Galois representations associated to ordinary Hilbert modular forms: Wiles’ theorem

Francesc Fité (Universität Duisburg-Essen)

STNB, Barcelona, 29th January 2015.
Layout

1. Wiles’ result and general notations
2. General strategy of the proof
3. Tools for the proof
4. Sketch of the proof
5. Are there any ordinary primes?
Layout

1. Wiles’ result and general notations
2. General strategy of the proof
3. Tools for the proof
4. Sketch of the proof
5. Are there any ordinary primes?
Notations

- F a totally real field; \mathcal{O}_F its ring of integers; $d := [F : \mathbb{Q}]$.
- $\mathfrak{n} \subseteq \mathcal{O}_F$ integral ideal; $\psi_0 : (\mathcal{O}_F/\mathfrak{n})^* \rightarrow \overline{\mathbb{Q}}^*$; \mathfrak{a} a fractional ideal.
- $S_k(\Gamma(\mathfrak{a}, \mathfrak{n}), \psi_0) = \text{space of Hilbert cusp forms } f : \mathcal{H}^d \rightarrow \mathbb{C} \text{ of parallel weight } k \geq 1, \text{ character } \psi_0, \text{ and relative to } \Gamma(\mathfrak{a}, \mathfrak{n})$.
- $h = \text{strict class number of } F$ (t$_{\gamma}$ reps. of the strict class ideals).
- $S_k(\mathfrak{n}, \psi_0)$ denotes the space of $f := (f_1, \ldots, f_h) \in \prod_{\gamma=1}^{h} S_k(\Gamma(t_{\gamma}d, \mathfrak{n}), \psi_0)$.

Francesc Fité (Universität Duisburg-Essen)
Notations

- F a totally real field; \mathcal{O}_F its ring of integers; $d := [F : \mathbb{Q}]$.
- $\mathfrak{n} \subseteq \mathcal{O}_F$ integral ideal; $\psi_0 : (\mathcal{O}_F/\mathfrak{n})^* \rightarrow \overline{\mathbb{Q}}^*$; \mathfrak{a} a fractional ideal.
- $S_k(\Gamma(\mathfrak{a}, \mathfrak{n}), \psi_0) =$ space of Hilbert cusp forms $f : \mathcal{H}^d \rightarrow \mathbb{C}$ of parallel weight $k \geq 1$, character ψ_0, and relative to $\Gamma(\mathfrak{a}, \mathfrak{n})$.
- $h =$ strict class number of F (t_{γ} reps. of the strict class ideals).
- $S_k(\mathfrak{n}, \psi_0)$ denotes the space of

$$f := (f_1, \ldots, f_h) \in \prod_{\gamma=1}^{h} S_k(\Gamma(t_{\gamma} \mathfrak{d}, \mathfrak{n}), \psi_0).$$
Notations

- \(F \) a totally real field; \(\mathcal{O}_F \) its ring of integers; \(d := [F : \mathbb{Q}] \).
- \(\mathfrak{n} \subseteq \mathcal{O}_F \) integral ideal; \(\psi_0 : (\mathcal{O}_F / \mathfrak{n})^* \to \overline{\mathbb{Q}}^* \); \(\mathfrak{a} \) a fractional ideal.
- \(S_k(\Gamma(\mathfrak{a}, \mathfrak{n}), \psi_0) \) = space of Hilbert cusp forms \(f : \mathcal{H}^d \to \mathbb{C} \) of parallel weight \(k \geq 1 \), character \(\psi_0 \), and relative to \(\Gamma(\mathfrak{a}, \mathfrak{n}) \).
- \(h = \) strict class number of \(F \) (\(t_\gamma \) reps. of the strict class ideals).
- \(S_k(\mathfrak{n}, \psi_0) \) denotes the space of

\[
\mathbf{f} := (f_1, \ldots, f_h) \in \prod_{\gamma=1}^{h} S_k(\Gamma(t_\gamma \mathfrak{d}, \mathfrak{n}), \psi_0).
\]
Dirichlet series

- Each f_γ admits a Fourier expansion

$$f_\gamma(z_1, \ldots, z_d) = \sum_{0 \ll \mu \in t_\gamma} a_\gamma(\mu) e^{2\pi i (\sum_{j=1}^d \mu_j z_j)}, \quad \text{for } (z_1, \ldots, z_d) \in \mathcal{H}^d.$$

(μ_1, \ldots, μ_d denote the images of μ by the d embeddings of F into \mathbb{C}).

- For $0 \neq \alpha \subseteq \mathcal{O}_F$, there exist $\gamma \in \{1, \ldots, h\}$ and a totally positive $\mu \in t_\gamma$ such that $\alpha = \mu t_\gamma^{-1}$. Define

$$c(\alpha, f) := a_\gamma(\mu) N(t_\gamma)^{-k/2}.$$

(it depends neither on the choice of γ nor of t_γ).

- The Dirichlet series associated to f is

$$D(f, s) := \sum_{0 \neq \alpha \subseteq \mathcal{O}_F} c(\alpha, f) N(\alpha)^{-s}.$$
Dirichlet series

- Each f_{γ} admits a Fourier expansion

$$f_{\gamma}(z_1, \ldots, z_d) = \sum_{0 \ll \mu \in t_{\gamma}} a_{\gamma}(\mu) e^{2\pi i (\sum_{j=1}^{d} \mu_j z_j)}, \quad \text{for } (z_1, \ldots, z_d) \in \mathcal{H}^d.$$

$(\mu_1, \ldots, \mu_d$ denote the images of μ by the d embeddings of F into \mathbb{C}).

- For $0 \notdivides a \subseteq \mathcal{O}_F$, there exist $\gamma \in \{1, \ldots, h\}$ and a totally positive $\mu \in t_{\gamma}$ such that $a = \mu t_{\gamma}^{-1}$. Define

$$c(a, f) := a_{\gamma}(\mu) N(t_{\gamma})^{-k/2}.$$

(it depends neither on the choice of γ nor of t_{γ}).

- The Dirichlet series associated to f is

$$D(f, s) := \sum_{0 \notdivides a \subseteq \mathcal{O}_F} c(a, f) N(a)^{-s}.$$
Dirichlet series

- Each f_γ admits a Fourier expansion

$$f_\gamma(z_1, \ldots, z_d) = \sum_{0 \leq \mu \in t_\gamma} a_\gamma(\mu) e^{2\pi i (\sum_{j=1}^{d} \mu_j z_j)}, \quad \text{for } (z_1, \ldots, z_d) \in \mathcal{H}^d.$$

(μ_1, \ldots, μ_d denote the images of μ by the d embeddings of F into \mathbb{C}).

- For $0 \neq a \subseteq \mathcal{O}_F$, there exist $\gamma \in \{1, \ldots, h\}$ and a totally positive $\mu \in t_\gamma$ such that $a = \mu t_\gamma^{-1}$. Define

$$c(a, f) := a_\gamma(\mu) N(t_\gamma)^{-k/2}.$$

(it depends neither on the choice of γ nor of t_γ).

- The Dirichlet series associated to f is

$$D(f, s) := \sum_{0 \neq a \subseteq \mathcal{O}_F} c(a, f) N(a)^{-s}.$$
Ordinary primes

- There is a theory of Hecke operators \(\{ T_n(a), S_n(a) \}_{a \in \mathcal{O}_F} \) on \(S_k(n, \psi_0) \).

- \(\psi_0 \mapsto \psi: \mathcal{I}_{n\infty} \to \mathbb{Q}^* \) ray class char. of modulus \(n\infty \) restricting to \(\psi_0 \) on \((\mathcal{O}_F/n)^* \). Set

\[
S_k(n, \psi) := \{ f \in S_k(n, \psi_0) \mid S_n(a)(f) = \psi(a)f \text{ for all } a \subseteq \mathcal{O}_F \}.
\]

- For \(f \in S_k(n, \psi) \) a newform, set

\[
K_f := \mathbb{Q}(\{ c(a, f) \}_{a \in \mathcal{O}_F}); \quad \mathcal{O}_f \text{ its ring of integers.}
\]

- \(\lambda \subseteq \mathcal{O}_f \) prime. \(f \) is ordinary at \(\lambda \) if for \(p \subseteq \mathcal{O}_F, p|N(\lambda), \)

\[
x^2 - c(p, f)x + \psi(p)N(p)^{k-1}
\]

has a unit root mod \(\lambda \).
Ordinary primes

- There is a theory of Hecke operators \(\{ T_n(a), S_n(a) \}_{a \subseteq \mathcal{O}_F} \) on \(S_k(n, \psi_0) \).
- \(\psi_0 \rightsquigarrow \psi : l_{n\infty} \rightarrow \overline{\mathbb{Q}}^* \) ray class char. of modulus \(n\infty \) restricting to \(\psi_0 \) on \((\mathcal{O}_F/n)^* \). Set
 \[
 S_k(n, \psi) := \{ f \in S_k(n, \psi_0) \mid S_n(a)(f) = \psi(a)f \text{ for all } a \subseteq \mathcal{O}_F \}.
 \]
- For \(f \in S_k(n, \psi) \) a newform, set
 \[
 K_f := \mathbb{Q}(\{ c(a, f) \}_{a \subseteq \mathcal{O}_F}); \quad \mathcal{O}_f \text{ its ring of integers.}
 \]
- \(\lambda \subseteq \mathcal{O}_f \) prime. \(f \) is ordinary at \(\lambda \) if for \(p \subseteq \mathcal{O}_F, p|N(\lambda), \)
 \[
 x^2 - c(p, f)x + \psi(p)N(p)^{k-1}
 \]
 has a unit root mod \(\lambda \).
Ordinary primes

- There is a theory of Hecke operators \(\{ T_n(a), S_n(a) \}_{a \in \mathcal{O}_F} \) on \(S_k(n, \psi_0) \).
- \(\psi_0 \sim \psi : I_{n\infty} \to \bar{\mathbb{Q}}^* \) ray class char. of modulus \(n\infty \) restricting to \(\psi_0 \) on \((\mathcal{O}_F/n)^* \). Set
 \[
 S_k(n, \psi) := \{ f \in S_k(n, \psi_0) \mid S_n(a)(f) = \psi(a)f \text{ for all } a \subseteq \mathcal{O}_F \}.
 \]
- For \(f \in S_k(n, \psi) \) a newform, set
 \[
 K_f := \mathbb{Q}(\{ c(a, f) \}_{a \in \mathcal{O}_F}); \quad \mathcal{O}_f \text{ its ring of integers}.
 \]
- \(\lambda \subseteq \mathcal{O}_f \) prime. \(f \) is ordinary at \(\lambda \) if for \(p \subseteq \mathcal{O}_F, p|N(\lambda), \)
 \[
 x^2 - c(p, f)x + \psi(p)N(p)^{k-1}
 \]
 has a unit root mod \(\lambda \).
Main Theorem (Wiles)

If f is ordinary at λ, there exists a continuous odd irreducible rep.

$$\rho_{f,\lambda} : G_F \to \text{GL}_2(\mathcal{O}_{f,\lambda})$$

unramified outside $\mathfrak{n}\mathcal{N}(\lambda)$ and such that for all primes $q \nmid \mathfrak{n}\mathcal{N}(\lambda)$

$$\text{Tr}(\rho_{f,\lambda})(\text{Frob}_q) = c(q, f),$$

$$\det(\rho_{f,\lambda})(\text{Frob}_q) = \psi(q)\mathcal{N}(q)^{k-1}.$$
Wiles’ result

Main Theorem (Wiles)

If \(f \) is ordinary at \(\lambda \), there exists a continuous odd irreducible rep.

\[
\varrho_{f,\lambda} : G_F \rightarrow \text{GL}_2(O_{f,\lambda})
\]

unramified outside \(\mathfrak{n}N(\lambda) \) and such that for all primes \(q \nmid \mathfrak{n}N(\lambda) \)

\[
\text{Tr}(\varrho_{f,\lambda})(\text{Frob}_q) = c(q, f),
\]

\[
\det(\varrho_{f,\lambda})(\text{Frob}_q) = \psi(q)N(q)^{k-1}.
\]

- In the previous talk we saw:

Theorem (Carayol)

For \(k \geq 2 \) and \(f \) not necessarily ordinary at \(\lambda \), there exists \(\varrho_{f,\lambda} \) if either

i) \(d \) is odd; or

ii) \(d \) is even and there is a prime \(p \mid \mid \mathfrak{n} \).
Wiles’ result and general notations

General strategy of the proof

Tools for the proof

Sketch of the proof

Are there any ordinary primes?
General strategy

- $S_k(n, \psi \mid \mathbb{Z}[\psi]) := \{g \in S_k(n, \psi) \mid c(a, g) \in \mathbb{Z}[\psi] \text{ for all } a \subseteq \mathcal{O}_F\}$.
- Fix a prime p from now on. For simplicity assume $p \geq 3$.
- For a subring $\mathbb{Z}[\psi] \subseteq A \subseteq \overline{\mathbb{Q}}_p$, set
 \[S_k(n, \psi \mid A) := S_k(n, \psi \mid \mathbb{Z}[\psi]) \otimes_{\mathbb{Z}[\psi]} A \]

Step 1: Λ-adic forms

Define $S(\overline{n}, \psi \mid \Lambda)$ and specialization maps $\nu_{k,r} : \Lambda \to \overline{\mathbb{Q}}_p$ such that

\[\mathcal{F} \in S(\overline{n}, \psi \mid \Lambda) \Rightarrow \nu_{k,r}(\mathcal{F}) \in S_k(np^r, \psi_{\zeta_{p^r}}, \omega^{2-k} \mid \mathcal{O}[\zeta_{p^r}]) . \]
General strategy

- \(S_k(n, \psi \mid \mathbb{Z}[\psi]) := \{ g \in S_k(n, \psi) \mid c(a, g) \in \mathbb{Z}[\psi] \text{ for all } a \subseteq \mathcal{O}_F \} \).
- Fix a prime \(p \) from now on. For simplicity assume \(p \geq 3 \).
- For a subring \(\mathbb{Z}[\psi] \subseteq A \subseteq \overline{\mathbb{Q}}_p \), set
 \[
 S_k(n, \psi \mid A) := S_k(n, \psi \mid \mathbb{Z}[\psi]) \otimes_{\mathbb{Z}[\psi]} A
 \]
- \(\mathcal{K} \) a finite extension of \(\mathbb{Q}_p((X)) \); \(\Lambda = \) integral closure of \(\mathbb{Z}_p[[X]] \).
 Assume \(\Lambda \supseteq \mathbb{Z}_p[\psi][[X]] \).
- \(\mathcal{K} := \mathcal{K} \cap \overline{\mathbb{Q}}_p \); \(\mathcal{O} \) its ring of integers.

Step 1: \(\Lambda \)-adic forms

Define \(S(n, \psi \mid \Lambda) \) and specialization maps \(\nu_{k,r} : \Lambda \to \overline{\mathbb{Q}}_p \) such that

\[
\mathcal{F} \in S(n, \psi \mid \Lambda) \Rightarrow \nu_{k,r}(\mathcal{F}) \in S_k(np^r, \psi \zeta_{p^r} \omega^{2-k} \mid \mathcal{O}[\zeta_{p^r}]).
\]
General strategy

- \(S_k(n, \psi | \mathbb{Z}[\psi]) := \{ g \in S_k(n, \psi) \mid c(a, g) \in \mathbb{Z}[\psi] \text{ for all } a \subseteq \mathcal{O}_F \} \).
- Fix a prime \(p \) from now on. For simplicity assume \(p \geq 3 \).
- For a subring \(\mathbb{Z}[\psi] \subseteq A \subseteq \overline{\mathbb{Q}}_p \), set
 \[
 S_k(n, \psi | A) := S_k(n, \psi | \mathbb{Z}[\psi]) \otimes_{\mathbb{Z}[\psi]} A
 \]
- \(\mathcal{K} \) a finite extension of \(\mathbb{Q}_p((X)) \); \(\Lambda = \text{integral closure of } \mathbb{Z}_p[[X]] \).
 Assume \(\Lambda \supseteq \mathbb{Z}_p[\psi][[X]] \).
- \(\mathcal{K} := \mathcal{K} \cap \overline{\mathbb{Q}}_p \); \(\mathcal{O} \) its ring of integers.

