
P|2 P

? with full 2-torsion such
that

ρp ∼ ρ′p
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3) Non-empty space of newforms at level N(ρp)

We have ρp ∼ ρ′p for some E ′ with full 2-torsion and good
reduction outside primes dividing 2.

Question: Are there candidates for E ′?

Unfortunately, yes. For example, we can get candidates from
‘solutions’:

solutions satisfying abc = 0 (gives singular E ′)

1p + ωp + (ω2)p = 0 (gives E ′ of conductor 144)

1p + 1p = 2× 1p (TROUBLE!!)

E ′ : y2 = x(x − 1)(x + 1) (32A2), j = 1728.

has conductor
∏

P|2 P
?.

Question: Can we rule out ρp ∼ ρ′p?
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Candidates for E ′

Suppose T 6= ∅: there exists P | 2 in K such that f (P/2) = 1,
i.e. OK/P = F2.

As ap + bp + cp = 0, one of υP(ap), υP(bp), υP(cp) is much
larger than the others. Write E = Ea,b,c . Then, for large p,

- we have ordP(j(E )) < 0, hence E/KP is a Tate curve (after
possibly taking a quadratic extension)

- and p - ordP(j(E )), hence p | #ρE ,p(IP).

On the other hand,

- The curve E ′ has potentially good reduction at P;

Hence, ρE ′,p(IP) has order 1, 2, 3, 4, 6 or 24;

This gives a contradiction for p ≥ 5!
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Candidates for E ′

Theorem
Let K be a totally real field satisfying assumption (ES). There is a
constant BK depending only on K such that the following hold.
Let (a, b, c) be a non-trivial solution to the Fermat equation with
prime exponent p > BK . Then, after proper rescaling, there is an
elliptic curve E ′ over K such that

(i) the conductor of E ′ is divisible only by primes in S;

(ii) #E ′(K )[2] = 4;

(iii) ρE ,p ∼ ρE ′,p;

Write j ′ for the j-invariant of E ′. Then,

(a) for P ∈ T, we have ordP(j ′) < 0;

(b) for P ∈ U, we have either ordP(j ′) < 0 or 3 - ordP(j ′).



Results – Fermat over totally real fields

Theorem (F.–Siksek)

Let K be a totally real field satisfying assumption (ES). Let S, T
and U be as before. Write O∗S for the set of S-units of K. Suppose
that for every solution (λ, µ) to the S-unit equation

λ+ µ = 1, λ, µ ∈ O∗S .

there is

(A) either some P ∈ T that satisfies

max{|ordP(λ)|, |ordP(µ)|} ≤ 4 ordP(2), (3)

(B) or some P ∈ U that satisfies both (3) and

ordP(λµ) ≡ ordP(2) (mod 3).

Then there is some constant BK such that for all p > BK , the
Fermat equation with exponent p has no non-trivial solutions.



Results – a density theorem
For a subset U ⊆ Nsf , define the relative density of U as

δrel(U) = lim
X→∞

#{d ∈ U : d ≤ X}
#{d ∈ Nsf : d ≤ X}

.

Define also

C = {d ∈ Nsf : the S-unit equation has no relevant solutions in Q(
√
d)}

D = {d ∈ C : d 6≡ 5 (mod 8)}.

Theorem
Let C and D be as above. Then

δrel(C) = 1, δrel(D) =
5

6
. (4)

Furthermore, if d ∈ D and K = Q(
√
d), then there is some

effectively computable BK such that for p > BK the Fermat
equation has no non-trivial solutions with exponent p. The same
conclusion holds for d ∈ C if we assume (ES).
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The End!


