The Fermat Equation over Totally Real Fields

Nuno Freitas
joint work with Samir Siksek
Universität Bayreuth
January 2014

Motivation

Fermat's Last Theorem
The only solutions (a, b, c) to the equation

$$
x^{p}+y^{p}+z^{p}=0, \quad a, b, c \in \mathbb{Z} \quad p \geq 3 \text { prime }
$$

satisfy $a b c=0$.

Motivation

Fermat's Last Theorem
The only solutions (a, b, c) to the equation

$$
x^{p}+y^{p}+z^{p}=0, \quad a, b, c \in \mathbb{Z} \quad p \geq 3 \text { prime }
$$

satisfy $a b c=0$.
Theorem (Jarvis-Meekin)
The only solutions (a, b, c) to the equation

$$
x^{p}+y^{p}+z^{p}=0, \quad a, b, c \in \mathbb{Q}(\sqrt{2}), \quad p \geq 5 \text { prime }
$$

satisfy $a b c=0$.

Motivation

Theorem (Wiles, Taylor-Wiles)
Semistable elliptic curves over \mathbb{Q} are modular.

Motivation

Theorem (Wiles, Taylor-Wiles)
Semistable elliptic curves over \mathbb{Q} are modular.
Theorem (Breuil-Conrad-Diamond-Taylor)
All elliptic curves over \mathbb{Q} are modular.

Motivation

Theorem (Wiles, Taylor-Wiles)
Semistable elliptic curves over \mathbb{Q} are modular.
Theorem (Breuil-Conrad-Diamond-Taylor)
All elliptic curves over \mathbb{Q} are modular.
Theorem (Jarvis-Manoharmayum)
Semistable elliptic curves over $\mathbb{Q}(\sqrt{2})$ are modular.

Definition

Let E be an elliptic curve over a totally real field K. We say that E is modular if there is a Hilbert eigenform \mathfrak{f} over K of parallel weight 2 and rational coefficients such that

$$
L(E, s)=L(\mathfrak{f}, s)
$$

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

Write $\bar{\rho}_{p}$ for the $\bmod p$ representation attached to E. Define

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell
$$

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

Write $\bar{\rho}_{p}$ for the $\bmod p$ representation attached to E. Define

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

By Wiles E is modular.

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

Write $\bar{\rho}_{p}$ for the $\bmod p$ representation attached to E. Define

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\rho}(\Delta)}} \ell .
$$

By Wiles E is modular. By Mazur, $\bar{\rho}_{p}$ is irreducible.

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell .
$$

Write $\bar{\rho}_{p}$ for the $\bmod p$ representation attached to E. Define

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell
$$

By Wiles E is modular. By Mazur, $\bar{\rho}_{p}$ is irreducible. By Ribet's level lowering: $\bar{\rho}_{p}$ arises from a newform of weight 2 and level $N\left(\bar{\rho}_{p}\right)=2$.

Motivation - proof of FLT:

Suppose $a, b, c \in \mathbb{Z}$ and $p \geq 5$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1
$$

Following Frey, let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Then

$$
\Delta=16 a^{2 p} b^{2 p} c^{2 p}, \quad N=2^{?} \cdot \prod_{\substack{\ell \mid a b c \\ \ell \neq 2}} \ell
$$

Write $\bar{\rho}_{p}$ for the $\bmod p$ representation attached to E. Define

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

By Wiles E is modular. By Mazur, $\bar{\rho}_{p}$ is irreducible. By Ribet's level lowering: $\bar{\rho}_{p}$ arises from a newform of weight 2 and level $N\left(\bar{\rho}_{p}\right)=2$. There are no newforms of weight 2 and level $2!!$

Motivation

Question: Can the modular method be applied to the Fermat equation over more number fields?

Motivation

Question: Can the modular method be applied to the Fermat equation over more number fields?

Question: Let $d>0$ be a squarefree integer. Can we say anything about the Fermat equation over $\mathbb{Q}(\sqrt{d})$?

Motivation

Question: Can the modular method be applied to the Fermat equation over more number fields?

Question: Let $d>0$ be a squarefree integer. Can we say anything about the Fermat equation over $\mathbb{Q}(\sqrt{d})$?

Question: Can we prove modularity of the Frey curves over $\mathbb{Q}(\sqrt{d})$?

Motivation

Question: Can the modular method be applied to the Fermat equation over more number fields?

Question: Let $d>0$ be a squarefree integer. Can we say anything about the Fermat equation over $\mathbb{Q}(\sqrt{d})$?

Question: Can we prove modularity of the Frey curves over $\mathbb{Q}(\sqrt{d})$?

These questions for quadratic fields were analysed by Jarvis and Meekin. They find that
". . . the numerology required to generalise the work of Ribet and Wiles directly continues to hold for $\mathbb{Q}(\sqrt{2}) \ldots$ there are no other real quadratic fields for which this is true..."

What is the "required numerology" ?

The Fermat equation with exponent p over K is the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}
$$

We say (a, b, c) is trivial if $a b c=0$, otherwise non-trivial.

What is the "required numerology" ?

The Fermat equation with exponent p over K is the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}
$$

We say (a, b, c) is trivial if $a b c=0$, otherwise non-trivial. Let K be totally real and (a, b, c) a non-trivial solution over K. Define the Frey curve

$$
E:=E_{(a, b, c)}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

What is the "required numerology" ?

The Fermat equation with exponent p over K is the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}
$$

We say (a, b, c) is trivial if $a b c=0$, otherwise non-trivial. Let K be totally real and (a, b, c) a non-trivial solution over K. Define the Frey curve

$$
E:=E_{(a, b, c)}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

1) E is not known to be modular. E is not semistable.

What is the "required numerology" ?

The Fermat equation with exponent p over K is the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}
$$

We say (a, b, c) is trivial if $a b c=0$, otherwise non-trivial. Let K be totally real and (a, b, c) a non-trivial solution over K. Define the Frey curve

$$
E:=E_{(a, b, c)}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

1) E is not known to be modular. E is not semistable.
2) Suppose E is modular. After level lowering we obtain

$$
\bar{\rho}_{E, p} \sim \bar{\rho}_{f, \mathfrak{p}} \quad \text { for some } \mathfrak{p} \mid p
$$

and we want f to be of level independent of the solution.

What is the "required numerology" ?

The Fermat equation with exponent p over K is the equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K} .
$$

We say (a, b, c) is trivial if $a b c=0$, otherwise non-trivial. Let K be totally real and (a, b, c) a non-trivial solution over K. Define the Frey curve

$$
E:=E_{(a, b, c)}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

1) E is not known to be modular. E is not semistable.
2) Suppose E is modular. After level lowering we obtain

$$
\bar{\rho}_{E, p} \sim \bar{\rho}_{f, \mathfrak{p}} \quad \text { for some } \mathfrak{p} \mid p
$$

and we want f to be of level independent of the solution.
3) The final spaces of Hilbert newforms may be non-empy.