Step 1: \(\Lambda \)-adic forms

Define \(S(\bar{n}, \psi | \Lambda) \) and specialization maps \(\nu_{k,r} : \Lambda \to \overline{\mathbb{Q}}_p \) such that

\[
\mathcal{F} \in S(\bar{n}, \psi | \Lambda) \Rightarrow \nu_{k,r}(\mathcal{F}) \in S_k(np^r, \psi \mathcal{O}_{\zeta_{p^r}} \omega^{2-k} | \mathcal{O}[\zeta_{p^r}]).
\]
General strategy

Step 2: Lifting

Define $S^\text{ord}_k(n, \psi | O) \subseteq S_k(n, \psi | O)$ (containing the f ordinary at $\lambda|p$) s.t.

$$f \in S^\text{ord}_k(n, \psi \omega^{2-k} | O) \Rightarrow \exists \mathcal{F} \in S^\text{ord}(\bar{n}, \psi \mid \Lambda) \text{ and } \nu_{k,0} \text{ s.t. } \nu_{k,0}(\mathcal{F}) = f.$$

Step 3: Patching – Theory of pseudo-representations

Write $f_{k,r} := \nu_{k,r}(\mathcal{F})$.

There exists $\varrho_{f_{k,r},\lambda}$ for infinitely many $\nu_{k,r}$

$$\Rightarrow \text{ There exists } \varrho_\mathcal{F} : G_F \to GL_2(\mathcal{K}) \text{ s.t. } \nu_{k,r}(\varrho_\mathcal{F}) = \varrho_{f_{k,r},\lambda} \text{ for almost every } \nu_{k,\zeta}.$$

$$f \text{ ordinary at } \lambda \quad \xrightarrow{\text{Step 2}} \quad \exists \mathcal{F} \text{ s.t. } \nu(\mathcal{F}) = f \quad \xrightarrow{\text{Step 3}}$$

$$\xrightarrow{\text{Step 3}} \exists \varrho_\mathcal{F} : G_F \to GL_2(\mathcal{K}) \quad \varrho_f,\lambda = \nu(\varrho_\mathcal{F}).$$
General strategy

Step 2: Lifting

Define $S^\text{ord}_k(n, \psi | \mathcal{O}) \subseteq S_k(n, \psi | \mathcal{O})$ (containing the f ordinary at $\lambda | p$) s.t.

$$f \in S^\text{ord}_k(n, \psi \omega^{2-k} | \mathcal{O}) \Rightarrow \exists \mathcal{F} \in S^\text{ord}(&\nu, \psi | \Lambda) \text{ and } \nu_{k,0} \text{ s.t. } \nu_{k,0}(\mathcal{F}) = f.$$

Step 3: Patching – Theory of pseudo-representations

Write $f_{k,r} := \nu_{k,r}(\mathcal{F})$.

There exists $\varrho_{f_{k,r},\lambda}$ for infinitely many $\nu_{k,r}$

\Rightarrow There exists $\varrho_{\mathcal{F}} : G_F \to \text{GL}_2(K)$ s.t.

$\nu_{k,r}(\varrho_{\mathcal{F}}) = \varrho_{f_{k,r},\lambda}$ for almost every $\nu_{k,\zeta}$

f ordinary at λ \quad \Rightarrow \quad $\exists \mathcal{F}$ s.t. $\nu(\mathcal{F}) = f$ \quad \Rightarrow

\Rightarrow \quad $\exists \varrho_{\mathcal{F}} : G_F \to \text{GL}_2(K)$ \quad \Rightarrow \quad $\varrho_{f,\lambda} = \nu(\varrho_{\mathcal{F}}).$
General strategy

Step 2: Lifting

Define $S^\text{ord}_k(n, \psi | \mathcal{O}) \subseteq S_k(n, \psi | \mathcal{O})$ (containing the f ordinary at $\lambda|p$) s.t.

$$f \in S^\text{ord}_k(n, \psi \omega^{2-k} | \mathcal{O}) \Rightarrow \exists \mathcal{F} \in S^\text{ord}(\overline{\mathcal{O}}, \psi | \Lambda) \text{ and } \nu_{k,0} \text{ s.t. } \nu_{k,0}(\mathcal{F}) = f.$$

Step 3: Patching – Theory of pseudo-representations

Write $f_{k,r} := \nu_{k,r}(\mathcal{F})$.

There exists $\rho_{f_{k,r}},\lambda$ for infinitely many $\nu_{k,r} \implies$ There exists $\rho_{\mathcal{F}} : G_F \to \text{GL}_2(\mathcal{K})$ s.t. $\nu_{k,r}(\rho_{\mathcal{F}}) = \rho_{f_{k,r},\lambda}$ for almost every $\nu_{k,\zeta}$

f ordinary at λ \hspace{1cm} $\exists \mathcal{F}$ s.t. $\nu(\mathcal{F}) = f$ \hspace{1cm} $\rho_{f,\lambda} = \nu(\rho_{\mathcal{F}})$.
General strategy

Step 2: Lifting

Define $S_{k}^{\text{ord}}(n, \psi \mid \mathcal{O}) \subseteq S_{k}(n, \psi \mid \mathcal{O})$ (containing the f ordinary at $\lambda \mid p$) s.t.

$$f \in S_{k}^{\text{ord}}(n, \psi \omega^{2-k} \mid \mathcal{O}) \Rightarrow \exists \mathcal{F} \in S^{\text{ord}}(\overline{n}, \psi \mid \Lambda) \text{ and } \nu_{k,0} \text{ s.t. } \nu_{k,0}(\mathcal{F}) = f.$$

Step 3: Patching – Theory of pseudo-representations

Write $f_{k,r} := \nu_{k,r}(\mathcal{F})$.

There exists $\varrho_{f_{k,r},\lambda}$ for infinitely many $\nu_{k,r}$ \quad \implies \quad There exists $\varrho_{\mathcal{F}} : G_{F} \to \text{GL}_{2}(\mathcal{K})$ s.t. $\nu_{k,r}(\varrho_{\mathcal{F}}) = \varrho_{f_{k,r},\lambda}$ for almost every $\nu_{k,\zeta}$

$$f \text{ ordinary at } \lambda \quad \implies \quad \exists \mathcal{F} \text{ s.t. } \nu(\mathcal{F}) = f$$

$$\implies \exists \varrho_{\mathcal{F}} : G_{F} \to \text{GL}_{2}(\mathcal{K}) \quad \implies \quad \varrho_{f,\lambda} = \nu(\varrho_{\mathcal{F}}).$$
General strategy

Step 2: Lifting

Define $S_{k}^{\text{ord}}(n, \psi | O) \subseteq S_{k}(n, \psi | O)$ (containing the f ordinary at $\lambda | p$) s.t.

$$f \in S_{k}^{\text{ord}}(n, \psi \omega^{2-k} | O) \Rightarrow \exists \mathcal{F} \in S_{k}^{\text{ord}}(\tilde{n}, \psi | \Lambda) \text{ and } \nu_{k,0} \text{ s.t. } \nu_{k,0}(\mathcal{F}) = f.$$

Step 3: Patching – Theory of pseudo-representations

Write $f_{k,r} := \nu_{k,r}(\mathcal{F})$.

There exists $\rho_{f_{k,r},\lambda}$ for infinitely many $\nu_{k,r}$ \implies There exists $\rho_{\mathcal{F}} : G_{F} \to \text{GL}_{2}(\mathcal{K})$ s.t. $\nu_{k,r}(\rho_{\mathcal{F}}) = \rho_{f_{k,r},\lambda}$ for almost every $\nu_{k,\zeta}$

f ordinary at λ \implies $\exists \mathcal{F}$ s.t. $\nu(\mathcal{F}) = f$ \implies

\implies $\exists \rho_{\mathcal{F}} : G_{F} \to \text{GL}_{2}(\mathcal{K})$ \implies $\rho_{f,\lambda} = \nu(\rho_{\mathcal{F}})$.
General strategy

Step 2: Lifting

Define \(S^\text{ord}_k(n, \psi \mid \mathcal{O}) \subseteq S_k(n, \psi \mid \mathcal{O}) \) (containing the \(f \) ordinary at \(\lambda \mid p \)) s.t.

\[
f \in S^\text{ord}_k(n, \psi_{\omega^{2-k}} \mid \mathcal{O}) \Rightarrow \exists \mathcal{F} \in S^\text{ord}(\bar{n}, \psi \mid \Lambda) \text{ and } \nu_{k,0} \text{ s.t. } \nu_{k,0}(\mathcal{F}) = f.
\]

Step 3: Patching – Theory of pseudo-representations

Write \(f_{k,r} := \nu_{k,r}(\mathcal{F}) \).

There exists \(\varrho_{f_{k,r},\lambda} \)

for infinitely many \(\nu_{k,r} \)

\[\implies\]

There exists \(\varrho_{\mathcal{F}} : G_F \to \text{GL}_2(\mathcal{K}) \) s.t.

\(\nu_{k,r}(\varrho_{\mathcal{F}}) = \varrho_{f_{k,r},\lambda} \) for almost every \(\nu_{k,\zeta} \)

\(f \) ordinary at \(\lambda \) \(\implies \exists \mathcal{F} \) s.t. \(\nu(\mathcal{F}) = f \)

\(\implies \exists \varrho_{\mathcal{F}} : G_F \to \text{GL}_2(\mathcal{K}) \implies \varrho_{f,\lambda} = \nu(\varrho_{\mathcal{F}}). \)
Wiles’ result and general notations

General strategy of the proof

Tools for the proof

Sketch of the proof

Are there any ordinary primes?
Step 1: Defining Λ-adic forms

- Recall that $p \geq 3$ and further assume $[\mathbb{Q}_\infty \cap F : \mathbb{Q}] = 1$.
- For $k \geq 1$, $r \geq 0$, define the specialization map

$$\nu_{k,r} : \mathbb{Z}_p[[X]] \rightarrow \mathbb{Z}_p[\zeta], \quad X \mapsto \zeta(1 + p)^{k-2} - 1,$$

where $\zeta^r = 1$.
- By the going-up theorem:

$$P_{k,r} \subseteq \Lambda \subseteq \mathcal{K}$$

$$\ker(\nu_{k,r}) \subseteq \mathbb{Z}_p[[X]] \subseteq \mathbb{Q}_p((X))$$

- Recall that $K = \mathcal{K} \cap \overline{\mathbb{Q}}_p$ and $\mathcal{O} = \Lambda \cap \overline{\mathbb{Q}}_p$.
- We may view $P_{k,r}$ as the kernel of an \mathcal{O}-algebra homomorphism $\nu_{k,r} : \Lambda \rightarrow \overline{\mathbb{Q}}_p$ extending $\nu_{k,r}$.
Step 1: Defining Λ-adic forms

- Recall that $p \geq 3$ and further assume $[\mathbb{Q}_\infty \cap F : \mathbb{Q}] = 1$.
- For $k \geq 1$, $r \geq 0$, define the specialization map

$$\nu_{k,r}: \mathbb{Z}_p[[X]] \rightarrow \mathbb{Z}_p[\zeta], \quad X \mapsto \zeta(1 + p)^{k-2} - 1,$$

where $\zeta^{p^r} = 1$.

- By the going-up theorem:

$$P_{k,r} \subseteq \Lambda \subseteq \mathcal{K}$$

$$\ker(\nu_{k,r}) \subseteq \mathbb{Z}_p[[X]] \subseteq \mathbb{Q}_p((X))$$

- Recall that $K = \mathcal{K} \cap \overline{\mathbb{Q}}_p$ and $\mathcal{O} = \Lambda \cap \overline{\mathbb{Q}}_p$.
- We may view $P_{k,r}$ as the kernel of an \mathcal{O}-algebra homomorphism $\nu_{k,r}: \Lambda \rightarrow \overline{\mathbb{Q}}_p$ extending $\nu_{k,r}$.
Step 1: Defining Λ-adic forms

- Recall that $p \geq 3$ and further assume $[\mathbb{Q}_\infty \cap F : \mathbb{Q}] = 1$.
- For $k \geq 1$, $r \geq 0$, define the specialization map

$$\nu_{k,r} : \mathbb{Z}_p[[X]] \to \mathbb{Z}_p[\zeta], \quad X \mapsto \zeta(1 + p)^{k-2} - 1,$$

where $\zeta^{p^r} = 1$.
- By the going-up theorem:

$$P_{k,r} \subseteq \Lambda \subseteq \mathcal{K}$$

$$\ker(\nu_{k,r}) \subseteq \mathbb{Z}_p[[X]] \subseteq \mathbb{Q}_p((X))$$

- Recall that $K = \mathcal{K} \cap \overline{\mathbb{Q}}_p$ and $\mathcal{O} = \Lambda \cap \overline{\mathbb{Q}}_p$.
- We may view $P_{k,r}$ as the kernel of an \mathcal{O}-algebra homomorphism $\nu_{k,r} : \Lambda \to \overline{\mathbb{Q}}_p$ extending $\nu_{k,r}$.
Step 1: Defining Λ-adic forms

- Recall that $p \geq 3$ and further assume $[\mathbb{Q}_\infty \cap F : \mathbb{Q}] = 1$.
- For $k \geq 1$, $r \geq 0$, define the specialization map

 \[
 \nu_{k,r} : \mathbb{Z}_p[[X]] \to \mathbb{Z}_p[\zeta], \quad X \mapsto \zeta(1 + p)^{k-2} - 1,
 \]

 where $\zeta^{p^r} = 1$.
- By the going-up theorem:

 \[
 \begin{array}{c}
 P_{k,r} \\ \downarrow \ker(\nu_{k,r}) \\
 \end{array}
 \leq \Lambda \leq \mathcal{K}
 \]

 \[
 \begin{array}{c}
 \mathbb{Z}_p[[X]] \\
 \end{array}
 \leq \mathbb{Q}_p((X))
 \]

- Recall that $K = \mathcal{K} \cap \overline{\mathbb{Q}}_p$ and $\mathcal{O} = \Lambda \cap \overline{\mathbb{Q}}_p$.
- We may view $P_{k,r}$ as the kernel of an \mathcal{O}-algebra homomorphism $\nu_{k,r} : \Lambda \to \overline{\mathbb{Q}}_p$ extending $\nu_{k,r}$.
For a fractional ideal a of F s.t. $(a, p) = 1$, we can write

$$N(a) = (1 + p)^\alpha \delta,$$

with $\delta \in \mu_{p-1}$, $\alpha \in \mathbb{Z}_p$.

Given $\psi: \mathbb{Q}_p^\infty \to \overline{\mathbb{Q}}^*$ and $\zeta^p = 1$, define

$$\psi: \lim_{\rightarrow} l_{np^t} \to \Lambda, \quad \psi(a) = \psi(a)(1 + X)^\alpha,$$

$$\varrho_\zeta: l_{p^r} \mathcal{O}_F \to \overline{\mathbb{Q}}^*, \quad \varrho_\zeta(a) = \zeta^\alpha,$$

$$\omega: l_{p \mathcal{O}_F} \to \overline{\mathbb{Q}}^*, \quad \omega(a) = N(a)/(1 + p)^\alpha = \delta.$$

We will call ω the Teichmüller character.
For a fractional ideal a of F s.t. $(a, p) = 1$, we can write

$$N(a) = (1 + p)^\alpha \delta,$$

with $\delta \in \mu_{p-1}$, $\alpha \in \mathbb{Z}_p$.