Notation and Eichler-Shimura

Conjecture ("Eichler-Shimura")

Let K be a totally real field. Let \mathfrak{f} be a Hilbert newform of level \mathcal{N} and parallel weight 2 , and write \mathbb{Q}_{f} for its field of coefficients. Suppose that $\mathbb{Q}_{\mathfrak{f}}=\mathbb{Q}$. Then there is an elliptic curve $E_{\mathfrak{f}} / K$ with conductor \mathcal{N} having the same L-function as \mathfrak{f}.

Notation and Eichler-Shimura

Conjecture ("Eichler-Shimura")

Let K be a totally real field. Let \mathfrak{f} be a Hilbert newform of level \mathcal{N} and parallel weight 2 , and write $\mathbb{Q}_{\mathcal{f}}$ for its field of coefficients. Suppose that $\mathbb{Q}_{\mathrm{f}}=\mathbb{Q}$. Then there is an elliptic curve E_{f} / K with conductor \mathcal{N} having the same L -function as \mathfrak{f}.

For K a totally real field let

$$
\begin{gathered}
S=\{\mathfrak{P}: \mathfrak{P} \text { is a prime of } K \text { above } 2\}, \\
T=\{\mathfrak{P} \in S: f(\mathfrak{P} / 2)=1\}, \quad U=\left\{\mathfrak{P} \in S: 3 \nmid \operatorname{ord}_{\mathfrak{P}}(2)\right\},
\end{gathered}
$$

where $f(\mathfrak{P} / 2)$ denotes the residual degree of \mathfrak{P}.

Notation and Eichler-Shimura

Conjecture ("Eichler-Shimura")

Let K be a totally real field. Let \mathfrak{f} be a Hilbert newform of level \mathcal{N} and parallel weight 2 , and write $\mathbb{Q}_{\mathfrak{f}}$ for its field of coefficients. Suppose that $\mathbb{Q}_{\mathrm{f}}=\mathbb{Q}$. Then there is an elliptic curve E_{f} / K with conductor \mathcal{N} having the same L -function as \mathfrak{f}.

For K a totally real field let

$$
\begin{gathered}
S=\{\mathfrak{P}: \mathfrak{P} \text { is a prime of } K \text { above } 2\}, \\
T=\{\mathfrak{P} \in S: f(\mathfrak{P} / 2)=1\}, \quad U=\left\{\mathfrak{P} \in S: 3 \nmid \operatorname{ord}_{\mathfrak{F}}(2)\right\},
\end{gathered}
$$

where $f(\mathfrak{P} / 2)$ denotes the residual degree of \mathfrak{P}. We now do the following assumption on K :
(ES) $\quad\left\{\begin{array}{l}\text { either }[K: \mathbb{Q}] \text { is odd; } \\ \text { or } T \neq \emptyset ; \\ \text { the Conjecture above holds for } K .\end{array}\right.$

Results - Fermat over totally real fields

Theorem (F.-Siksek)
Let K be a totally real field satisfying assumption (ES). Let S, T and U be as before. Write \mathcal{O}_{S}^{*} for the set of S-units of K. Suppose that for every solution (λ, μ) to the S-unit equation

$$
\lambda+\mu=1, \quad \lambda, \mu \in \mathcal{O}_{S}^{*} .
$$

there is
(A) either some $\mathfrak{P} \in T$ that satisfies

$$
\begin{equation*}
\max \left\{\left|\operatorname{ord}_{\mathfrak{P}}(\lambda)\right|,\left|\operatorname{ord}_{\mathfrak{P}}(\mu)\right|\right\} \leq 4 \operatorname{ord}_{\mathfrak{P}}(2), \tag{1}
\end{equation*}
$$

(B) or some $\mathfrak{P} \in U$ that satisfies both (3) and

$$
\operatorname{ord}_{\mathfrak{P}}(\lambda \mu) \equiv \operatorname{ord}_{\mathfrak{P}}(2) \quad(\bmod 3)
$$

Then there is some constant B_{K} such that for all $p>B_{K}$, the Fermat equation with exponent p has no non-trivial solutions.

Results - Fermat over real quadratic fields

Theorem (F.-Siksek)

Let $d \geq 2$ be squarefree, satisfying one of the following conditions
(i) $d \equiv 3(\bmod 8)$,
(ii) $d \equiv 6$ or $10(\bmod 16)$,
(iii) $d \equiv 2(\bmod 16)$ and d has a prime divisor $q \equiv 5$ or 7 $(\bmod 8)$,
(iv) $d \equiv 14(\bmod 16)$ and d has some prime divisor $q \equiv 3$ or 5 $(\bmod 8)$.
Write $K=\mathbb{Q}(\sqrt{d})$. Then there is an effectively computable constant B_{K} such that for all primes $p>B_{K}$, the Fermat equation with exponent p has no non-trivial solutions.

Results - Fermat over real quadratic fields

Theorem (F.-Siksek)

Let $d \geq 2$ be squarefree, satisfying one of the following conditions
(i) $d \equiv 3(\bmod 8)$,
(ii) $d \equiv 6$ or $10(\bmod 16)$,
(iii) $d \equiv 2(\bmod 16)$ and d has a prime divisor $q \equiv 5$ or 7 $(\bmod 8)$,
(iv) $d \equiv 14(\bmod 16)$ and d has some prime divisor $q \equiv 3$ or 5 $(\bmod 8)$.
Write $K=\mathbb{Q}(\sqrt{d})$. Then there is an effectively computable constant B_{K} such that for all primes $p>B_{K}$, the Fermat equation with exponent p has no non-trivial solutions.
Moreover, for $d>5$ satisfying $d \equiv 5(\bmod 8)$, supposing that K satisfies assumption (ES), the same conclusion holds.

Solutions to the S-unit equation over real quadratic fields.
For any totally real field K there are the rational solutions $(2,-1)$, $(-1,2)$ and $(1 / 2,1 / 2)$. These always satisfy (A) if $T \neq \emptyset$ and (B) if $U \neq \emptyset$. We call them irrelevant solutions.

Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions $(2,-1)$, $(-1,2)$ and $(1 / 2,1 / 2)$. These always satisfy (A) if $T \neq \emptyset$ and (B) if $U \neq \emptyset$. We call them irrelevant solutions.
Let $d \not \equiv 1(\bmod 8)$ be squarefree. We computed the relevant solutions to the S-unit equation over $\mathbb{Q}(\sqrt{d})$:

Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions $(2,-1)$, $(-1,2)$ and $(1 / 2,1 / 2)$. These always satisfy (A) if $T \neq \emptyset$ and (B) if $U \neq \emptyset$. We call them irrelevant solutions.
Let $d \not \equiv 1(\bmod 8)$ be squarefree. We computed the relevant solutions to the S-unit equation over $\mathbb{Q}(\sqrt{d})$:

d	relevant elements of Λ_{S} up to the action of \mathfrak{S}_{3} and Galois conjugation	extra conditions
$d=2$	$\begin{gathered} (\sqrt{2}, 1-\sqrt{2}),(-16+12 \sqrt{2}, 17-12 \sqrt{2}), \\ (4+2 \sqrt{2},-3+2 \sqrt{2}),(-2+2 \sqrt{2}, 3-2 \sqrt{2}) \end{gathered}$	
$d=3$	$(2+\sqrt{3},-1-\sqrt{3}),(8+4 \sqrt{3},-7-4 \sqrt{3})$	
$d=5$	$\begin{gathered} ((1+\sqrt{5}) / 2,(1-\sqrt{5}) / 2),(-8+4 \sqrt{5}, 9-4 \sqrt{5}) \\ (-1+\sqrt{5}, 2-\sqrt{5}) \end{gathered}$	
$d=6$	$(-4+2 \sqrt{6}, 5-2 \sqrt{6})$	
$\begin{gathered} d \equiv 3(\bmod 8) \\ d \neq 3 \end{gathered}$	none	
$\begin{gathered} d \equiv 5(\bmod 8) \\ d \neq 5 \end{gathered}$	none	
$d \equiv 7(\bmod 8)$	$\left(2^{2 s+1}+2^{s+1} w \sqrt{d}, 1-2^{2 s+1}-2^{s+1} w \sqrt{d}\right)$	$\begin{aligned} & 4^{s}-1=d w^{2} \\ & s \geq 2, w \neq 0 \end{aligned}$
$\begin{gathered} d \equiv 2(\bmod 16) \\ d \neq 2 \end{gathered}$	$\left(-2^{2 s}+2^{s} w \sqrt{d}, 1+2^{2 s}-2^{s} w \sqrt{d}\right)$	$\begin{aligned} & 4^{s}+2=d w^{2} \\ & s \geq 2, w \neq 0 \end{aligned}$
$\begin{gathered} d \equiv 6(\bmod 16) \\ d \neq 6 \end{gathered}$	none	
$d \equiv 10(\bmod 16)$	none	
$d \equiv 14(\bmod 16)$	$\left(2^{2 s}+2^{s} w \sqrt{d}, 1-2^{2 s}-2^{s} w \sqrt{d}\right)$	$\begin{gathered} 4^{s}-2=d w^{2} \\ s \geq 2, w \neq 0 \\ \hline \end{gathered}$

Solutions to the S-unit equation over real quadratic fields.

For any totally real field K there are the rational solutions $(2,-1)$, $(-1,2)$ and $(1 / 2,1 / 2)$. These always satisfy (A) if $T \neq \emptyset$ and (B) if $U \neq \emptyset$. We call them irrelevant solutions.
Let $d \not \equiv 1(\bmod 8)$ be squarefree. We computed the relevant solutions to the S-unit equation over $\mathbb{Q}(\sqrt{d})$:

d	relevant elements of Λ_{S} up to the action of \mathfrak{S}_{3} and Galois conjugation	extra conditions
$d=2$	$\begin{gathered} (\sqrt{2}, 1-\sqrt{2}),(-16+12 \sqrt{2}, 17-12 \sqrt{2}), \\ (4+2 \sqrt{2},-3+2 \sqrt{2}),(-2+2 \sqrt{2}, 3-2 \sqrt{2}) \end{gathered}$	
$d=3$	$(2+\sqrt{3},-1-\sqrt{3}),(8+4 \sqrt{3},-7-4 \sqrt{3})$	
$d=5$	$\begin{gathered} ((1+\sqrt{5}) / 2,(1-\sqrt{5}) / 2),(-8+4 \sqrt{5}, 9-4 \sqrt{5}) \\ (-1+\sqrt{5}, 2-\sqrt{5}) \end{gathered}$	
$d=6$	$(-4+2 \sqrt{6}, 5-2 \sqrt{6})$	
$\begin{gathered} d \equiv 3(\bmod 8) \\ d \neq 3 \end{gathered}$	none	
$\begin{gathered} d \equiv 5(\bmod 8) \\ d \neq 5 \end{gathered}$	none	
$d \equiv 7(\bmod 8)$	$\left(2^{2 s+1}+2^{s+1} w \sqrt{d}, 1-2^{2 s+1}-2^{s+1} w \sqrt{d}\right)$	$\begin{aligned} & 4^{s}-1=d w^{2} \\ & s \geq 2, w \neq 0 \end{aligned}$
$\begin{gathered} d \equiv 2(\bmod 16) \\ d \neq 2 \end{gathered}$	$\left(-2^{2 s}+2^{s} w \sqrt{d}, 1+2^{2 s}-2^{s} w \sqrt{d}\right)$	$\begin{aligned} & 4^{s}+2=d w^{2} \\ & s \geq 2, w \neq 0 \end{aligned}$
$\begin{gathered} d \equiv 6(\bmod 16) \\ d \neq 6 \end{gathered}$	none	
$d \equiv 10(\bmod 16)$	none	
$d \equiv 14(\bmod 16)$	$\left(2^{2 s}+2^{s} w \sqrt{d}, 1-2^{2 s}-2^{s} w \sqrt{d}\right)$	$\begin{gathered} 4^{s}-2=d w^{2} \\ s \geq 2, w \neq 0 \\ \hline \end{gathered}$

1) Modularity of the Frey curves

After progress with modularity lifting by Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

1) Modularity of the Frey curves

After progress with modularity lifting by Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Le Hung-F.-Siksek)
Let K be a totally real field. There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

1) Modularity of the Frey curves

After progress with modularity lifting by Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...
Theorem (Le Hung-F.-Siksek)
Let K be a totally real field. There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Corollary

There is some constant A_{K}, depending only on K, such that for $p \geq A_{K}$ the Frey curve $E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$ is modular.

1) Modularity of the Frey curves

After progress with modularity lifting by Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Le Hung-F.-Siksek)
Let K be a totally real field. There are at most finitely many j-invariants of elliptic curves over K that are non-modular.

Corollary

There is some constant A_{K}, depending only on K, such that for $p \geq A_{K}$ the Frey curve $E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$ is modular.

Theorem (Le Hung-F.-Siksek)
Let \mathcal{C} / K be a an elliptic curve over a real quadratic field K. Then
\mathcal{C} is modular over K.

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=(q)
$$

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell|\| N \\ p| v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=(q)
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=(q)
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

By Tate's algorithm, E has additive reduction at q. So $q^{2} \| N$.

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell \| N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=(q)
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

By Tate's algorithm, E has additive reduction at q. So $q^{2} \| N$. Thus $N\left(\bar{\rho}_{p}\right)=2 q^{2}$.

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=(q) .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

By Tate's algorithm, E has additive reduction at q. So $q^{2} \| N$. Thus $N\left(\bar{\rho}_{p}\right)=2 q^{2}$.
Number of newforms of weight 2 and level $2 q^{2}$ is roughly $q^{2} / 6$.

Back to the original proof

$$
N\left(\bar{\rho}_{p}\right)=\frac{N}{M_{p}}, \quad M_{p}=\prod_{\substack{\ell| | N \\ p \mid v_{\ell}(\Delta)}} \ell .
$$

Let $q \neq 2$ be a prime. Suppose $a, b, c \in \mathbb{Z}$ satisfy

$$
a^{p}+b^{p}+c^{p}=0, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=(q) .
$$

Let

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

By Tate's algorithm, E has additive reduction at q. So $q^{2} \| N$. Thus $N\left(\bar{\rho}_{p}\right)=2 q^{2}$.
Number of newforms of weight 2 and level $2 q^{2}$ is roughly $q^{2} / 6$.
Fortunate Fact: $h(\mathbb{Q})=1$.

Class Group

Let K be a totally real number field.
Convention: Choose prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h} \nmid 6$ that are representatives for the class group $\mathrm{Cl}(K)$ and have smallest possible norm.

Class Group

Let K be a totally real number field.
Convention: Choose prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h} \nmid 6$ that are representatives for the class group $\mathrm{Cl}(K)$ and have smallest possible norm.

Suppose (a, b, c) is a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

Class Group

Let K be a totally real number field.
Convention: Choose prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h} \nmid 6$ that are representatives for the class group $\mathrm{Cl}(K)$ and have smallest possible norm.

Suppose (a, b, c) is a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

Write $\operatorname{gcd}(a, b, c)=a \mathcal{O}_{K}+b \mathcal{O}_{K}+c \mathcal{O}_{K}$. Then, in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=\left[\mathfrak{p}_{i}\right], \quad \text { for some } i
$$

Class Group

Let K be a totally real number field.
Convention: Choose prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h} \nmid 6$ that are representatives for the class group $\mathrm{Cl}(K)$ and have smallest possible norm.

Suppose (a, b, c) is a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

Write $\operatorname{gcd}(a, b, c)=a \mathcal{O}_{K}+b \mathcal{O}_{K}+c \mathcal{O}_{K}$. Then, in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=\left[\mathfrak{p}_{i}\right], \quad \text { for some } i .
$$

By appropriate scaling $\operatorname{gcd}(a, b, c)=\mathfrak{p}_{i}$ for some i.

Class Group

Let K be a totally real number field.
Convention: Choose prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h} \nmid 6$ that are representatives for the class group $\mathrm{Cl}(K)$ and have smallest possible norm.

Suppose (a, b, c) is a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

Write $\operatorname{gcd}(a, b, c)=a \mathcal{O}_{K}+b \mathcal{O}_{K}+c \mathcal{O}_{K}$. Then, in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=\left[\mathfrak{p}_{i}\right], \quad \text { for some } i .
$$

By appropriate scaling $\operatorname{gcd}(a, b, c)=\mathfrak{p}_{i}$ for some i.
Then, by Tate's algorithm the conductor of the Frey curve is

$$
\mathcal{N}=\mathfrak{p}_{i}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{P}}} \cdot \prod_{\mathfrak{q} \nmid 2 \mathfrak{p}_{i}} \mathfrak{q}, \quad \text { thus } \quad N\left(\bar{\rho}_{p}\right)=\mathfrak{p}_{i}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{P}}}
$$

Level Lowering—after Fujiwara, Jarvis and Rajaei

Let E / K an elliptic curve of conductor \mathcal{N}. Denote by Δ_{q} the discriminant of a local minimal model for E at \mathfrak{q}. Let

$$
\begin{equation*}
\mathcal{M}_{p}:=\prod_{\mathfrak{q} \| \mathcal{N},} \mathfrak{q}, \quad N\left(\bar{\rho}_{E, p}\right):=\frac{\mathcal{N}}{\mathcal{M}_{p}} . \tag{2}
\end{equation*}
$$

Level Lowering—after Fujiwara, Jarvis and Rajaei

Let E / K an elliptic curve of conductor \mathcal{N}. Denote by Δ_{q} the discriminant of a local minimal model for E at \mathfrak{q}. Let

$$
\begin{equation*}
\mathcal{M}_{p}:=\prod_{\mathfrak{q} \| \mathcal{N},} \mathfrak{q}, \quad N\left(\bar{\rho}_{E, p}\right):=\frac{\mathcal{N}}{\mathcal{M}_{p}} . \tag{2}
\end{equation*}
$$

Theorem (Level Lowering recipe)
With the above notation, suppose the following
(i) $p \geq 5$ and p is unramified in K,
(ii) E is modular,
(iii) $\bar{\rho}_{E, p}$ is irreducible,
(iv) E is semistable at all $\mathfrak{p} \mid p$,
(v) $p \mid \operatorname{ord}_{\mathfrak{p}}\left(\Delta_{\mathfrak{p}}\right)$ for all $\mathfrak{p} \mid p$.

Then, there is a Hilbert eigenform \mathfrak{f} of parallel weight 2 that is new at level $N\left(\bar{\rho}_{E, p}\right)$ and some $\lambda \mid p$ in \mathbb{Q}_{f} such that $\bar{\rho}_{E, p} \sim \bar{\rho}_{f, \lambda}$.

Level Lowering for the Frey curves

Recall that to a solution of

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

we associate the Frey curve

$$
E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)
$$

Level Lowering for the Frey curves

Recall that to a solution of

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

we associate the Frey curve $\quad E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$.
Write $\bar{\rho}_{p}$ for the representation arising from the p-torsion of E.

Level Lowering for the Frey curves

Recall that to a solution of

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

we associate the Frey curve $\quad E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$.
Write $\bar{\rho}_{p}$ for the representation arising from the p-torsion of E.
Fact
There is a constant C_{K}^{\prime} such that $\bar{\rho}_{p}$ is irreducible for all $p>C_{K}^{\prime}$.

Level Lowering for the Frey curves

Recall that to a solution of

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

we associate the Frey curve $\quad E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$.
Write $\bar{\rho}_{p}$ for the representation arising from the p-torsion of E.
Fact
There is a constant C_{K}^{\prime} such that $\bar{\rho}_{p}$ is irreducible for all $p>C_{K}^{\prime}$.
Corollary (of Level Lowering)
There is some constant B_{K} such that if $p>B_{K}$ then $\bar{\rho}_{p}$ arises from a Hilbert eigenform \mathfrak{f} of level $N\left(\bar{\rho}_{p}\right)$.