Given $\psi : I_{n\infty} \to \overline{\mathbb{Q}}^*$ and $\zeta^p = 1$, define

$$\psi : \lim_{\to t} I_{n^p t} \to \Lambda, \quad \psi(a) = \psi(a)(1 + X)^\alpha,$$

$$\varrho \zeta : I_{p^r \mathcal{O}_F} \to \overline{\mathbb{Q}}^*, \quad \varrho \zeta(a) = \zeta^\alpha,$$

$$\omega : I_{p\mathcal{O}_F} \to \overline{\mathbb{Q}}^*, \quad \omega(a) = N(a)/(1 + p)^\alpha = \delta.$$

We will call ω the Teichmüller character.
Definition

A \(\Lambda \)-adic cuspidal form \(\mathcal{F} \) over \(F \) of level \(n \) and character \(\psi: \lim_{\mathcal{I} \rightarrow \Lambda} l_{np^t} \rightarrow \Lambda \) is a collection of elements of \(\Lambda \)

\[
\{c(a, \mathcal{F})(X)\}_{0 \neq a \subseteq \mathcal{O}_F} \subseteq \Lambda,
\]

such that, for almost every \(\nu_{k,r} \), with \(k \geq 2, r \geq 0 \), there exists

\[
f_{\nu_{k,r}} \in S_k(n p^r, \psi \zeta \omega^{2-k} \mid \mathcal{O}[\zeta])
\]

whose associated Dirichlet series is

\[
D(f_{\nu_{k,r}}, s) = \sum_{0 \neq a \subseteq \mathcal{O}_F} \nu_{k,r}(c(a, \mathcal{F})(X)) N(a)^{-s}.
\]

- By abuse of notation, write \(\nu_{k,r}(\mathcal{F}) := f_{\nu_{k,r}} \).
- \(S(n, \psi \mid \Lambda) \) is the \(\Lambda \)-module of \(\Lambda \)-adic cusp forms.
- Set \(S(\mathcal{O}, \psi \mid \Lambda) = \bigcup_{t=0}^{\infty} S(np^t, \psi \mid \Lambda) \).
Definition

A \(\Lambda \)-adic cuspidal form \(\mathcal{F} \) over \(F \) of level \(n \) and character \(\psi : \lim_{\overline{t}} l_{np^t} \to \Lambda \) is a collection of elements of \(\Lambda \)

\[\{ c(a, \mathcal{F})(X) \}_{0 \neq a \subseteq \mathcal{O}_F} \subseteq \Lambda, \]

such that, for almost every \(\nu_{k,r} \), with \(k \geq 2, r \geq 0 \), there exists

\[f_{\nu_{k,r}} \in S_{k}(np^r, \psi \overline{\zeta} \omega^{2-k} | \mathcal{O}[\zeta]) \]

whose associated Dirichlet series is

\[D(f_{\nu_{k,r}}, s) = \sum_{0 \neq a \subseteq \mathcal{O}_F} \nu_{k,r}(c(a, \mathcal{F})(X)) N(a)^{-s}. \]

- By abuse of notation, write \(\nu_{k,r}(\mathcal{F}) := f_{\nu_{k,r}}. \)
- \(S(n, \psi | \Lambda) \) is the \(\Lambda \)-module of \(\Lambda \)-adic cusp forms.
- Set \(S(\overline{n}, \psi | \Lambda) = \bigcup_{t=0}^{\infty} S(np^t, \psi | \Lambda) \).
A Λ-adic cuspidal form F over F of level n and character $\psi: \lim \lim_{t} l_{npt} \to \Lambda$ is a collection of elements of Λ

$$\{c(a, F)(X)\}_{0 \neq a \subseteq \mathcal{O}_F} \subseteq \Lambda,$$

such that, for almost every $\nu_{k, r}$, with $k \geq 2$, $r \geq 0$, there exists

$$f_{\nu_{k, r}} \in S_k(np^r, \psi \varrho_\zeta \omega^{2-k} | \mathcal{O}[\zeta])$$

whose associated Dirichlet series is

$$D(f_{\nu_{k, r}}, s) = \sum_{0 \neq a \subseteq \mathcal{O}_F} \nu_{k, r}(c(a, F)(X)) N(a)^{-s}.$$

- By abuse of notation, write $\nu_{k, r}(F) := f_{\nu_{k, r}}$.
- $S(n, \psi | \Lambda)$ is the Λ-module of Λ-adic cusp forms.
- Set $S(n, \psi | \Lambda) = \bigcup_{t=0}^{\infty} S(np^t, \psi | \Lambda)$.

Francesc Fité (Universität Duisburg-Essen)
Definition

A \(\Lambda \)-adic cuspidal form \(\mathcal{F} \) over \(F \) of level \(n \) and character \(\psi : \lim \l_{n^p^t} \to \Lambda \)
is a collection of elements of \(\Lambda \)

\[
\{ c(a, \mathcal{F})(X) \}_{0 \neq a \subseteq \mathcal{O}_F} \subseteq \Lambda,
\]
such that, for almost every \(\nu_{k,r} \), with \(k \geq 2, r \geq 0 \), there exists

\[
f_{\nu_{k,r}} \in S_k(n^p^r, \psi \varrho \zeta \omega^{2-k} | \mathcal{O}[\zeta])
\]
whose associated Dirichlet series is

\[
D(f_{\nu_{k,r}}, s) = \sum_{0 \neq a \subseteq \mathcal{O}_F} \nu_{k,r}(c(a, \mathcal{F})(X)) N(a)^{-s}.
\]

- By abuse of notation, write \(\nu_{k,r}(\mathcal{F}) := f_{\nu_{k,r}} \).
- \(S(n, \psi | \Lambda) \) is the \(\Lambda \)-module of \(\Lambda \)-adic cusp forms.
- Set \(S(\overline{n}, \psi | \Lambda) = \bigcup_{t=0}^{\infty} S(n^p^t, \psi | \Lambda) \).
Definition

A Λ-adic cuspidal form F over F of level n and character ψ is a collection of elements of Λ

$$\{c(a, F)(X)\}_{0 \neq a \subseteq \mathcal{O}_F} \subseteq \Lambda,$$

such that, for almost every $\nu_{k,r}$, with $k \geq 2$, $r \geq 0$, there exists

$$f_{\nu_{k,r}} \in S_k(n p^r, \psi \varrho \zeta \omega^{2-k} | \mathcal{O}[\zeta])$$

whose associated Dirichlet series is

$$D(f_{\nu_{k,r}}, s) = \sum_{0 \neq a \subseteq \mathcal{O}_F} \nu_{k,r}(c(a, F)(X)) N(a)^{-s}.$$

By abuse of notation, write $\nu_{k,r}(F) := f_{\nu_{k,r}}$.

Set $S(\bar{n}, \psi | \Lambda) = \bigcup_{t=0}^{\infty} S(np^t, \psi | \Lambda)$.

Francesc Fité (Universität Duisburg-Essen)
Definition

A Λ-adic cuspidal form \mathcal{F} over F of level n and character $\psi : \lim \to \Lambda$ is a collection of elements of Λ

$$\{c(a, \mathcal{F})(X)\}_{0 \neq a \subseteq \mathcal{O}_F} \subseteq \Lambda,$$

such that, for almost every $\nu_{k,r}$, with $k \geq 2$, $r \geq 0$, there exists

$$f_{\nu_{k,r}} \in S_k(np^r, \psi_0 \zeta \omega^{2-k} \mid \mathcal{O}[\zeta])$$

whose associated Dirichlet series is

$$D(f_{\nu_{k,r}}, s) = \sum_{0 \neq a \subseteq \mathcal{O}_F} \nu_{k,r}(c(a, \mathcal{F})(X))N(a)^{-s}.$$
Step 2: The space of classical p-stabilized forms

- We work at level np^r, with $r \geq 1$.
- The Hida operator

\[e := \lim_{n \to \infty} T_{np^r}(p)^n! : S_k(np^r, \psi | \mathcal{O}) \to S_k(np^r, \psi | \mathcal{O}). \]

is an idempotent in $\text{End}_{\mathcal{O}}(S_k(np^r, \psi | \mathcal{O}))$.
- The space of p-stabilized cusp forms is

\[S^\text{ord}_k(np^r, \psi | \mathcal{O}) := eS_k(np^r, \psi | \mathcal{O}). \]

- Let $f \in S_k(np^r, \psi | \mathcal{O})$ be an eigenform

\[ef \neq 0 \iff f \text{ is ordinary} \]

- $\mathfrak{P} := \text{product of primes of } \mathcal{O}_F \text{ above } p \text{ not dividing } m$.
- ef is an eigenform of level $m\mathfrak{P}$.
- The eigenvalue of $T_{mp^r}(q)$ on ef is
Step 2: The space of classical p-stabilized forms

- We work at level np^r, with $r \geq 1$.
- The Hida operator

$$e := \lim_{n \to \infty} T_{np^r}(p)^n : S_k(np^r, \psi | \mathcal{O}) \to S_k(np^r, \psi | \mathcal{O}).$$

is an idempotent in $\text{End}_{\mathcal{O}}(S_k(np^r, \psi | \mathcal{O}))$.
- The space of p-stabilized cusp forms is

$$S^\text{ord}_k(np^r, \psi | \mathcal{O}) := eS_k(np^r, \psi | \mathcal{O}).$$

- Let $f \in S_k(np^r, \psi | \mathcal{O})$ be an eigenform of level $m|np^r$.

$$ef \neq 0 \iff f \text{ is ordinary}$$

- $\mathfrak{P} := \text{product of primes of } \mathcal{O}_F \text{ above } p \text{ not dividing } m$.
- ef is an eigenform of level $m\mathfrak{P}$.
- The eigenvalue of $T_m\mathfrak{P}(q)$ on ef is
Step 2: The space of classical p-stabilized forms

- We work at level np^r, with $r \geq 1$.
- The Hida operator

$$e := \lim_{n \to \infty} T_{np^r}(p)^{n!} : S_k(np^r, \psi | \mathcal{O}) \to S_k(np^r, \psi | \mathcal{O}).$$

is an idempotent in $\text{End}_{\mathcal{O}}(S_k(np^r, \psi | \mathcal{O}))$.
- The space of p-stabilized cusp forms is

$$S_k^{\text{ord}}(np^r, \psi | \mathcal{O}) := eS_k(np^r, \psi | \mathcal{O}).$$

- Let $f \in S_k(np^r, \psi | \mathcal{O})$ be an eigenform of level $m|np^r$.

$$ef \neq 0 \iff f \text{ is ordinary}$$

- $\mathfrak{P} := \text{product of primes of } \mathcal{O}_F \text{ above } p \text{ not dividing } m$.
- ef is an eigenform of level $m\mathfrak{P}$.
- The eigenvalue of $T_{m\mathfrak{P}}(q)$ on ef is

 - the same as for f for $q \nmid \mathfrak{P}$
 - the unit root of $x^2 - c(q,f)x + \psi(q)N(q)^{k-1}$ for $q|\mathfrak{P}$,
Step 2: The space of classical p-stabilized forms

- We work at level np^r, with $r \geq 1$.
- The Hida operator

$$e := \lim_{n \to \infty} T_{np^r}(p)^{n!} : S_k(np^r, \psi | O) \to S_k(np^r, \psi | O).$$

is an idempotent in $\text{End}_O(S_k(np^r, \psi | O))$.
- The space of p-stabilized cusp forms is

$$S_k^\text{ord}(np^r, \psi | O) := eS_k(np^r, \psi | O).$$

- Let $f \in S_k(np^r, \psi | O)$ be an eigenform of level $m|np^r$.

$$ef \neq 0 \iff f \text{ is ordinary}$$

- $\mathfrak{P} := \text{product of primes of } O_F \text{ above } p \text{ not dividing } m$.
- ef is an eigenform of level $m\mathfrak{P}$.
- The eigenvalue of $T_{m\mathfrak{P}}(q)$ on ef is

 - the same as for f for $q \nmid \mathfrak{P}$;
 - the unit root of $x^2 - c(q,f)x + \psi(q)N(q)^{k-1}$ for $q|\mathfrak{P}$.
Step 2: The space of classical p-stabilized forms

- We work at level np^r, with $r \geq 1$.
- The Hida operator
 \[e := \lim_{n \to \infty} T_{np^r}(p)^n : S_k(np^r, \psi | O) \to S_k(np^r, \psi | O). \]
 is an idempotent in $\text{End}_O(S_k(np^r, \psi | O))$.
- The space of p-stabilized cusp forms is
 \[S_k^{\text{ord}}(np^r, \psi | O) := eS_k(np^r, \psi | O). \]
- Let $f \in S_k(np^r, \psi | O)$ be an eigenform of level $m|np^r$.
 \[ef \equiv 0 \iff f \text{ is ordinary} \]
- $\mathfrak{P} := \text{product of primes of } O_F \text{ above } p \text{ not dividing } m.$
- ef is an eigenform of level $m\mathfrak{P}$.
- The eigenvalue of $T_{m\mathfrak{P}}(q)$ on ef is
 - the same as for f for $q \nmid \mathfrak{P}$;
 - the unit root of $x^2 - c(q, f)x + \psi(q)N(q)^{k-1}$ for $q|\mathfrak{P}$.
Step 2: The space of classical p-stabilized forms

- We work at level np^r, with $r \geq 1$.
- The Hida operator

$$e := \lim_{n \to \infty} T_{np^r}(p)^{n!} : S_k(np^r, \psi \mid \mathcal{O}) \to S_k(np^r, \psi \mid \mathcal{O}).$$

is an idempotent in $\text{End}_{\mathcal{O}}(S_k(np^r, \psi \mid \mathcal{O}))$.
- The space of p-stabilized cusp forms is

$$S_k^{\text{ord}}(np^r, \psi \mid \mathcal{O}) := eS_k(np^r, \psi \mid \mathcal{O}).$$

- Let $f \in S_k(np^r, \psi \mid \mathcal{O})$ be an eigenform of level $m|np^r$.

$$ef \neq 0 \iff f \text{ is ordinary}$$

- $\mathfrak{P} := \text{product of primes of } \mathcal{O}_F \text{ above } p \text{ not dividing } m$.
- ef is an eigenform of level $m\mathfrak{P}$.
- The eigenvalue of $T_{m\mathfrak{P}}(q)$ on ef is
 - the same as for f for $q \nmid \mathfrak{P}$;
 - the unit root of $x^2 - c(q, f)x + \psi(q)N(q)^{k-1}$ for $q | \mathfrak{P}$.
Example

- $F = \mathbb{Q}$ and $N \geq 1$ with $(N, p) = 1$.
- Let $f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi)$ be an ordinary eigenform.
- $x^2 - c_p(f)x + \psi(p)p^{k-1}$ has roots α, β and suppose that α is a unit.
- Using usual relations between Hecke operators one can check that $T_{Np}(p)$ acts on $\langle f, f(pz) \rangle$ by means of

$$B = \begin{pmatrix} c_p & 1 \\ -\psi(p)p^{k-1} & 0 \end{pmatrix}.$$

- B has eigenvectors $f_\alpha(z) := f(z) - \beta f(pz)$, $f_\beta(z) := f(z) - \alpha f(pz)$:

$$T_{Np}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{Np}(p)(f_\beta) = \beta f_\beta$$
Example

- \(F = \mathbb{Q} \) and \(N \geq 1 \) with \((N, p) = 1\).
- Let \(f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi) \) be an ordinary eigenform.
- \(x^2 - c_p(f)x + \psi(p)p^{k-1} \) has roots \(\alpha, \beta \) and suppose that \(\alpha \) is a unit.
- Using usual relations between Hecke operators one can check that \(T_{Np}(p) \) acts on \(\langle f, f(pz) \rangle \) by means of

\[
B = \begin{pmatrix}
 c_p & 1 \\
-\psi(p)p^{k-1} & 0
\end{pmatrix}.
\]