Level Lowering for the Frey curves

Recall that to a solution of

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

we associate the Frey curve $\quad E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$.
Write $\bar{\rho}_{p}$ for the representation arising from the p-torsion of E.

Fact

There is a constant C_{K}^{\prime} such that $\bar{\rho}_{p}$ is irreducible for all $p>C_{K}^{\prime}$.

Corollary (of Level Lowering)

There is some constant B_{K} such that if $p>B_{K}$ then $\bar{\rho}_{p}$ arises from a Hilbert eigenform \mathfrak{f} of level $N\left(\bar{\rho}_{p}\right)$.

Theorem

Let K be a totally real field satisfying assumption (ES). There is a constant C_{K} such that for $p>C_{K}$ then \mathfrak{f} corresponds to an elliptic curve E^{\prime} defined over K with full 2-torsion.

Elliptic Curves with Full 2-Torsion

Corollary
For $p>C_{K}$ then there is an elliptic curve E^{\prime} / K of conductor $N\left(\bar{\rho}_{p}\right)$ with full 2-torsion such that

$$
\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}
$$

where $\bar{\rho}_{p}^{\prime}$ arises from the p-torsion of E^{\prime}.

Elliptic Curves with Full 2-Torsion

Corollary
For $p>C_{K}$ then there is an elliptic curve E^{\prime} / K of conductor $N\left(\bar{\rho}_{p}\right)$ with full 2-torsion such that

$$
\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}
$$

where $\bar{\rho}_{p}^{\prime}$ arises from the p-torsion of E^{\prime}.
Objective: We want to control elliptic curves E^{\prime} with full 2-torsion and conductor

$$
N\left(\bar{\rho}_{p}\right)=\mathfrak{p}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{P}}}, \quad \mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\}
$$

Elliptic Curves with Full 2-Torsion

Corollary
For $p>C_{K}$ then there is an elliptic curve E^{\prime} / K of conductor $N\left(\bar{\rho}_{p}\right)$ with full 2-torsion such that

$$
\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}
$$

where $\bar{\rho}_{p}^{\prime}$ arises from the p-torsion of E^{\prime}.
Objective: We want to control elliptic curves E^{\prime} with full 2-torsion and conductor

$$
N\left(\bar{\rho}_{p}\right)=\mathfrak{p}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{P}}}, \quad \mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\}
$$

We can write E^{\prime} as
$E^{\prime}: y^{2}=x(x-r)(x+s), \quad r+s+t=0, \quad r, s, t \in \mathcal{O}_{K} \backslash\{0\}$.

Elliptic Curves with Full 2-Torsion

We want elliptic curves E^{\prime} with full 2-torsion and conductor

$$
\begin{gathered}
N\left(\bar{\rho}_{p}\right)=\mathfrak{p}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{Y}}}, \quad \mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\} . \\
E^{\prime}: y^{2}=x(x-r)(x+s), \quad r+s+t=0, \quad r, s, t \in \mathcal{O}_{K} \backslash\{0\} .
\end{gathered}
$$

Elliptic Curves with Full 2-Torsion

We want elliptic curves E^{\prime} with full 2-torsion and conductor

$$
\begin{gathered}
N\left(\bar{\rho}_{p}\right)=\mathfrak{p}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{P}}}, \quad \mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\} . \\
E^{\prime}: y^{2}=x(x-r)(x+s), \quad r+s+t=0, \quad r, s, t \in \mathcal{O}_{K} \backslash\{0\} .
\end{gathered}
$$

Write
$(r)=\mathfrak{p}^{\alpha} \cdot \prod^{\mathcal{q}^{\lambda_{\mathfrak{q}}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} \prod_{\mathfrak{P} \mid 2} \mathfrak{P}$
where $\mathfrak{q} \nmid(2) \cdot \mathfrak{p}$.

Elliptic Curves with Full 2-Torsion

We want elliptic curves E^{\prime} with full 2-torsion and conductor

$$
\begin{gathered}
N\left(\bar{\rho}_{p}\right)=\mathfrak{p}^{2} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{u_{\mathfrak{P}}}, \quad \mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\} . \\
E^{\prime}: y^{2}=x(x-r)(x+s), \quad r+s+t=0, \quad r, s, t \in \mathcal{O}_{K} \backslash\{0\} .
\end{gathered}
$$

Write
$(r)=\mathfrak{p}^{\alpha} \cdot \prod \mathfrak{q}^{\lambda_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} \prod_{\mathfrak{P} \mid 2} \mathfrak{P}$
where $\mathfrak{q} \nmid(2) \cdot \mathfrak{p}$. From Tate's Algorithm:
For all \mathfrak{q},

$$
\lambda_{\mathfrak{q}}=\mu_{\mathfrak{q}}=\nu_{\mathfrak{q}} \in 2 \mathbb{Z} .
$$

$$
\min \{\alpha, \beta, \gamma\} \in 2 \mathbb{Z}+1
$$

Elliptic Curves with Full 2-Torsion

Write where $\mathfrak{q} \dagger(2) \cdot \mathfrak{p}$.
$(r)=\mathfrak{p}^{\alpha} \cdot \prod \mathfrak{q}^{\lambda_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$

From Tate's Algorithm:
For all \mathfrak{q},

$$
\lambda_{\mathfrak{q}}=\mu_{\mathfrak{q}}=\nu_{\mathfrak{q}} \in 2 \mathbb{Z} .
$$

$\min \{\alpha, \beta, \gamma\} \in 2 \mathbb{Z}+1$.

Elliptic Curves with Full 2-Torsion

Write where $\mathfrak{q} \dagger(2) \cdot \mathfrak{p}$.
$(r)=\mathfrak{p}^{\alpha} \cdot \prod \mathfrak{q}^{\lambda_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$

From Tate's Algorithm:
For all \mathfrak{q},

$$
\lambda_{\mathfrak{q}}=\mu_{\mathfrak{q}}=\nu_{\mathfrak{q}} \in 2 \mathbb{Z}
$$

$$
\min \{\alpha, \beta, \gamma\} \in 2 \mathbb{Z}+1 . \text { WLOG } \alpha=2 u+1
$$

Elliptic Curves with Full 2-Torsion

Write where $\mathfrak{q} \dagger(2) \cdot \mathfrak{p}$.
$(r)=\mathfrak{p}^{\alpha} \cdot \prod \mathfrak{q}^{\lambda_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} . \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$

From Tate's Algorithm:
For all \mathfrak{q},

$$
\lambda_{\mathfrak{q}}=\mu_{\mathfrak{q}}=\nu_{\mathfrak{q}} \in 2 \mathbb{Z} .
$$

$$
\min \{\alpha, \beta, \gamma\} \in 2 \mathbb{Z}+1 . \text { WLOG } \alpha=2 u+1 . \text { Write } \lambda_{\mathfrak{q}}=2 \delta_{\mathfrak{q}}
$$