- \(B \) has eigenvectors \(f_\alpha(z) := f(z) - \beta f(pz) \), \(f_\beta(z) := f(z) - \alpha f(pz) \):

\[
T_{Np}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{Np}(p)(f_\beta) = \beta f_\beta
\]
Example

- $F = \mathbb{Q}$ and $N \geq 1$ with $(N, p) = 1$.
- Let $f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi)$ be an ordinary eigenform.
- $x^2 - c_p(f)x + \psi(p)p^{k-1}$ has roots α, β and suppose that α is a unit.
- Using usual relations between Hecke operators one can check that $T_{Np}(p)$ acts on $\langle f, f(pz) \rangle$ by means of

$$B = \begin{pmatrix} c_p & 1 \\ -\psi(p)p^{k-1} & 0 \end{pmatrix}. $$

- B has eigenvectors $f_\alpha(z) := f(z) - \beta f(pz)$, $f_\beta(z) := f(z) - \alpha f(pz)$:

$$T_{Np}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{Np}(p)(f_\beta) = \beta f_\beta$$

$$= \epsilon f_\alpha(z) = f_\alpha(z), \quad \epsilon f_\beta(z) = 0.$$
Example

- $F = \mathbb{Q}$ and $N \geq 1$ with $(N, p) = 1$.
- Let $f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi)$ be an ordinary eigenform.
- $x^2 - c_p(f)x + \psi(p)p^{k-1}$ has roots α, β and suppose that α is a unit.
- Using usual relations between Hecke operators one can check that $T_{NP}(p)$ acts on $\langle f, f(pz) \rangle$ by means of

$$B = \begin{pmatrix} c_p & 1 \\ -\psi(p)p^{k-1} & 0 \end{pmatrix}.$$

- B has eigenvectors $f_\alpha(z) := f(z) - \beta f(pz)$, $f_\beta(z) := f(z) - \alpha f(pz)$:

$$T_{NP}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{NP}(p)(f_\beta) = \beta f_\beta$$

$$\Rightarrow \quad ef_\alpha(z) = f_\alpha(z), \quad ef_\beta(z) = 0$$

$$\Rightarrow \quad ef(z) = \frac{\alpha}{\alpha - \beta} f_\alpha(z), \quad e(f(pz)) = \frac{1}{\alpha - \beta} f_\alpha(z).$$
Example

- \(F = \mathbb{Q} \) and \(N \geq 1 \) with \((N, p) = 1 \).
- Let \(f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi) \) be an ordinary eigenform.
- \(x^2 - c_p(f)x + \psi(p)p^{k-1} \) has roots \(\alpha, \beta \) and suppose that \(\alpha \) is a unit.
- Using usual relations between Hecke operators one can check that \(T_{Np}(p) \) acts on \(\langle f, f(pz) \rangle \) by means of

\[
B = \begin{pmatrix}
 c_p & 1 \\
 -\psi(p)p^{k-1} & 0
\end{pmatrix}.
\]

- \(B \) has eigenvectors \(f_\alpha(z) := f(z) - \beta f(pz), f_\beta(z) := f(z) - \alpha f(pz) \):

\[
T_{Np}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{Np}(p)(f_\beta) = \beta f_\beta \quad \Rightarrow
\]

\[
\Rightarrow \quad ef_\alpha(z) = f_\alpha(z), \quad ef_\beta(z) = 0
\]

\[
\Rightarrow \quad ef(z) = \frac{\alpha}{\alpha - \beta} f_\alpha(z), \quad e(f(pz)) = \frac{1}{\alpha - \beta} f_\alpha(z).
\]
Example

- $F = \mathbb{Q}$ and $N \geq 1$ with $(N, p) = 1$.
- Let $f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi)$ be an ordinary eigenform.
- $x^2 - c_p(f)x + \psi(p)p^{k-1}$ has roots α, β and suppose that α is a unit.
- Using usual relations between Hecke operators one can check that $T_{Np}(p)$ acts on $\langle f, f(pz) \rangle$ by means of
 \[
 B = \begin{pmatrix}
 c_p & 1 \\
 -\psi(p)p^{k-1} & 0
 \end{pmatrix}.
 \]
- B has eigenvectors $f_\alpha(z) := f(z) - \beta f(pz)$, $f_\beta(z) := f(z) - \alpha f(pz)$:
 \[
 T_{Np}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{Np}(p)(f_\beta) = \beta f_\beta \quad \Rightarrow
 \]
 \[
 \Rightarrow \quad ef_\alpha(z) = f_\alpha(z), \quad ef_\beta(z) = 0 \quad \Rightarrow
 \]
 \[
 \Rightarrow \quad ef(z) = \frac{\alpha}{\alpha - \beta} f_\alpha(z), \quad e(f(pz)) = \frac{1}{\alpha - \beta} f_\alpha(z).
 \]
Example

- $F = \mathbb{Q}$ and $N \geq 1$ with $(N, p) = 1$.
- Let $f = \sum_{n \geq 1} c_n q^n \in S_k(\Gamma_0(N), \psi)$ be an ordinary eigenform.
- $x^2 - c_p(f)x + \psi(p)p^{k-1}$ has roots α, β and suppose that α is a unit.
- Using usual relations between Hecke operators one can check that $T_{NP}(p)$ acts on $\langle f, f(pz) \rangle$ by means of

$$B = \begin{pmatrix} c_p & 1 \\ -\psi(p)p^{k-1} & 0 \end{pmatrix}.$$

- B has eigenvectors $f_\alpha(z) := f(z) - \beta f(pz)$, $f_\beta(z) := f(z) - \alpha f(pz)$:

$$T_{NP}(p)(f_\alpha) = \alpha f_\alpha, \quad T_{NP}(p)(f_\beta) = \beta f_\beta \quad \Rightarrow$$

$$\Rightarrow e f_\alpha(z) = f_\alpha(z), \quad e f_\beta(z) = 0 \quad \Rightarrow$$

$$\Rightarrow e f(z) = \frac{\alpha}{\alpha - \beta} f_\alpha(z), \quad e(f(pz)) = \frac{1}{\alpha - \beta} f_\alpha(z).$$
The Lifting Theorem

- **The space of p-stabilized Λ-adic forms**: There is an idempotent

$$E : S(\overline{n}, \psi | \Lambda) \to S(\overline{n}, \psi | \Lambda)$$

of $\text{End}_\Lambda(S(\overline{n}, \psi | \Lambda))$ s.t. for almost every ν we have

$$\nu(E(F)) = e(\nu(F)).$$

Theorem (Wiles, helped by Taylor & Shimura)

$S^{\text{ord}}(\overline{n}, \psi | \Lambda) := E S(\overline{n}, \psi | \Lambda)$ is free Λ-module of finite rank.

- **Hecke operators**: For every $a \subseteq \mathcal{O}_F$, one can define Λ-linear maps

$$T(a) : S(\overline{n}, \psi | \Lambda) \to S(\overline{n}, \psi | \Lambda)$$

s.t. for almost every ν we have $\nu(T(a)(F)) = T(a)(\nu(F)).$
The Lifting Theorem

- **The space of \(p \)-stabilized \(\Lambda \)-adic forms**: There is an idempotent

\[\mathcal{E} : S(\bar{n}, \psi \mid \Lambda) \rightarrow S(\bar{n}, \psi \mid \Lambda) \]

of \(\text{End}_\Lambda(S(\bar{n}, \psi \mid \Lambda)) \) s.t. for almost every \(\nu \) we have

\[\nu(\mathcal{E}(\mathcal{F})) = e(\nu(\mathcal{F})) \].

Theorem (Wiles, helped by Taylor & Shimura)

\(S^{\text{ord}}(\bar{n}, \psi \mid \Lambda) := \mathcal{E} S(\bar{n}, \psi \mid \Lambda) \) is free \(\Lambda \)-module of finite rank.

- **Hecke operators**: For every \(a \subseteq \mathcal{O}_F \), one can define \(\Lambda \)-linear maps

\[T(a) : S(\bar{n}, \psi \mid \Lambda) \rightarrow S(\bar{n}, \psi \mid \Lambda) \]

s.t. for almost every \(\nu \) we have \(\nu(T(a)(\mathcal{F})) = T(a)(\nu(\mathcal{F})) \).
The Lifting Theorem

- **The space of p-stabilized Λ-adic forms**: There is an idempotent

 $$E : S(\overline{n}, \psi | \Lambda) \to S(\overline{n}, \psi | \Lambda)$$

 of $\text{End}_\Lambda(S(\overline{n}, \psi | \Lambda))$ s.t. for almost every ν we have

 $$\nu(E(\mathcal{F})) = e(\nu(\mathcal{F})).$$

Theorem (Wiles, helped by Taylor & Shimura)

$S^{\text{ord}}(\overline{n}, \psi | \Lambda) := E S(\overline{n}, \psi | \Lambda)$ is free Λ-module of finite rank.

- **Hecke operators**: For every $a \subseteq \mathcal{O}_F$, one can define Λ-linear maps

 $$T(a) : S(\overline{n}, \psi | \Lambda) \to S(\overline{n}, \psi | \Lambda)$$

 s.t. for almost every ν we have $\nu(T(a)(\mathcal{F})) = T(a)(\nu(\mathcal{F})).$
The lifting theorem

- $\mathcal{F} \in S(\overline{n}, \psi | \Lambda)$ is called:
 - a Hecke eigenform if it is an eigenvector for $T(a)(\mathcal{F})$ for every $a \subseteq \mathcal{O}_F$.
 - normalized if $c(\mathcal{O}_F, \mathcal{F})(X) = 1$.
 - a newform if it is a normalized eigenform s.t. $\nu(\mathcal{F})$ is a newform of level divisible by n_0 (with $(n_0, p) = 1$) for almost every ν.
- In fact, \mathcal{F} is a newform $\iff \nu(\mathcal{F})$ is a newform for infinitely many ν.

Theorem (Hida for $F = \mathbb{Q}$ and $k \geq 2$; Wiles in general)

For a newform $f \in S^\text{ord}_k(n, \psi \omega^{2-k} | \mathcal{O})$, $k \geq 1$, there exist $\Lambda \supseteq \mathbb{Z}_p[[X]]$, $\nu_{k,0}$, and a newform $\mathcal{F} \in S^\text{ord}(\overline{n}, \psi | \Lambda)$ s.t. $\nu_{k,0}(\mathcal{F}) = f$.

Francesc Fité (Universität Duisburg-Essen)
The lifting theorem

- \(\mathcal{F} \in S(\overline{n}, \psi | \Lambda) \) is called:
 - a Hecke eigenform if it is an eigenvector for \(T(a)(\mathcal{F}) \) for every \(a \subseteq \mathcal{O}_F \).
 - normalized if \(c(\mathcal{O}_F, \mathcal{F})(X) = 1 \).
 - a newform if it is a normalized eigenform s.t. \(\nu(\mathcal{F}) \) is a newform of level divisible by \(n_0 \) (with \((n_0, p) = 1 \)) for almost every \(\nu \).
- In fact, \(\mathcal{F} \) is a newform \(\iff \nu(\mathcal{F}) \) is a newform for infinitely many \(\nu \).

Theorem (Hida for \(F = \mathbb{Q} \) and \(k \geq 2 \); Wiles in general)

For a newform \(f \in S^\text{ord}_k(n, \psi \omega^{2-k} | \mathcal{O}), \ k \geq 1, \) there exist \(\Lambda \supseteq \mathbb{Z}_p[[X]], \nu_{k,0}, \) and a newform \(\mathcal{F} \in S^\text{ord}(\overline{n}, \psi | \Lambda) \) s.t. \(\nu_{k,0}(\mathcal{F}) = f \).
The lifting theorem

- $\mathcal{F} \in S(\overline{n}, \psi \mid \Lambda)$ is called:
 - a Hecke eigenform if it is an eigenvector for $T(a)(\mathcal{F})$ for every $a \subseteq \mathcal{O}_F$.
 - normalized if $c(\mathcal{O}_F, \mathcal{F})(X) = 1$.
 - a newform if it is a normalized eigenform s.t. $\nu(\mathcal{F})$ is a newform of level divisible by n_0 (with $(n_0, p) = 1$) for almost every ν.

- In fact, \mathcal{F} is a newform $\iff \nu(\mathcal{F})$ is a newform for infinitely many ν.

Theorem (Hida for $F = \mathbb{Q}$ and $k \geq 2$; Wiles in general)

For a newform $f \in S^\text{ord}_k(n, \psi \omega^{2-k} \mid \mathcal{O})$, $k \geq 1$, there exist $\Lambda \supseteq \mathbb{Z}_p[[X]]$, $\nu_{k,0}$, and a newform $\mathcal{F} \in S^\text{ord}(\overline{n}, \psi \mid \Lambda)$ s.t. $\nu_{k,0}(\mathcal{F}) = f$.
The lifting theorem

- $\mathcal{F} \in S(\bar{n}, \psi \mid \Lambda)$ is called:
 - a \textit{Hecke eigenform} if it is an eigenvector for $T(\alpha)(\mathcal{F})$ for every $\alpha \subseteq \mathcal{O}_F$.
 - \textit{normalized} if $c(\mathcal{O}_F, \mathcal{F})(X) = 1$.
 - a \textit{newform} if it is a normalized eigenform s.t. $\nu(\mathcal{F})$ is a newform of level divisible by n_0 (with $(n_0, p) = 1$) for almost every ν.

- In fact, \mathcal{F} is a newform $\iff \nu(\mathcal{F})$ is a newform for \textit{infinitely many} ν.

\begin{itemize}
\item Theorem (Hida for $F = \mathbb{Q}$ and $k \geq 2$; Wiles in general)
\end{itemize}

For a newform $f \in S^\text{ord}_k(n, \psi \omega^{2-k} \mid \mathcal{O})$, $k \geq 1$, there exist $\Lambda \supseteq \mathbb{Z}_p[[X]]$, $\nu_{k,0}$, and a newform $\mathcal{F} \in S^\text{ord}(\bar{n}, \psi \mid \Lambda)$ s.t. $\nu_{k,0}(\mathcal{F}) = f$.
The lifting theorem

* $\mathcal{F} \in S(\overline{n}, \psi \mid \Lambda)$ is called:

 - a Hecke eigenform if it is an eigenvector for $T(a)(\mathcal{F})$ for every $a \subseteq \mathcal{O}_F$.
 - normalized if $c(\mathcal{O}_F, \mathcal{F})(X) = 1$.
 - a newform if it is a normalized eigenform s.t. $\nu(\mathcal{F})$ is a newform of level divisible by n_0 (with $(n_0, p) = 1$) for almost every ν.

* In fact, \mathcal{F} is a newform $\iff \nu(\mathcal{F})$ is a newform for infinitely many ν.

Theorem (Hida for $F = \mathbb{Q}$ and $k \geq 2$; Wiles in general)

*For a newform $f \in S^\text{ord}_k(n, \psi \omega^{2-k} \mid \mathcal{O}), k \geq 1$, there exist $\Lambda \supseteq \mathbb{Z}_p[[X]]$, $\nu_{k,0}$, and a newform $\mathcal{F} \in S^\text{ord}(\overline{n}, \psi \mid \Lambda)$ s.t. $\nu_{k,0}(\mathcal{F}) = f$.***
Step 3: Patching

- Recall the setting

\[\Lambda \subseteq \mathcal{K} \]
\[\mathbb{Z}_p[\psi][[X]] \subseteq \mathbb{Q}_p[\psi]((X)) \]
\[\mathcal{O} \subseteq \mathcal{K} \]
\[\mathbb{Z}_p[\psi] \subseteq \mathbb{Q}_p[\psi] \]

- There are two types of prime ideals \(P \subseteq \Lambda \) of height 1:
 a) \(P|\langle p \rangle \) (only a finite number); \(\Lambda/P \) finite extension of \(\mathbb{F}_p[[X]] \).
 b) \(P \) is generated by a polynomial not divisible by \(p \); \(\Lambda/P \) finite extension of \(\mathbb{Z}_p \).

- From now on, “height 1 prime” = “height 1 prime of type b)”.

- Consider \(\{P_n\}_{n=1}^{\infty} \) a set of distinct height 1 primes of \(\Lambda \);
- \(K_n = \) field of fractions of \(\Lambda/P_n \);
- \(\mathcal{O}_n = \) integral closure of \(\Lambda/P_n \) in \(K_n \).
Step 3: Patching

- Recall the setting

\[
\begin{array}{ccc}
\Lambda & \subseteq & K \\
\mid & & \mid \\
\mathbb{Z}_p[\psi][[X]] & \subseteq & \mathbb{Q}_p[\psi](X) \\
\mid & & \mid \\
\mathbb{Z}_p[\psi] & \subseteq & \mathbb{Q}_p[\psi]
\end{array}
\]

- There are two types of prime ideals \(P \subseteq \Lambda \) of height 1:
 a) \(P | (p) \) (only a finite number); \(\Lambda/P \) finite extension of \(\mathbb{F}_p[[X]] \).
 b) \(P \) is generated by a polynomial not divisible by \(p \); \(\Lambda/P \) finite extension of \(\mathbb{Z}_p \).

- From now on, “height 1 prime” = “height 1 prime of type b”

- Consider \(\{ P_n \}_{n=1}^{\infty} \) a set of distinct height 1 primes of \(\Lambda \);
- \(K_n = \) field of fractions of \(\Lambda/P_n \).
- \(\mathcal{O}_n = \) integral closure of \(\Lambda/P_n \) in \(K_n \).
Step 3: Patching

- Recall the setting

\[
\begin{align*}
\Lambda & \subseteq K \\
\mathbb{Z}_p[\psi][[X]] & \subseteq \mathbb{Q}_p[\psi]((X)) \\
\mathcal{O} & \subseteq K \\
\mathbb{Z}_p[\psi] & \subseteq \mathbb{Q}_p[\psi]
\end{align*}
\]

- There are two types of prime ideals \(P \subseteq \Lambda \) of height 1:
 a) \(P|_p(p) \) (only a finite number); \(\Lambda/P \) finite extension of \(\mathbb{F}_p[[X]] \).
 b) \(P \) is generated by a polynomial not divisible by \(p \); \(\Lambda/P \) finite extension of \(\mathbb{Z}_p \).

- From now on, “height 1 prime” = “height 1 prime of type b)”.

- Consider \(\{P_n\}_{n=1}^{\infty} \) a set of distinct height 1 primes of \(\Lambda \);
- \(K_n = \text{field of fractions of } \Lambda/P_n \).
- \(\mathcal{O}_n = \text{integral closure of } \Lambda/P_n \text{ in } K_n \).
Patching Theorem (Wiles)

Suppose that for each \(n \geq 1 \), there exists a continuous odd representation

\[\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n) \]

unramified outside \(np \), for some \(n \subseteq \mathcal{O}_F \). Suppose that for every prime \(q \nmid np \), there exist \(c_q(X), \varepsilon_q(X) \in \Lambda \) s.t.

\[
\begin{align*}
\text{Tr}(\varrho_n)(\text{Frob}_q) &\equiv c_q(X) \pmod{P_n}, \\
\text{det}(\varrho_n)(\text{Frob}_q) &\equiv \varepsilon_q(X) \pmod{P_n}.
\end{align*}
\]

Then there exists a continuous odd representation \(\varrho : G_F \to \text{GL}_2(\mathcal{K}) \) unramified outside \(np \) s.t. for every prime \(q \nmid np \)

\[
\begin{align*}
\text{Tr}(\varrho)(\text{Frob}_q) &= c_q(X) \in \Lambda, \\
\text{det}(\varrho)(\text{Frob}_q) &= \varepsilon_q(X) \in \Lambda.
\end{align*}
\]
Patching Theorem (Wiles)

Suppose that for each $n \geq 1$, there exists a continuous odd representation

$$\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n)$$

unramified outside np, for some $n \subseteq \mathcal{O}_F$. Suppose that for every prime $q \nmid np$, there exist $c_q(X), \varepsilon_q(X) \in \Lambda$ s.t.

$$\text{Tr}(\varrho_n)(\text{Frob}_q) \equiv c_q(X) \pmod{P_n},$$
$$\text{det}(\varrho_n)(\text{Frob}_q) \equiv \varepsilon_q(X) \pmod{P_n}.$$

Then there exists a continuous odd representation $\varrho : G_F \to \text{GL}_2(\mathcal{K})$ unramified outside np s.t. for every prime $q \nmid np$

$$\text{Tr}(\varrho)(\text{Frob}_q) = c_q(X) \in \Lambda,$$
$$\text{det}(\varrho)(\text{Frob}_q) = \varepsilon_q(X) \in \Lambda.$$
Patching Theorem (Wiles)

Suppose that for each \(n \geq 1 \), there exists a continuous odd representation

\[
\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n)
\]

unramified outside \(np \), for some \(n \subseteq \mathcal{O}_F \). Suppose that for every prime \(q \nmid np \), there exist \(c_q(X), \varepsilon_q(X) \in \Lambda \) s.t.

\[
\text{Tr}(\varrho_n)(\text{Frob}_q) \equiv c_q(X) \pmod{P_n},
\]

\[
\det(\varrho_n)(\text{Frob}_q) \equiv \varepsilon_q(X) \pmod{P_n}.
\]

Then there exists a continuous odd representation \(\varrho : G_F \to \text{GL}_2(\mathcal{K}) \) unramified outside \(np \) s.t. for every prime \(q \nmid np \)

\[
\text{Tr}(\varrho)(\text{Frob}_q) = c_q(X) \in \Lambda,
\]

\[
\det(\varrho)(\text{Frob}_q) = \varepsilon_q(X) \in \Lambda.
\]
Pseudo-representations

Definition

Let G be a profinite group and let R be a commutative topological integral domain. A *pseudo-representation* of G into R is a triple $\pi = (A_\pi, D_\pi, C_\pi)$ of continuous maps

$$A_\pi : G \to R, \quad D_\pi : G \to R, \quad C_\pi : G \times G \to R$$

satisfying the following conditions for all elements $g, g_i \in G$:

i) $A_\pi(g_1 g_2) = A_\pi(g_1) A_\pi(g_2) + C_\pi(g_1, g_2)$.

ii) $D_\pi(g_1 g_2) = D_\pi(g_1) D_\pi(g_2) + C_\pi(g_1, g_2)$.

iii) $C(g_1 g_2, g_3) = A_\pi(g_1) C_\pi(g_2, g_3) + D_\pi(g_2) C_\pi(g_1, g_3)$.

iv) $C(g_1, g_2 g_3) = A_\pi(g_3) C_\pi(g_1, g_2) + D_\pi(g_2) C_\pi(g_1, g_3)$.

v) $A_\pi(1) = D_\pi(1) = 1$.

vi) $C_\pi(g, 1) = C_\pi(1, g) = 0$.

vii) $C_\pi(g_1, g_2) C_\pi(g_3, g_4) = C_\pi(g_1, g_4) C_\pi(g_3, g_2)$.
Pseudo-representations vs. Representations

Lemma

\[\varrho : G \to \text{GL}_2(R) \text{ is a rep. s.t.} \]
\[\varrho(g) = \begin{pmatrix} a(g) & b(g) \\ c(g) & d(g) \end{pmatrix} \]
\[\implies \begin{cases} \pi := (A_\pi(\cdot), D_\pi(\cdot), C_\pi(\cdot, \cdot)) \\ \text{is a pseudo-rep., where} \\ A_\pi(g) := a(g), \ D_\pi(g) := d(g), \\ C_\pi(g_1, g_2) := b(g_1)c(g_2). \end{cases} \]

Conversely, if \(\pi = (A_\pi, D_\pi, C_\pi) \) is a pseudo-representation of \(G \) into \(R \) s.t.
there exist \(g_1, g_2 \in G \) with \(C_\pi(g_1, g_2) \in R^* \), then

\[\varrho(g) := \begin{pmatrix} A_\pi(g) & C_\pi(g, g_2)/C_\pi(g_1, g_2) \\ C_\pi(g_1, g) & D_\pi(g) \end{pmatrix} \]

is a representation \(\varrho : G \to \text{GL}_2(R) \).

- If \(R \) is a field, then every pseudo-rep. comes from a rep.
- \(\text{Tr}(\pi)(g) := A_\pi(g) + D_\pi(g), \quad \det(\pi)(g) := A_\pi(g)D_\pi(g) - C_\pi(g, g). \)
Lemma

\(\varrho : G \to \text{GL}_2(R) \) is a rep. s.t.
\[
\varrho(g) = \begin{pmatrix} a(g) & b(g) \\ c(g) & d(g) \end{pmatrix}
\]

\[\Rightarrow\]
\[
\pi := (A_\pi(\cdot), D_\pi(\cdot), C_\pi(\cdot, \cdot))
\]
is a pseudo-rep., where
\[
A_\pi(g) := a(g), \quad D_\pi(g) := d(g),
\]
\[
C_\pi(g_1, g_2) := b(g_1)c(g_2).
\]

Conversely, if \(\pi = (A_\pi, D_\pi, C_\pi) \) is a pseudo-representation of \(G \) into \(R \) s.t.
there exist \(g_1, g_2 \in G \) with \(C_\pi(g_1, g_2) \in R^* \), then
\[
\varrho(g) := \begin{pmatrix} A_\pi(g) & C_\pi(g, g_2) \ C_\pi(g_1, g) \ D_\pi(g) \end{pmatrix}
\]
is a representation \(\varrho : G \to \text{GL}_2(R) \).

- If \(R \) is a field, then every pseudo-rep. comes from a rep.
- \(\text{Tr}(\pi)(g) := A_\pi(g) + D_\pi(g) \), \(\det(\pi)(g) := A_\pi(g)D_\pi(g) - C_\pi(g, g) \).
Lemma

\[\varrho : G \rightarrow \text{GL}_2(R) \text{ is a rep. s.t.} \]
\[\varrho(g) = \begin{pmatrix} a(g) & b(g) \\ c(g) & d(g) \end{pmatrix} \Rightarrow \left\{ \begin{array}{l}
\pi := (A_\pi(\cdot), D_\pi(\cdot), C_\pi(\cdot, \cdot)) \\
is a pseudo-rep., where \\
A_\pi(g) := a(g), D_\pi(g) := d(g), \\
C_\pi(g_1, g_2) := b(g_1)c(g_2).
\end{array} \right. \]

Conversely, if \(\pi = (A_\pi, D_\pi, C_\pi) \) is a pseudo-representation of \(G \) into \(R \) s.t. there exist \(g_1, g_2 \in G \) with \(C_\pi(g_1, g_2) \in R^* \), then

\[\varrho(g) := \begin{pmatrix} A_\pi(g) & C_\pi(g, g_2)/C_\pi(g_1, g_2) \\ C_\pi(g_1, g) & D_\pi(g) \end{pmatrix} \]

is a representation \(\varrho : G \rightarrow \text{GL}_2(R) \).

- If \(R \) is a field, then every pseudo-rep. comes from a rep.
- \(\text{Tr}(\pi)(g) := A_\pi(g) + D_\pi(g), \quad \det(\pi)(g) := A_\pi(g)D_\pi(g) - C_\pi(g, g) \).
Lemma

\[\varrho : G \to \text{GL}_2(R) \text{ is a rep. s.t.} \]

\[\varrho(g) = \begin{pmatrix} a(g) & b(g) \\ c(g) & d(g) \end{pmatrix} \implies \begin{cases} \pi := (A_{\pi}(\cdot), D_{\pi}(\cdot), C_{\pi}(\cdot, \cdot)) \\ \text{is a pseudo-rep., where} \\ A_{\pi}(g) := a(g), \ D_{\pi}(g) := d(g), \\ C_{\pi}(g_1, g_2) := b(g_1)c(g_2). \end{cases} \]

Conversely, if \(\pi = (A_{\pi}, D_{\pi}, C_{\pi}) \) is a pseudo-representation of \(G \) into \(R \) s.t. there exist \(g_1, g_2 \in G \) with \(C_{\pi}(g_1, g_2) \in R^* \), then

\[\varrho(g) := \begin{pmatrix} A_{\pi}(g) & C_{\pi}(g, g_2)/C_{\pi}(g_1, g_2) \\ C_{\pi}(g_1, g) & D_{\pi}(g) \end{pmatrix} \]

is a representation \(\varrho : G \to \text{GL}_2(R) \).

- If \(R \) is a field, then every pseudo-rep. comes from a rep.
- \(\text{Tr}(\pi)(g) := A_{\pi}(g) + D_{\pi}(g), \quad \det(\pi)(g) := A_{\pi}(g)D_{\pi}(g) - C_{\pi}(g, g). \)
Odd pseudo-representations

Definition

- A rep. \(\varrho \) is *odd* if there exists \(\sigma \in G \) of order 2 s.t.
 \[
 \varrho(\sigma) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.
 \]

- A pseudo-rep. \(\pi \) is *odd* if there exists \(\sigma \in G \) of order 2 s.t.
 \[
 A_\pi(\sigma) = -1, \quad D_\pi(\sigma) = 1, \quad C_\pi(g, \sigma) = C_\pi(\sigma, g) = 0 \quad \forall g \in G.
 \]

Lemma

If \(2 \in R^* \), then an odd pseudo-rep. \(\pi \) is determined by \(\text{Tr}(\pi) \).

Proof.

\[
A_\pi(g) = \frac{\text{Tr}(\pi)(g) - \text{Tr}(\pi)(g\sigma)}{2}, \quad D_\pi(g) = \frac{\text{Tr}(\pi)(g) + \text{Tr}(\pi)(g\sigma)}{2}.
\]
Odd pseudo-representations

Definition

- A rep. ϱ is **odd** if there exists $\sigma \in G$ of order 2 s.t.
 \[\varrho(\sigma) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}. \]

- A pseudo-rep. π is **odd** if there exists $\sigma \in G$ of order 2 s.t.
 \[A_\pi(\sigma) = -1, \quad D_\pi(\sigma) = 1, \quad C_\pi(g, \sigma) = C_\pi(\sigma, g) = 0 \quad \forall g \in G. \]

Lemma

If $2 \in \mathbb{R}^*$, *then* an odd pseudo-rep. π *is determined by* $\text{Tr}(\pi)$.

Proof.

\[A_\pi(g) = \frac{\text{Tr}(\pi)(g) - \text{Tr}(\pi)(g \sigma)}{2}, \quad D_\pi(g) = \frac{\text{Tr}(\pi)(g) + \text{Tr}(\pi)(g \sigma)}{2}. \]
Odd pseudo-representations

Definition

- A rep. ϱ is *odd* if there exists $\sigma \in G$ of order 2 s.t.
 \[\varrho(\sigma) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.\]

- A pseudo-rep. π is *odd* if there exists $\sigma \in G$ of order 2 s.t.
 \[A_\pi(\sigma) = -1, \quad D_\pi(\sigma) = 1, \quad C_\pi(g, \sigma) = C_\pi(\sigma, g) = 0 \quad \forall g \in G.\]

Lemma

If $2 \in R^*$, *then an odd pseudo-rep. π is determined by $\text{Tr}(\pi)$.***

Proof.

\[A_\pi(g) = \frac{\text{Tr}(\pi)(g) - \text{Tr}(\pi)(g\sigma)}{2}, \quad D_\pi(g) = \frac{\text{Tr}(\pi)(g) + \text{Tr}(\pi)(g\sigma)}{2}.\]
Proof of the Patching Theorem

- odd $\varrho_n : G_F \to GL_2(O_n) \rightsquigarrow$ odd π_n with values in O_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
- ϱ_n is with values in Λ/P_n.