Elliptic Curves with Full 2-Torsion

Write where $\mathfrak{q} \dagger(2) \cdot \mathfrak{p}$.
$(r)=\mathfrak{p}^{\alpha} \cdot \prod \mathfrak{q}^{\lambda_{\mathfrak{q}}} . \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} . \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$

From Tate's Algorithm:
For all \mathfrak{q},

$$
\lambda_{\mathfrak{q}}=\mu_{\mathfrak{q}}=\nu_{\mathfrak{q}} \in 2 \mathbb{Z}
$$

$$
\min \{\alpha, \beta, \gamma\} \in 2 \mathbb{Z}+1 . \text { WLOG } \alpha=2 u+1 . \text { Write } \lambda_{\mathfrak{q}}=2 \delta_{\mathfrak{q}} .
$$

Then

$$
(r)=\mathfrak{p} \cdot\left(\mathfrak{p}^{u} \cdot \prod \mathfrak{q}^{\delta \mathfrak{q}}\right)^{2} \prod_{\mathfrak{F} \mid 2} \mathfrak{P}^{?} .
$$

Elliptic Curves with Full 2-Torsion

Write where $\mathfrak{q} \nmid(2) \cdot \mathfrak{p}$.
$(r)=\mathfrak{p}^{\alpha} \cdot \prod \mathfrak{q}^{\lambda_{\mathfrak{q}}} . \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(s)=\mathfrak{p}^{\beta} \cdot \prod \mathfrak{q}^{\mu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$
$(t)=\mathfrak{p}^{\gamma} \cdot \prod \mathfrak{q}^{\nu_{\mathfrak{q}}} \cdot \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}$

From Tate's Algorithm:
For all \mathfrak{q},

$$
\lambda_{\mathfrak{q}}=\mu_{\mathfrak{q}}=\nu_{\mathfrak{q}} \in 2 \mathbb{Z}
$$

$$
\min \{\alpha, \beta, \gamma\} \in 2 \mathbb{Z}+1 . \text { WLOG } \alpha=2 u+1 . \text { Write } \lambda_{\mathfrak{q}}=2 \delta_{\mathfrak{q}} .
$$

Then

$$
(r)=\mathfrak{p} \cdot\left(\mathfrak{p}^{u} \cdot \prod \mathfrak{q}^{\delta_{\mathfrak{q}}}\right)^{2} \prod_{\mathfrak{F} \mid 2} \mathfrak{P}^{?} .
$$

Hence

$$
[\mathfrak{p}]=[\mathfrak{a}]^{2} \prod_{\mathfrak{F} \mid 2}[\mathfrak{P}]^{?} \quad \text { in } \mathrm{Cl}(K) .
$$

2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Started with (a, b, c) a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Started with (a, b, c) a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

Noted that in $\mathrm{Cl}(\mathrm{K})$

$$
[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]
$$

where \mathfrak{p} is one of the representatives $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}$ of $\mathrm{Cl}(K)$.
2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Started with (a, b, c) a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

Noted that in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]
$$

where \mathfrak{p} is one of the representatives $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}$ of $\mathrm{Cl}(K)$. We scaled a, b, c so that $\operatorname{gcd}(a, b, c)=\mathfrak{p}$.
2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Started with (a, b, c) a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0
$$

Noted that in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]
$$

where \mathfrak{p} is one of the representatives $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}$ of $\mathrm{Cl}(K)$. We scaled a, b, c so that $\operatorname{gcd}(a, b, c)=\mathfrak{p}$.
We found (for $\left.p>C_{K}\right)[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]=[\mathfrak{a}]^{2} \prod_{\mathfrak{P} \mid 2}[\mathfrak{P}]^{\text {? }}$.
2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Started with (a, b, c) a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

Noted that in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]
$$

where \mathfrak{p} is one of the representatives $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}$ of $\mathrm{Cl}(K)$.
We scaled a, b, c so that $\operatorname{gcd}(a, b, c)=\mathfrak{p}$.
We found (for $\left.p>C_{K}\right)[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]=[\mathfrak{a}]^{2} \prod_{\mathfrak{P} \mid 2}[\mathfrak{P}]^{\text {? }}$.
Thus

$$
[\operatorname{gcd}(a, b, c)]=\left[\mathfrak{p}^{\prime}\right]^{2} \prod_{\mathfrak{F} \mid 2}[\mathfrak{P}]^{?}, \quad \mathfrak{p}^{\prime} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\} .
$$

2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Started with (a, b, c) a solution to the Fermat equation

$$
a^{p}+b^{p}+c^{p}=0, \quad a, b, c \in \mathcal{O}_{K}, \quad a b c \neq 0 .
$$

Noted that in $\mathrm{Cl}(K)$

$$
[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]
$$

where \mathfrak{p} is one of the representatives $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}$ of $\mathrm{Cl}(K)$.
We scaled a, b, c so that $\operatorname{gcd}(a, b, c)=\mathfrak{p}$.
We found (for $\left.p>C_{K}\right)[\operatorname{gcd}(a, b, c)]=[\mathfrak{p}]=[\mathfrak{a}]^{2} \prod_{\mathfrak{P} \mid 2}[\mathfrak{P}]^{\text {? }}$.
Thus

$$
[\operatorname{gcd}(a, b, c)]=\left[\mathfrak{p}^{\prime}\right]^{2} \prod_{\mathfrak{F} \mid 2}[\mathfrak{P}]^{?}, \quad \mathfrak{p}^{\prime} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{h}\right\} .
$$

Can rescale (a, b, c) so that

$$
\operatorname{gcd}(a, b, c)=\mathfrak{p}^{\prime 2} \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}
$$

2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Can rescale (a, b, c) so that

$$
\operatorname{gcd}(a, b, c)=\mathfrak{p}^{\prime 2} \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}
$$

2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Can rescale (a, b, c) so that

$$
\operatorname{gcd}(a, b, c)=\mathfrak{p}^{\prime 2} \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}
$$

So, again by Tate's algorithm, $E_{(a, b, c)}$ is semistable at \mathfrak{p}^{\prime}, thus

$$
N\left(\bar{\rho}_{p}\right)=\prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?} .
$$

2) Removing the dependence of $N\left(\bar{\rho}_{p}\right)$ on the solution

Can rescale (a, b, c) so that

$$
\operatorname{gcd}(a, b, c)=\mathfrak{p}^{\prime 2} \prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?}
$$

So, again by Tate's algorithm, $E_{(a, b, c)}$ is semistable at \mathfrak{p}^{\prime}, thus

$$
N\left(\bar{\rho}_{p}\right)=\prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{?} .
$$

Corollary (of Level Lowering)
There is a constant D_{K} such that for $p>D_{K}$ there is an elliptic curve E^{\prime} / K of conductor $N\left(\bar{\rho}_{p}\right)=\prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{\text {? }}$ with full 2 -torsion such that

$$
\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}
$$

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.
3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.
Question: Are there candidates for E^{\prime} ?