Write $Q_r = P_1 \cap \cdots \cap P_r$.

Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.

$$\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r.$$

Observe that for $1 \leq n \leq r$

$$\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) \pmod{(P_n, P_{r+1})}$$
Proof of the Patching Theorem

- odd $\varrho_n: G_F \to \text{GL}_2(\mathcal{O}_n)$ \(\sim\) odd π_n with values in \mathcal{O}_n

- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 \(\sim\) π_n is with values in Λ/P_n.

- Write $Q_r = P_1 \cap \cdots \cap P_r$.

- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.

 \[
 \alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r.
 \]

- Observe that for $1 \leq n \leq r$

 \[
 \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) \pmod{(P_n, P_{r+1})}
 \]
Proof of the Patching Theorem

- odd \(\varrho_n : G_F \rightarrow \text{GL}_2(\mathcal{O}_n) \quad \sim \quad \text{odd } \pi_n \text{ with values in } \mathcal{O}_n

- \(\pi_n \) is determined by \(\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n \quad \sim \quad \pi_n \) is with values in \(\Lambda/P_n \).

- Write \(Q_r = P_1 \cap \cdots \cap P_r \).

- Suppose we have constructed a pseudo-rep. \(\alpha_r \) in \(\Lambda/Q_r \) s.t.
 \[
 \alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r .
 \]

- Observe that for \(1 \leq n \leq r \)
 \[
 \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) = \text{Tr}((\varrho_n)^{p-1}) = \text{Tr}(\pi_{n+1}) \pmod{(P_n, P_{r+1})},
 \]
 \[
 \Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{n+1}) \pmod{(Q_r, P_{r+1})},
 \]
 \[
 \Rightarrow \alpha_r \equiv \pi_{n+1} \pmod{(Q_r, P_{r+1})}.
 \]
Proof of the Patching Theorem

- odd $\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n) \rightsquigarrow$ odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 $\rightsquigarrow \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.
 $\alpha_r \equiv \pi_n \pmod{P_n}$ for $1 \leq n \leq r$.

Observe that for $1 \leq n \leq r$

$$\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) = \text{Tr}(\pi_r + 1) \equiv \text{Tr}(\pi_r) \pmod{(P_n, P_{r+1})}$$

$$\Rightarrow \text{Tr}(\alpha_r) = \text{Tr}(\pi_r) \pmod{(Q_r, P_{r+1})}$$

$$\Rightarrow \pi_r \equiv \pi_r \pmod{(Q_r, P_{r+1})}$$
Proof of the Patching Theorem

- odd $\varrho_n: G_F \to \text{GL}_2(\mathcal{O}_n)$ \rightsquigarrow odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 $\rightsquigarrow \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.
 \[\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for} \quad 1 \leq n \leq r. \]
- Observe that for $1 \leq n \leq r$
 \[\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) = \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})} \]
 \[\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})} \]
 \[\Rightarrow n \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}. \]
Proof of the Patching Theorem

- odd $\varrho_n : G_F \rightarrow \text{GL}_2(\mathcal{O}_n) \rightsquigarrow$ odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 $\rightsquigarrow \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.
 \[\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r. \]
- Observe that for $1 \leq n \leq r$
 \[\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) = \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})} \]

 \[\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})} \]

 \[\Rightarrow \alpha_r \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}. \]
Proof of the Patching Theorem

- odd $\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n) \rightsquigarrow$ odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
- $\rightsquigarrow \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.

$$\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r.$$

- Observe that for $1 \leq n \leq r$

$$\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \equiv \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})}$$

$$\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})}$$

$$\Rightarrow \alpha_r \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}.$$
Proof of the Patching Theorem

- odd $\varrho_n: G_F \rightarrow \text{GL}_2(\mathcal{O}_n) \rightsquigarrow$ odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 $\rightsquigarrow \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.

 $$\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r.$$

- Observe that for $1 \leq n \leq r$

 $$\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \equiv \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})}$$

 $$\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})}$$

 $$\Rightarrow \alpha_r \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}.$$
Proof of the Patching Theorem

- odd $\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n) \overset{\sim}{\to} \text{odd } \pi_n$ with values in \mathcal{O}_n

- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 $\quad \overset{\sim}{\to} \pi_n$ is with values in Λ/P_n.

- Write $Q_r = P_1 \cap \cdots \cap P_r$.

- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.
 \[\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r. \]

- Observe that for $1 \leq n \leq r$
 \[\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \equiv \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})} \]

 \[\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})} \]

 \[\Rightarrow \alpha_r \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}. \]
Proof of the Patching Theorem

- odd $\varrho_n : G_F \rightarrow GL_2(\mathcal{O}_n) \leadsto$ odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
- $\leadsto \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.

$$\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r.$$

- Observe that for $1 \leq n \leq r$

$$\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \equiv \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})}$$

$$\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})}$$

$$\Rightarrow \alpha_r \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}.$$
Proof of the Patching Theorem

- odd $\varrho_n : G_F \to \text{GL}_2(\mathcal{O}_n) \rightsquigarrow$ odd π_n with values in \mathcal{O}_n
- π_n is determined by $\text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \in \Lambda/P_n$
 $\rightsquigarrow \pi_n$ is with values in Λ/P_n.
- Write $Q_r = P_1 \cap \cdots \cap P_r$.
- Suppose we have constructed a pseudo-rep. α_r in Λ/Q_r s.t.

$$\alpha_r \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r.$$

- Observe that for $1 \leq n \leq r$

$$\text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_n) = \text{Tr}(\varrho_n) \equiv \text{Tr}(\varrho_{r+1}) = \text{Tr}(\pi_{r+1}) \pmod{(P_n, P_{r+1})}$$

$$\Rightarrow \text{Tr}(\alpha_r) \equiv \text{Tr}(\pi_{r+1}) \pmod{(Q_r, P_{r+1})}$$

$$\Rightarrow \alpha_r \equiv \pi_{r+1} \pmod{(Q_r, P_{r+1})}.$$
Proof of the Patching Theorem.

By

$$0 \to \Lambda/Q_{r+1} \to \Lambda/Q_r \oplus \Lambda/P_{r+1} \to \Lambda/(Q_r, P_{r+1}) \to 0,$$

we may lift the pseudo-rep. \(\alpha_r \oplus \pi_{r+1} \) into \(\Lambda/Q_r \oplus \Lambda/P_{r+1} \) to a pseudo-rep. \(\alpha_{r+1} \) into \(\Lambda/Q_{r+1} \) s.t.

\[
\alpha_{r+1} \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r + 1.
\]

Set \(\alpha := \lim_{\leftarrow} \alpha_n \).

\(\alpha \) is a pseudo-rep. into \(\lim_{\leftarrow} \Lambda/P_n \cong \Lambda \), since \(\cap_{n=1}^{\infty} P_n = 0 \).

\(\alpha \) pseudo-rep. into \(K \) into a rep. \(\rho \colon G_r \to \GL_3(K) \), which has the desired properties.
Proof of the Patching Theorem.

- By

\[0 \rightarrow \Lambda/Q_{r+1} \rightarrow \Lambda/Q_r \oplus \Lambda/P_{r+1} \rightarrow \Lambda/(Q_r, P_{r+1}) \rightarrow 0, \]

we may lift the pseudo-rep. \(\alpha_r \oplus \pi_{r+1} \) into \(\Lambda/Q_r \oplus \Lambda/P_{r+1} \) to a pseudo-rep. \(\alpha_{r+1} \) into \(\Lambda/Q_{r+1} \) s.t.

\[\alpha_{r+1} \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r + 1. \]

- Set \(\alpha := \lim_{\leftarrow} \alpha_n. \)

- \(\alpha \) is a pseudo-rep. into \(\lim_{\leftarrow} \Lambda/P_n \simeq \Lambda \), since \(\cap_{n=1}^{\infty} P_n = 0. \)

- \(\alpha \) pseudo-rep. into \(\mathcal{K} \) \(\rightarrow \) a rep. \(\rho : G_F \rightarrow \text{GL}_2(\mathcal{K}) \), which has the desired properties.
Proof of the Patching Theorem.

By

\[0 \rightarrow \Lambda/Q_{r+1} \rightarrow \Lambda/Q_r \oplus \Lambda/P_{r+1} \rightarrow \Lambda/(Q_r, P_{r+1}) \rightarrow 0, \]

we may lift the pseudo-rep. \(\alpha_r \oplus \pi_{r+1} \) into \(\Lambda/Q_r \oplus \Lambda/P_{r+1} \) to a pseudo-rep. \(\alpha_{r+1} \) into \(\Lambda/Q_{r+1} \) s.t.

\[\alpha_{r+1} \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r + 1. \]

Set \(\alpha := \lim_{\leftarrow} \alpha_n. \)

\(\alpha \) is a pseudo-rep. into \(\lim_{\leftarrow} \Lambda/P_n \simeq \Lambda, \) since \(\cap_{n=1}^{\infty} P_n = 0. \)

\(\alpha \) pseudo-rep. into \(\mathcal{K} \) \(\rightsquigarrow \) a rep. \(\rho: G_F \rightarrow \text{GL}_2(\mathcal{K}), \) which has the desired properties.
Proof of the Patching Theorem.

- By
 \[0 \to \Lambda/Q_{r+1} \to \Lambda/Q_r \oplus \Lambda/P_{r+1} \to \Lambda/(Q_r, P_{r+1}) \to 0, \]
 we may lift the pseudo-rep. \(\alpha_r \oplus \pi_{r+1} \) into \(\Lambda/Q_r \oplus \Lambda/P_{r+1} \) to a pseudo-rep. \(\alpha_{r+1} \) into \(\Lambda/Q_{r+1} \) s.t.
 \[\alpha_{r+1} \equiv \pi_n \pmod{P_n} \quad \text{for} \ 1 \leq n \leq r + 1. \]

- Set \(\alpha := \lim_{\leftarrow} \alpha_n. \)

- \(\alpha \) is a pseudo-rep. into \(\lim_{\leftarrow} \Lambda/P_n \simeq \Lambda, \) since \(\bigcap_{n=1}^{\infty} P_n = 0. \)

- \(\alpha \) pseudo-rep. into \(\mathcal{K} \rightsquigarrow \) a rep. \(\rho : G_F \rightarrow \text{GL}_2(\mathcal{K}), \) which has the desired properties.
Proof of the Patching Theorem.

By

$$0 \to \Lambda/Q_{r+1} \to \Lambda/Q_r \oplus \Lambda/P_{r+1} \to \Lambda/(Q_r, P_{r+1}) \to 0,$$

we may lift the pseudo-rep. $\alpha_r \oplus \pi_{r+1}$ into $\Lambda/Q_r \oplus \Lambda/P_{r+1}$ to a pseudo-rep. α_{r+1} into Λ/Q_{r+1} s.t.

$$\alpha_{r+1} \equiv \pi_n \pmod{P_n} \quad \text{for } 1 \leq n \leq r + 1.$$

Set $\alpha := \lim_{\leftarrow} \alpha_n$.

α is a pseudo-rep. into $\lim_{\leftarrow} \Lambda/P_n \simeq \Lambda$, since $\cap_{n=1}^{\infty} P_n = 0$.

α pseudo-rep. into $\mathcal{K} \rightsquigarrow$ a rep. $\varrho : G_F \to \text{GL}_2(\mathcal{K})$, which has the desired properties.
Wiles’ result and general notations

General strategy of the proof

Tools for the proof

Sketch of the proof

Are there any ordinary primes?
Λ-adic representations attached to Λ-dic forms

Theorem (Wiles)

For a newform $F \in S_{\text{ord}}(\overline{n}, \psi | \Lambda)$, there is a cont. odd irred. rep.

$$\rho_F : G_F \to \text{GL}_2(K)$$

unramified outside np s.t. for every prime $q \nmid np$ we have

$$\text{Tr}(\rho_F)(\text{Frob}_q) = c(q, F)(X) \in \Lambda,$$

$$\det(\rho_F)(\text{Frob}_q) = \psi(q)N(q) \in \Lambda.$$
Theorem (Wiles)

For a newform $F \in S^\text{ord}(\overline{n}, \psi | \Lambda)$, there is a cont. odd irred. rep.

$$\rho_F : G_F \to \text{GL}_2(\mathcal{K})$$

unramified outside np s.t. for every prime $q | np$ we have

$$\text{Tr}(\rho_F)(\text{Frob}_q) = c(q, F)(X) \in \Lambda,$$

$$\text{det}(\rho_F)(\text{Frob}_q) = \psi(q)N(q) \in \Lambda.$$

It implies the Main Theorem:

- If $f \in S_k(n, \psi | \mathcal{O})$ ordinary
 $$F \in S^\text{ord}(\overline{n}, \psi \omega^{k-2} | \Lambda)$$
 s.t. $\nu(F) = ef.$

- Schur's Lemma: If $\rho_{f, \lambda} : G_\mathbb{Q} \to \text{GL}_2(L)$ exists, with L a finite extension of $K_{f, \lambda}$, then there is an equivalent rep. $G_\mathbb{Q} \to \text{GL}_2(\mathcal{O}_{f, \lambda}).$

- Ribet: If $\rho_{f, \lambda}$ exists, then it is irreducible.
Theorem (Wiles)

For a newform $F \in S^{\text{ord}}(\overline{n}, \psi \mid \Lambda)$, there is a cont. odd irred. rep.

$$\varrho_F : G_F \rightarrow \text{GL}_2(\mathcal{K})$$

unramified outside np s.t. for every prime $q \mid np$ we have

$$\text{Tr}(\varrho_F)(\text{Frob}_q) = c(q, F)(X) \in \Lambda,$$

$$\text{det}(\varrho_F)(\text{Frob}_q) = \psi(q)N(q) \in \Lambda.$$

- It implies the Main Theorem:

 $$f \in S_k(n, \psi \mid \mathcal{O}) \quad \text{ordinary} \quad \leadsto \quad F \in S^{\text{ord}}(\overline{n}, \psi\omega^{k-2} \mid \Lambda) \quad \text{s.t.} \quad \nu(F) = ef. \quad \leadsto \quad \varrho_F \quad \leadsto \quad \varrho_{f, \lambda} := \nu(\varrho_F)$$

- **Schur's Lemma**: If $\varrho_{f, \lambda} : G_{\mathbb{Q}} \rightarrow \text{GL}_2(L)$ exists, with L a finite extension of $K_{f, \lambda}$, then there is an equivalent rep. $G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathcal{O}_{f, \lambda}).$

- **Ribet**: If $\varrho_{f, \lambda}$ exists, then it is irreducible.
\(\Lambda\)-adic representations attached to \(\Lambda\)-adic forms

Theorem (Wiles)

For a newform \(F \in S^{\text{ord}}(\overline{n}, \psi \mid \Lambda)\), there is a cont. odd irred. rep.

\[
\varrho_F: G_F \to \text{GL}_2(\mathcal{K})
\]

unramified outside \(np\) s.t. for every prime \(q \nmid np\) we have

\[
\text{Tr}(\varrho_F)(\text{Frob}_q) = c(q, F)(X) \in \Lambda, \\
\text{det}(\varrho_F)(\text{Frob}_q) = \psi(q)N(q) \in \Lambda.
\]

- It implies the Main Theorem:

 \[
 f \in S_k(n, \psi \mid \mathcal{O}) \quad \overset{\text{ordinary}}{\implies} \quad F \in S^{\text{ord}}(\overline{n}, \psi \omega^{k-2} \mid \Lambda) \quad \overset{\text{s.t. } \nu(F) = ef.}{\implies} \quad \varrho_F \implies \varrho_{f, \lambda} := \nu(\varrho_F)
 \]

- **Schur's Lemma**: If \(\varrho_{f, \lambda}: G_\mathbb{Q} \to \text{GL}_2(L)\) exists, with \(L\) a finite extension of \(K_{f, \lambda}\), then there is an equivalent rep. \(G_\mathbb{Q} \to \text{GL}_2(\mathcal{O}_{f, \lambda})\).