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes.

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':
solutions satisfying $a b c=0$

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':
solutions satisfying $a b c=0$ (gives singular E^{\prime})

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':
solutions satisfying $a b c=0$ (gives singular E^{\prime})
$1^{p}+\omega^{p}+\left(\omega^{2}\right)^{p}=0$

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':

$$
\begin{aligned}
& \text { solutions satisfying } a b c=0 \text { (gives singular } E^{\prime} \text {) } \\
& \left.1^{p}+\omega^{p}+\left(\omega^{2}\right)^{p}=0 \text { (gives } E^{\prime} \text { of conductor } 144\right)
\end{aligned}
$$

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':

$$
\begin{aligned}
& \text { solutions satisfying } a b c=0 \text { (gives singular } E^{\prime} \text {) } \\
& 1^{p}+\omega^{p}+\left(\omega^{2}\right)^{p}=0 \text { (gives } E^{\prime} \text { of conductor } 144 \text {) } \\
& 1^{p}+1^{p}=2 \times 1^{p}
\end{aligned}
$$

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':

$$
\begin{aligned}
& \text { solutions satisfying } a b c=0 \text { (gives singular } E^{\prime} \text {) } \\
& \left.1^{p}+\omega^{p}+\left(\omega^{2}\right)^{p}=0 \text { (gives } E^{\prime} \text { of conductor } 144\right) \\
& 1^{p}+1^{p}=2 \times 1^{p}(\text { TROUBLE!!) }
\end{aligned}
$$

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':

$$
\begin{aligned}
& \text { solutions satisfying abc }=0 \text { (gives singular } E^{\prime} \text {) } \\
& \left.1^{p}+\omega^{p}+\left(\omega^{2}\right)^{p}=0 \text { (gives } E^{\prime} \text { of conductor } 144\right) \\
& 1^{p}+1^{p}=2 \times 1^{p}(\text { TROUBLE!!) } \\
& E^{\prime}: y^{2}=x(x-1)(x+1) \quad(32 \mathrm{~A} 2), \quad j=1728 .
\end{aligned}
$$

has conductor $\prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{\text {? }}$.

3) Non-empty space of newforms at level $N\left(\bar{\rho}_{p}\right)$

We have $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$ for some E^{\prime} with full 2-torsion and good reduction outside primes dividing 2.

Question: Are there candidates for E^{\prime} ?
Unfortunately, yes. For example, we can get candidates from 'solutions':

$$
\begin{aligned}
& \text { solutions satisfying abc }=0 \text { (gives singular } E^{\prime} \text {) } \\
& \left.1^{p}+\omega^{p}+\left(\omega^{2}\right)^{p}=0 \text { (gives } E^{\prime} \text { of conductor } 144\right) \\
& 1^{p}+1^{p}=2 \times 1^{p}(\text { TROUBLE!!) } \\
& E^{\prime}: y^{2}=x(x-1)(x+1) \quad(32 \mathrm{~A} 2), \quad j=1728
\end{aligned}
$$

has conductor $\prod_{\mathfrak{P} \mid 2} \mathfrak{P}^{\text {? }}$.
Question: Can we rule out $\bar{\rho}_{p} \sim \bar{\rho}_{p}^{\prime}$?

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

As $a^{p}+b^{p}+c^{p}=0$, one of $v_{\mathfrak{P}}\left(a^{p}\right), v_{\mathfrak{P}}\left(b^{p}\right), v_{\mathfrak{P}}\left(c^{p}\right)$ is much larger than the others. Write $E=E_{a, b, c}$.

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

As $a^{p}+b^{p}+c^{p}=0$, one of $v_{\mathfrak{P}}\left(a^{p}\right), v_{\mathfrak{P}}\left(b^{p}\right), v_{\mathfrak{P}}\left(c^{p}\right)$ is much larger than the others. Write $E=E_{a, b, c}$. Then, for large p,

- we have $\operatorname{ord}_{\mathfrak{P}}(j(E))<0$,

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

As $a^{p}+b^{p}+c^{p}=0$, one of $v_{\mathfrak{P}}\left(a^{p}\right), v_{\mathfrak{P}}\left(b^{p}\right), v_{\mathfrak{P}}\left(c^{p}\right)$ is much larger than the others. Write $E=E_{a, b, c}$. Then, for large p,

- we have $\operatorname{ord}_{\mathfrak{P}}(j(E))<0$, hence $E / K_{\mathfrak{P}}$ is a Tate curve (after possibly taking a quadratic extension)
- and $p \nmid \operatorname{ord}_{\mathfrak{P}}(j(E))$,

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

As $a^{p}+b^{p}+c^{p}=0$, one of $v_{\mathfrak{P}}\left(a^{p}\right), v_{\mathfrak{P}}\left(b^{p}\right), v_{\mathfrak{P}}\left(c^{p}\right)$ is much larger than the others. Write $E=E_{a, b, c}$. Then, for large p,

- we have $\operatorname{ord}_{\mathfrak{P}}(j(E))<0$, hence $E / K_{\mathfrak{P}}$ is a Tate curve (after possibly taking a quadratic extension)
- and $p \nmid \operatorname{ord}_{\mathfrak{P}}(j(E))$, hence $p \mid \# \bar{\rho}_{E, p}\left(I_{\mathfrak{P}}\right)$.

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

As $a^{p}+b^{p}+c^{p}=0$, one of $v_{\mathfrak{P}}\left(a^{p}\right), v_{\mathfrak{P}}\left(b^{p}\right), v_{\mathfrak{P}}\left(c^{p}\right)$ is much larger than the others. Write $E=E_{a, b, c}$. Then, for large p,

- we have $\operatorname{ord}_{\mathfrak{P}}(j(E))<0$, hence $E / K_{\mathfrak{P}}$ is a Tate curve (after possibly taking a quadratic extension)
- and $p \nmid \operatorname{ord}_{\mathfrak{P}}(j(E))$, hence $p \mid \# \bar{\rho}_{E, p}\left(l_{\mathfrak{P}}\right)$.

On the other hand,

- The curve E^{\prime} has potentially good reduction at \mathfrak{P};

Candidates for E^{\prime}

Suppose $T \neq \emptyset$: there exists $\mathfrak{P} \mid 2$ in K such that $f(\mathfrak{P} / 2)=1$, i.e. $\mathcal{O}_{K} / \mathfrak{P}=\mathbb{F}_{2}$.

As $a^{p}+b^{p}+c^{p}=0$, one of $v_{\mathfrak{P}}\left(a^{p}\right), v_{\mathfrak{P}}\left(b^{p}\right), v_{\mathfrak{P}}\left(c^{p}\right)$ is much larger than the others. Write $E=E_{a, b, c}$. Then, for large p,

- we have $\operatorname{ord}_{\mathfrak{P}}(j(E))<0$, hence $E / K_{\mathfrak{P}}$ is a Tate curve (after possibly taking a quadratic extension)
- and $p \nmid \operatorname{ord}_{\mathfrak{P}}(j(E))$, hence $p \mid \# \bar{\rho}_{E, p}\left(l_{\mathfrak{P}}\right)$.

On the other hand,

- The curve E^{\prime} has potentially good reduction at \mathfrak{P}; Hence, $\bar{\rho}_{E^{\prime}, p}\left(\mathcal{l}_{\mathfrak{P}}\right)$ has order $1,2,3,4,6$ or 24 ;
This gives a contradiction for $p \geq 5$!

Candidates for E^{\prime}

Theorem

Let K be a totally real field satisfying assumption (ES). There is a constant B_{K} depending only on K such that the following hold. Let (a, b, c) be a non-trivial solution to the Fermat equation with prime exponent $p>B_{K}$. Then, after proper rescaling, there is an elliptic curve E^{\prime} over K such that
(i) the conductor of E^{\prime} is divisible only by primes in S;
(ii) $\# E^{\prime}(K)[2]=4$;
(iii) $\bar{\rho}_{E, p} \sim \bar{\rho}_{E^{\prime}, p}$;

Write j^{\prime} for the j-invariant of E^{\prime}. Then,
(a) for $\mathfrak{P} \in T$, we have $\operatorname{ord}_{\mathfrak{P}}\left(j^{\prime}\right)<0$;
(b) for $\mathfrak{P} \in U$, we have either $\operatorname{ord}_{\mathfrak{P}}\left(j^{\prime}\right)<0$ or $3 \nmid \operatorname{ord}_{\mathfrak{P}}\left(j^{\prime}\right)$.

Results - Fermat over totally real fields

Theorem (F.-Siksek)
Let K be a totally real field satisfying assumption (ES). Let S, T and U be as before. Write \mathcal{O}_{S}^{*} for the set of S-units of K. Suppose that for every solution (λ, μ) to the S-unit equation

$$
\lambda+\mu=1, \quad \lambda, \mu \in \mathcal{O}_{S}^{*} .
$$

there is
(A) either some $\mathfrak{P} \in T$ that satisfies

$$
\begin{equation*}
\max \left\{\left|\operatorname{ord}_{\mathfrak{P}}(\lambda)\right|,\left|\operatorname{ord}_{\mathfrak{P}}(\mu)\right|\right\} \leq 4 \operatorname{ord}_{\mathfrak{P}}(2), \tag{3}
\end{equation*}
$$

(B) or some $\mathfrak{P} \in U$ that satisfies both (3) and

$$
\operatorname{ord}_{\mathfrak{P}}(\lambda \mu) \equiv \operatorname{ord}_{\mathfrak{P}}(2) \quad(\bmod 3)
$$

Then there is some constant B_{K} such that for all $p>B_{K}$, the Fermat equation with exponent p has no non-trivial solutions.

Results - a density theorem

For a subset $\mathcal{U} \subseteq \mathbb{N}^{\text {sf }}$, define the relative density of \mathcal{U} as

$$
\delta_{\mathrm{rel}}(\mathcal{U})=\lim _{X \rightarrow \infty} \frac{\#\{d \in \mathcal{U}: d \leq X\}}{\#\left\{d \in \mathbb{N}^{\text {sf }}: d \leq X\right\}}
$$

Results - a density theorem

For a subset $\mathcal{U} \subseteq \mathbb{N}^{\text {sf }}$, define the relative density of \mathcal{U} as

$$
\delta_{\mathrm{rel}}(\mathcal{U})=\lim _{X \rightarrow \infty} \frac{\#\{d \in \mathcal{U}: d \leq X\}}{\#\left\{d \in \mathbb{N}^{\text {sf }}: d \leq X\right\}}
$$

Define also
$\mathcal{C}=\left\{d \in \mathbb{N}^{\text {sf }}:\right.$ the S-unit equation has no relevant solutions in $\left.\mathbb{Q}(\sqrt{d})\right\}$

$$
\mathcal{D}=\{d \in \mathcal{C}: d \not \equiv 5 \quad(\bmod 8)\} .
$$

Results - a density theorem

For a subset $\mathcal{U} \subseteq \mathbb{N}^{\text {sf }}$, define the relative density of \mathcal{U} as

$$
\delta_{\mathrm{rel}}(\mathcal{U})=\lim _{X \rightarrow \infty} \frac{\#\{d \in \mathcal{U}: d \leq X\}}{\#\left\{d \in \mathbb{N}^{\text {sf }}: d \leq X\right\}}
$$

Define also
$\mathcal{C}=\left\{d \in \mathbb{N}^{\text {sf }}:\right.$ the S-unit equation has no relevant solutions in $\left.\mathbb{Q}(\sqrt{d})\right\}$

$$
\mathcal{D}=\{d \in \mathcal{C}: d \not \equiv 5 \quad(\bmod 8)\}
$$

Theorem
Let \mathcal{C} and \mathcal{D} be as above. Then

$$
\begin{equation*}
\delta_{\text {rel }}(\mathcal{C})=1, \quad \delta_{\text {rel }}(\mathcal{D})=\frac{5}{6} \tag{4}
\end{equation*}
$$

Results - a density theorem

For a subset $\mathcal{U} \subseteq \mathbb{N}^{\text {sf }}$, define the relative density of \mathcal{U} as

$$
\delta_{\mathrm{rel}}(\mathcal{U})=\lim _{X \rightarrow \infty} \frac{\#\{d \in \mathcal{U}: d \leq X\}}{\#\left\{d \in \mathbb{N}^{\text {sf }}: d \leq X\right\}}
$$

Define also
$\mathcal{C}=\left\{d \in \mathbb{N}^{\text {sf }}:\right.$ the S-unit equation has no relevant solutions in $\left.\mathbb{Q}(\sqrt{d})\right\}$

$$
\mathcal{D}=\{d \in \mathcal{C}: d \not \equiv 5 \quad(\bmod 8)\} .
$$

Theorem
Let \mathcal{C} and \mathcal{D} be as above. Then

$$
\begin{equation*}
\delta_{\text {rel }}(\mathcal{C})=1, \quad \delta_{\text {rel }}(\mathcal{D})=\frac{5}{6} \tag{4}
\end{equation*}
$$

Furthermore, if $d \in \mathcal{D}$ and $K=\mathbb{Q}(\sqrt{d})$, then there is some effectively computable B_{K} such that for $p>B_{K}$ the Fermat equation has no non-trivial solutions with exponent p. The same conclusion holds for $d \in \mathcal{C}$ if we assume (ES).

The End！