- **Ribet**: If \(\varrho_{f, \lambda}\) exists, then it is irreducible.
Warm up: $F = \mathbb{Q}$

- We show:
 1. Eichler-Shimura ($k=2$)
 2. Patching Theorem

\[\implies \text{Theorem on the previous slide (existence of Galois reps. for } k \geq 1). \]

- For almost all $r \geq 1$

\[
f_r := \nu_{2,r}(F) \in S^\text{ord}_2(Np^r, \psi_{\zeta} | \mathcal{O}[\zeta])
\]

is an eigenform.

- $f_r \xrightarrow{1} \varrho_r: G_{\mathbb{Q}} \to \text{GL}_2(\mathcal{O}[\zeta_r])$ a continuous irreducible odd representation unramified outside Np satisfying that for every $q \nmid Np$

\[
\begin{align*}
\text{Tr}(\varrho_r)(\text{Frob}_q) &= c_q(f_r) = c_q(F)(\chi) \mod{P_{2,r}}, \\
\det(\varrho_r)(\text{Frob}_q) &= \psi(q)q^1 \mod{P_{2,r}}
\end{align*}
\]

where $P_{2,r} = \text{prime of } \Lambda$ associated to $\nu_{2,r}$.

- $\{\varrho_r\}_r \xrightarrow{2} \varrho_F: G_{\mathbb{Q}} \to \text{GL}_2(\mathcal{O})$.
Warm up: \(F = \mathbb{Q} \)

- We show:
 1. Eichler-Shimura (k=2)
 2. Patching Theorem

\[\Rightarrow \text{Theorem on the previous slide} \]

(existence of Galois reps. for \(k \geq 1 \)).

- For almost all \(r \geq 1 \)

\[f_r := \nu_{2,r}(\mathcal{F}) \in S_2^{\text{ord}}(Np^r, \psi \mathcal{O}[\zeta]) \]

is an eigenform.

- \(f_r \overset{1}{\mapsto} \rho_r : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathcal{O}[\zeta]) \) a continuous irreducible odd representation unramified outside \(Np \) satisfying that for every \(q \nmid Np \)

\[\text{Tr}(\rho_r)(\text{Frob}_q) = c_q(f_r) = c_q(\mathcal{F})(X) \pmod{P_{2,r}}, \]

\[\det(\rho_r)(\text{Frob}_q) = \psi(q)q^1 \equiv \psi(q)q \pmod{P_{2,r}}, \]

where \(P_{2,r} = \text{prime of } \Lambda \text{ associated to } \nu_{2,r} \).

- \(\{\rho_r\}_r \overset{2}{\mapsto} \rho_{\mathcal{F}} : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathcal{K}). \)
Warm up: $F = \mathbb{Q}$

- We show:
 1. Eichler-Shimura ($k=2$)
 2. Patching Theorem

 \[\rightarrow \quad \text{Theorem on the previous slide} \]
 \[\rightarrow \quad \text{(existence of Galois reps. for } k \geq 1) \]

- For almost all $r \geq 1$

 \[f_r := \nu_{2,r}(\mathcal{F}) \in S^\text{ord}_2(\mathcal{N}p^r, \psi \zeta | \mathcal{O}[\zeta]) \]

 is an eigenform.

- $f_r \overset{1}{\mapsto} \varrho_r : G_\mathbb{Q} \to \text{GL}_2(\mathcal{O}[\zeta_r])$ a continuous irreducible odd representation unramified outside Np satisfying that for every $q \nmid Np$

 \[
 \text{Tr}(\varrho_r)(\text{Frob}_q) = c_q(f_r) \equiv c_q(\mathcal{F})(X) \pmod{P_{2,r}}, \\
 \det(\varrho_r)(\text{Frob}_q) = \psi(q)q^1 \equiv \psi(q)q \pmod{P_{2,r}},
 \]

 where $P_{2,r} = \text{prime of } \Lambda$ associated to $\nu_{2,r}$.

- $\{\varrho_r\}_r \overset{2}{\mapsto} \varrho_\mathcal{F}: G_\mathbb{Q} \to \text{GL}_2(\mathcal{K})$.
Warm up: $F = \mathbb{Q}$

- We show:
 1. Eichler-Shimura ($k=2$)
 2. Patching Theorem

 Theorem on the previous slide

 (existence of Galois reps. for $k \geq 1$).

- For almost all $r \geq 1$

 $$f_r := \nu_{2,r}(\mathcal{F}) \in S_2^{\text{ord}}(Np^r, \psi_{\omega_\zeta} | \mathcal{O}[\zeta])$$

 is an eigenform.

- $f_r \underset{1}{\sim} \varphi_r : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathcal{O}[\zeta_r])$ a continuous irreducible odd representation unramified outside Np satisfying that for every $q \nmid Np$

 $$\text{Tr}(\varphi_r)(\text{Frob}_q) = c_q(f_r) \equiv c_q(\mathcal{F})(X) \pmod{P_{2,r}},$$
 $$\det(\varphi_r)(\text{Frob}_q) = \psi(q) q^1 \equiv \psi(q) q \pmod{P_{2,r}},$$

 where $P_{2,r} =$ prime of Λ associated to $\nu_{2,r}$.

- $\{\varphi_r\}_r \underset{2}{\sim} \varphi_{\mathcal{F}} : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathcal{K})$.
Warm up: $F = \mathbb{Q}$

- We show:
 1. Eichler-Shimura ($k=2$)
 2. Patching Theorem

\[\Rightarrow \text{Theorem on the previous slide} \]
\[\text{(existence of Galois reps. for } k \geq 1) \]

- For almost all $r \geq 1$

\[f_r := \nu_{2,r}(F) \in S^\text{ord}_2(Np^r, \psi \varrho \zeta \mid \mathcal{O}[\zeta]) \]

is an eigenform.

- $f_r \overset{1}{\sim} \varrho_r : G_{\mathbb{Q}} \to \text{GL}_2(\mathcal{O}[\zeta_r])$ a continuous irreducible odd representation unramified outside Np satisfying that for every $q \nmid Np$

\[\begin{align*}
\text{Tr}(\varrho_r)(\text{Frob}_q) &= c_q(f_r) \equiv c_q(F)(X) \pmod{P_{2,r}}, \\
\text{det}(\varrho_r)(\text{Frob}_q) &= \psi(q)q^1 \equiv \psi(q)q \pmod{P_{2,r}},
\end{align*} \]

where $P_{2,r} = \text{prime of } \Lambda \text{ associated to } \nu_{2,r}$.

- $\{\varrho_r\}_r \overset{2}{\sim} \varrho_F : G_{\mathbb{Q}} \to \text{GL}_2(\mathcal{K})$.
General case

- Assume $d = [F : \mathbb{Q}]$ is even.
- $l \subseteq \mathcal{O}_F$ is a prime s.t $(l, np) = 1$.
- Extending coefficients to \mathcal{K}. Set

$$S^{\text{ord}}(\bar{n}, \psi \mid \mathcal{K}) := S^{\text{ord}}(\bar{n}, \psi \mid \Lambda) \otimes_{\Lambda} \mathcal{K}.$$

- Space of oldforms with respect to l:

$$S^{\text{ord}}(\bar{n}l, \psi \mid \mathcal{K})^{\text{old}} := \{ F(z) + G(lz) \mid F, G \in S^{\text{ord}}(\bar{n}, \psi \mid \mathcal{K}) \}.$$

- Space of newforms with respect to l:

$$S^{\text{ord}}(\bar{n}l, \psi \mid \mathcal{K})^{\text{new}} := \mathcal{K} \left\{ F_i(a_{ij}z) \middle| F_i \in S^{\text{ord}}(\bar{m}_i, \psi \mid \Lambda) \text{ newform and } l|\bar{m}_i, (p, a_{ij}) = 1, a_{ij}\bar{m}_i|\bar{n}l \right\}.$$

- Enlarge \mathcal{K} so that it contains the eigenvalues of all eigenforms. Then:

$$S^{\text{ord}}(\bar{n}l, \psi \mid \mathcal{K}) = S^{\text{ord}}(\bar{n}l, \psi \mid \mathcal{K})^{\text{old}} \oplus S^{\text{ord}}(\bar{n}l, \psi \mid \mathcal{K})^{\text{new}}.$$

(sum decomposition which does not necessarily hold over Λ).
General case

- Assume $d = [F : \mathbb{Q}]$ is even.
- $l \subseteq \mathcal{O}_F$ is a prime s.t. $(l, np) = 1$.
- Extending coefficients to \mathcal{K}. Set

$$S^{\text{ord}}(\bar{n}, \psi | \mathcal{K}) := S^{\text{ord}}(\bar{n}, \psi | \Lambda) \otimes_{\Lambda} \mathcal{K}.$$

- Space of oldforms with respect to l:

$$S^{\text{ord}}(\bar{n}l, \psi | \mathcal{K})^{\text{old}} := \{ F(z) + G(lz) | F, G \in S^{\text{ord}}(\bar{n}, \psi | \mathcal{K}) \}.$$

- Space of newforms with respect to l:

$$S^{\text{ord}}(\bar{n}l, \psi | \mathcal{K})^{\text{new}} := \mathcal{K} \left\{ F_i(a_{ij}z) \middle| \begin{array}{l} F_i \in S^{\text{ord}}(\bar{m}_i, \psi | \Lambda) \text{ newform} \\ \text{and } l|\bar{m}_i, (p, a_{ij}) = 1, a_{ij}\bar{m}_i|\bar{n}l \end{array} \right\},$$

- Enlarge \mathcal{K} so that it contains the eigenvalues of all eigenforms. Then:

$$S^{\text{ord}}(\bar{n}l, \psi | \mathcal{K}) = S^{\text{ord}}(\bar{n}l, \psi | \mathcal{K})^{\text{old}} \oplus S^{\text{ord}}(\bar{n}l, \psi | \mathcal{K})^{\text{new}}.$$

(sum decomposition which does not necessarily hold over Λ).
General case

- Assume $d = [F : \mathbb{Q}]$ is even.
- $l \subseteq \mathcal{O}_F$ = a prime s.t $(l, np) = 1$.
- Extending coefficients to \mathcal{K}. Set

$$S^{\text{ord}}(\overline{n}, \psi \mid \mathcal{K}) := S^{\text{ord}}(\overline{n}, \psi \mid \Lambda) \otimes_{\Lambda} \mathcal{K}.$$

- Space of oldforms with respect to l:

$$S^{\text{ord}}(\overline{n}l, \psi \mid \mathcal{K})^{\text{old}} := \{ F(z) + G(lz) \mid F, G \in S^{\text{ord}}(\overline{n}, \psi \mid \mathcal{K}) \}.$$

- Space of newforms with respect to l:

$$S^{\text{ord}}(\overline{n}l, \psi \mid \mathcal{K})^{\text{new}} := \mathcal{K} \left\{ F_i(a_{ij}z) \mid \begin{array}{l} F_i \in S^{\text{ord}}(\overline{m}_i, \psi \mid \Lambda) \text{ newform} \\ l|\overline{m}_i, (p, a_{ij}) = 1, a_{ij}\overline{m}_i|\overline{n}l \end{array} \right\},$$

- Enlarge \mathcal{K} so that it contains the eigenvalues of all eigenforms. Then:

$$S^{\text{ord}}(\overline{n}l, \psi \mid \mathcal{K}) = S^{\text{ord}}(\overline{n}l, \psi \mid \mathcal{K})^{\text{old}} \oplus S^{\text{ord}}(\overline{n}l, \psi \mid \mathcal{K})^{\text{new}}.$$

(sum decomposition which does not necessarily hold over Λ).
General case

- Assume $d = [F : \mathbb{Q}]$ is even.
- $l \subseteq \mathcal{O}_F$ is a prime s.t $(l, np) = 1$.
- Extending coefficients to \mathcal{K}. Set

$$S^{\text{ord}}(\overline{n}, \psi \mid \mathcal{K}) := S^{\text{ord}}(\overline{n}, \psi \mid \Lambda) \otimes_{\Lambda} \mathcal{K}.$$

- Space of oldforms with respect to l:

$$S^{\text{ord}}(\overline{nl}, \psi \mid \mathcal{K})^{\text{old}} := \{ F(z) + G(lz) \mid F, G \in S^{\text{ord}}(\overline{n}, \psi \mid \mathcal{K}) \}.$$

- Space of newforms with respect to l:

$$S^{\text{ord}}(\overline{nl}, \psi \mid \mathcal{K})^{\text{new}} := \mathcal{K} \left\{ F_i(a_{ij}z) \mid F_i \in S^{\text{ord}}(\overline{m}_i, \psi \mid \Lambda) \text{ newform and } l \mid \overline{m}_i, (p, a_{ij}) = 1, a_{ij} \overline{m}_i \mid \overline{nl} \right\}.$$

- Enlarge \mathcal{K} so that it contains the eigenvalues of all eigenforms. Then:

$$S^{\text{ord}}(\overline{nl}, \psi \mid \mathcal{K}) = S^{\text{ord}}(\overline{nl}, \psi \mid \mathcal{K})^{\text{old}} \oplus S^{\text{ord}}(\overline{nl}, \psi \mid \mathcal{K})^{\text{new}}.$$

(sum decomposition which does not necessarily hold over Λ).
General case

- Assume \(d = [F : \mathbb{Q}] \) is even.
- \(l \subseteq \mathcal{O}_F = \) a prime s.t \((l, np) = 1 \).
- Extending coefficients to \(\mathcal{K} \). Set

\[
S^{\text{ord}}(\overline{n}, \psi | \mathcal{K}) := S^{\text{ord}}(\overline{n}, \psi | \Lambda) \otimes_{\Lambda} \mathcal{K}.
\]

- Space of oldforms \textit{with respect to} \(l \):

\[
S^{\text{ord}}(\overline{nl}, \psi | \mathcal{K})^{\text{old}} := \{ \mathcal{F}(z) + \mathcal{G}(lz) \mid \mathcal{F}, \mathcal{G} \in S^{\text{ord}}(\overline{n}, \psi | \mathcal{K}) \}.
\]

- Space of newforms \textit{with respect to} \(l \):

\[
S^{\text{ord}}(\overline{nl}, \psi | \mathcal{K})^{\text{new}} := \mathcal{K} \left\{ \mathcal{F}_i(a_{ij}z) \mid \mathcal{F}_i \in S^{\text{ord}}(\overline{m}_i, \psi | \Lambda) \text{ newform and } l|m_i, (p, a_{ij}) = 1, a_{ij}m_i|\overline{nl} \right\},
\]

- Enlarge \(\mathcal{K} \) so that it contains the eigenvalues of all eigenforms. Then:

\[
S^{\text{ord}}(\overline{nl}, \psi | \mathcal{K}) = S^{\text{ord}}(\overline{nl}, \psi | \mathcal{K})^{\text{old}} \oplus S^{\text{ord}}(\overline{nl}, \psi | \mathcal{K})^{\text{new}}.
\]

(sum decomposition which does not necessarily hold over \(\Lambda \)).
General case

- Assume $d = [F : \mathbb{Q}]$ is even.
- $\mathfrak{l} \subseteq \mathcal{O}_F$ is a prime s.t. $(\mathfrak{l}, np) = 1$.
- Extending coefficients to \mathcal{K}. Set

 $$S^{\text{ord}}(\mathfrak{n}, \psi | \mathcal{K}) := S^{\text{ord}}(\mathfrak{n}, \psi | \Lambda) \otimes_\Lambda \mathcal{K}.$$

- Space of oldforms with respect to \mathfrak{l}:

 $$S^{\text{ord}}(\mathfrak{n}\mathfrak{l}, \psi | \mathcal{K})^{\text{old}} := \{ F(z) + G(lz) | F, G \in S^{\text{ord}}(\mathfrak{n}, \psi | \mathcal{K}) \}.$$

- Space of newforms with respect to \mathfrak{l}:

 $$S^{\text{ord}}(\mathfrak{n}\mathfrak{l}, \psi | \mathcal{K})^{\text{new}} := \mathcal{K} \left\{ F_i(a_{ij}z) \left| \begin{array}{l} F_i \in S^{\text{ord}}(\mathfrak{m}_i, \psi | \Lambda) \text{ newform} \\
 \text{and } l | \mathfrak{m}_i, (p, a_{ij}) = 1, a_{ij} \mathfrak{m}_i | \mathfrak{n}\mathfrak{l} \end{array} \right. \right\},$$

- Enlarge \mathcal{K} so that it contains the eigenvalues of all eigenforms. Then:

 $$S^{\text{ord}}(\mathfrak{n}\mathfrak{l}, \psi | \mathcal{K}) = S^{\text{ord}}(\mathfrak{n}\mathfrak{l}, \psi | \mathcal{K})^{\text{old}} \oplus S^{\text{ord}}(\mathfrak{n}\mathfrak{l}, \psi | \mathcal{K})^{\text{new}}.$$

(sum decomposition which does not necessarily hold over Λ).
The congruence module of \mathcal{F}

- Set

$$H(\mathcal{F}, l \mid \mathcal{K}) := \{ \mathcal{H} \in S^{\text{ord}}(\mathfrak{n}l, \psi \mid \mathcal{K})^{\text{new}} \mid \mathcal{H} = \mathcal{G} - u \mathcal{F} - v \mathcal{F}(lz),$$

with $\mathcal{G} \in S^{\text{ord}}(\mathfrak{n}l, \psi \mid \Lambda)$, $u, v \in \mathcal{K}\}.$

The congruence module for \mathcal{F} is

$$C(\mathcal{F}, l \mid \mathcal{K}) := H(\mathcal{F}, l \mid \mathcal{K})/ S^{\text{ord}}(\mathfrak{n}l, \psi \mid \mathcal{K})^{\text{new}} \cap S^{\text{ord}}(\mathfrak{n}l, \psi \mid \Lambda).$$

It measures how far the direct sum decomposition over \mathcal{K} fails to be a direct sum decomposition over Λ.

- Let $\mathbb{T} \subseteq \text{End}(S^{\text{ord}}(\mathfrak{n}l, \psi \mid \mathcal{K})^{\text{new}})$ denote the ring generated over Λ by the Hecke operators $\mathcal{T}(m)$ for $(m, l) = 1$.

- Set

$$l_{\mathcal{F}} = \text{Ann}(C(\mathcal{F}, l \mid \mathcal{K})) \subseteq \mathbb{T}.$$

$$\mathcal{T}(m) - c(m, \mathcal{F})(X) \in l_{\mathcal{F}} \quad \text{for} \ (m, l) = 1 \quad \Rightarrow \quad \mathbb{T}/l_{\mathcal{F}} \cong \Lambda/b_{\mathcal{F}, l}$$

for some ideal $b_{\mathcal{F}, l} \subseteq \Lambda$.
The congruence module of \mathcal{F}

Set

$$H(\mathcal{F}, l | \mathcal{K}) := \{ H \in S^{\text{ord}}(\mathfrak{n}l, \psi | \mathcal{K})^{\text{new}} \mid H = G - u \mathcal{F} - v \mathcal{F}(lz),$$

with $G \in S^{\text{ord}}(\mathfrak{n}l, \psi | \Lambda), u, v \in \mathcal{K}\}.$

The congruence module for \mathcal{F} is

$$C(\mathcal{F}, l | \mathcal{K}) := H(\mathcal{F}, l | \mathcal{K}) / S^{\text{ord}}(\mathfrak{n}l, \psi | \mathcal{K})^{\text{new}} \cap S^{\text{ord}}(\mathfrak{n}l, \psi | \Lambda).$$

It measures how far the direct sum decomposition over \mathcal{K} fails to be a direct sum decomposition over Λ.

Let $\mathbb{T} \subseteq \text{End}(S^{\text{ord}}(\mathfrak{n}l, \psi | \mathcal{K})^{\text{new}})$ denote the ring generated over Λ by the Hecke operators $\mathcal{T}(m)$ for $(m, l) = 1$.

Set

$$l_{\mathcal{F}} = \text{Ann}(C(\mathcal{F}, l | \mathcal{K})) \subseteq \mathbb{T}.$$

$$\mathcal{T}(m) - c(m, \mathcal{F})(X) \in l_{\mathcal{F}} \quad \text{for } (m, l) = 1 \quad \Rightarrow \quad \mathbb{T} / l_{\mathcal{F}} \simeq \Lambda / b_{\mathcal{F}, l}$$

for some ideal $b_{\mathcal{F}, l} \subseteq \Lambda$.
The congruence module of \mathcal{F}

- Set
\[
H(\mathcal{F}, l \mid \mathcal{K}) := \{ H \in S^{\text{ord}}(\overline{m}, \psi \mid \mathcal{K})^{\text{new}} \mid H = G - u \mathcal{F} - v \mathcal{F}(lz), \]
with $G \in S^{\text{ord}}(\overline{m}, \psi \mid \Lambda)$, $u, v \in \mathcal{K}\}.
\]

The congruence module for \mathcal{F} is
\[
C(\mathcal{F}, l \mid \mathcal{K}) := H(\mathcal{F}, l \mid \mathcal{K}) / S^{\text{ord}}(\overline{m}, \psi \mid \mathcal{K})^{\text{new}} \cap S^{\text{ord}}(\overline{m}, \psi \mid \Lambda).
\]

It measures how far the direct sum decomposition over \mathcal{K} fails to be a direct sum decomposition over Λ.

- Let $\mathbb{T} \subseteq \text{End}(S^{\text{ord}}(\overline{m}, \psi \mid \mathcal{K})^{\text{new}})$ denote the ring generated over Λ by the Hecke operators $\mathcal{T}(m)$ for $(m, l) = 1$.

- Set
\[
l_{\mathcal{F}} = \text{Ann}(C(\mathcal{F}, l \mid \mathcal{K})) \subseteq \mathbb{T}.
\]

\[
\mathcal{T}(m) - c(m, \mathcal{F})(X) \in l_{\mathcal{F}} \quad \text{for} \quad (m, l) = 1 \quad \Rightarrow \quad \mathbb{T}/l_{\mathcal{F}} \cong \Lambda/b_{\mathcal{F}, l} \quad \text{for some ideal} \ b_{\mathcal{F}, l} \subseteq \Lambda.
\]
The congruence module of \mathcal{F}

- Set
 \[
 H(\mathcal{F}, l \mid \mathcal{K}) := \{ \mathcal{H} \in S^{\text{ord}}(\overline{m}, \psi \mid \mathcal{K})^{\text{new}} \mid \mathcal{H} = \mathcal{G} - u \mathcal{F} - v \mathcal{F}(lz), \\
 \text{with } \mathcal{G} \in S^{\text{ord}}(\overline{m}, \psi \mid \Lambda), \ u, v \in \mathcal{K} \}.
 \]

 The congruence module for \mathcal{F} is
 \[
 C(\mathcal{F}, l \mid \mathcal{K}) := H(\mathcal{F}, l \mid \mathcal{K}) / S^{\text{ord}}(\overline{m}, \psi \mid \mathcal{K})^{\text{new}} \cap S^{\text{ord}}(\overline{m}, \psi \mid \Lambda).
 \]

 It measures how far the direct sum decomposition over \mathcal{K} fails to be a direct sum decomposition over Λ.

- Let $\mathbb{T} \subseteq \text{End}(S^{\text{ord}}(\overline{m}, \psi \mid \mathcal{K})^{\text{new}})$ denote the ring generated over Λ by the Hecke operators $\mathcal{T}(m)$ for $(m, l) = 1$.

- Set
 \[
 l_{\mathcal{F}} = \text{Ann}(C(\mathcal{F}, l \mid \mathcal{K})) \subseteq \mathbb{T}.
 \]

 \[
 \mathcal{T}(m) - c(m, \mathcal{F})(X) \in l_{\mathcal{F}} \quad \Rightarrow \quad \mathbb{T} / l_{\mathcal{F}} \cong \Lambda / b_{\mathcal{F}, l}
 \]

 for some ideal $b_{\mathcal{F}, l} \subseteq \Lambda$.

Francesc Fité (Universität Duisburg-Essen)
There are infinitely many specializations of each $\mathcal{F}_i(a_{ij}z)$ in the special basis satisfying hypothesis ii) of Carayol’s Theorem at $l \not\mid l$. Consider the rep.

$$\bigoplus \varrho \mathcal{F}_i(a_{ij}z) \otimes \mathcal{K} : G_F \to \text{GL}_2(A)$$

Endow A with an action of T by transport of structure. The map

$T \otimes \mathcal{K} \to A$ induced by $\mathcal{T}(q) \mapsto \prod_{i,j} c(q, \mathcal{F}_i(a_{ij}z))$

is an isomorphism of $T \otimes \mathcal{K}$-modules.

We obtain an odd rep.

$$\varrho : G_F \to \text{GL}_2(T \otimes \mathcal{K})$$

s.t. for $q \nmid n \mid p$

$$\text{Tr}(\varrho)(\text{Frob}_q) = \prod_{i,j} c(q, \mathcal{F}_i(a_{ij}z)) = \mathcal{T}(q) \in T.$$
There are infinitely many specializations of each $\mathcal{F}_i(a_{i,j}z)$ in the special basis satisfying hypothesis ii) of Carayol’s Theorem at l.

Set $A := \prod_{i,j} \mathcal{K}$. Consider the rep.

$$\bigoplus \varrho_{\mathcal{F}_i(a_{ij}z)} \otimes \mathcal{K}: G_F \to \text{GL}_2(A)$$

Endow A with an action of T by transport of structure. The map

$$T \otimes \mathcal{K} \to A \quad \text{induced by} \quad T(q) \mapsto \prod_{i,j} c(q, \mathcal{F}_i(a_{ij}z))$$

is an isomorphism of $T \otimes \mathcal{K}$-modules.

We obtain an odd rep.

$$\varrho: G_F \to \text{GL}_2(T \otimes \mathcal{K})$$

s.t. for $q \nmid np$

$$\text{Tr}(\varrho)(\text{Frob}_q) = \prod_{i,j} c(q, \mathcal{F}_i(a_{ij}z)) = T(q) \in T.$$
There are infinitely many specializations of each $\mathcal{F}_i(a_{i,j}z)$ in the special basis satisfying hypothesis $ii)$ of Carayol’s Theorem at $l
mid \varpi$.

Set $A := \prod_{i,j} \mathcal{K}$. Consider the rep.

$$\bigoplus \varrho \mathcal{F}_i(a_{i,j}z) \otimes \mathcal{K} : G_F \to \text{GL}_2(A)$$

Endow A with an action of \mathbb{T} by transport of structure. The map

$$\mathbb{T} \otimes \mathcal{K} \to A$$

induced by

$$\mathcal{T}(q) \mapsto \prod_{i,j} c(q, \mathcal{F}_i(a_{i,j}z))$$

is an isomorphism of $\mathbb{T} \otimes \mathcal{K}$-modules.

We obtain an odd rep.

$$\rho : G_F \to \text{GL}_2(\mathbb{T} \otimes \mathcal{K})$$

s.t. for $q \nmid n \nmid \rho$

$$\text{Tr} (\rho)(\text{Frob}_q) = \prod_{i,j} c(q, \mathcal{F}_i(a_{i,j}z)) = \mathcal{T}(q) \in \mathbb{T}.$$
There are infinitely many specializations of each $\mathcal{F}_i(a_{i,j}z)$ in the special basis satisfying hypothesis ii) of Carayol’s Theorem at $l \sim \mathcal{O}_F(a_{i,j}z)$.

Set $A := \prod_{i,j} \mathcal{K}$. Consider the rep.

$$\bigoplus \mathcal{O}_F(a_{i,j}z) \otimes \mathcal{K} : G_F \to \text{GL}_2(A)$$

Endow A with an action of \mathbb{T} by transport of structure. The map

$$\mathbb{T} \otimes \mathcal{K} \to A \quad \text{induced by} \quad \mathcal{T}(q) \mapsto \prod_{i,j} c(q, \mathcal{F}_i(a_{i,j}z))$$

is an isomorphism of $\mathbb{T} \otimes \mathcal{K}$-modules.

We obtain an odd rep.

$$\varrho : G_F \to \text{GL}_2(\mathbb{T} \otimes \mathcal{K})$$

s.t. for $q \nmid nlp$

$$\text{Tr}(\varrho)(\text{Frob}_q) = \prod_{i,j} c(q, \mathcal{F}_i(a_{i,j}z)) = \mathcal{T}(q) \in \mathbb{T}.$$
Let π be the odd pseudo rep. associated to ϱ.

$\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

Let $\overline{\pi}$ be the pseudo-rep. $\pi \pmod{l_\mathcal{F}}$:

$$\text{Tr}(\overline{\pi})(\text{Frob}_q) = T(q) = c(q, F)(X) \in \mathbb{T}/l_\mathcal{F} = \Lambda/b_{\mathcal{F}}$$

Take a prime $b_{\mathcal{F}, l} \subseteq Q \subseteq \Lambda$.

Let π_Q be the pseudo-rep. $\overline{\pi} \pmod{Q}$.

$\pi_Q \leftrightarrow \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{\mathcal{F}, l} \subseteq Q \subseteq \Lambda$.

One concludes by patching together the ϱ_Q's.
Let π be the odd pseudo rep. associated to ϱ.

$\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

Let $\overline{\pi}$ be the pseudo-rep. $\pi \pmod{l_F}$:

$$\text{Tr}(\overline{\pi})(\text{Frob}_q) = \mathcal{T}(q) = c(q, \mathcal{F})(X) \in \mathbb{T}/l_F \cong \Lambda/b_{\mathcal{F},l}.$$

Take a prime $b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda$.

Let π_Q be the pseudo-rep. $\overline{\pi} \pmod{Q}$.

$\pi_Q \mapsto \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda$.

One concludes by patching together the ϱ_Q's.
Let \(\pi \) be the odd pseudo rep. associated to \(\varrho \).

\(\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi \) is takes values in \(\mathbb{T} \).

Let \(\overline{\pi} \) be the pseudo-rep. \(\pi \mod l_\mathcal{F} \):

\[
\text{Tr}(\overline{\pi})(\text{Frob}_q) = \mathcal{T}(q) \equiv c(q, \mathcal{F})(X) \in \mathbb{T}/l_\mathcal{F} \cong \Lambda/b_{\mathcal{F},l}
\]

- Take a prime \(b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda \).
- Let \(\pi_Q \) be the pseudo-rep. \(\pi \mod Q \).
- \(\pi_Q \rightsquigarrow \varrho_Q \).
- The proof continues with a difficult and technical argument to ensure that, by making distinct choices of \(l \), we may find infinitely many distinct primes \(b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda \).
- One concludes by patching together the \(\varrho_Q \)'s.
Let π be the odd pseudo rep. associated to ϱ.

$\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

Let $\overline{\pi}$ be the pseudo-rep. $\pi \pmod{l_F}$:

$$\text{Tr}(\overline{\pi})(\text{Frob}_q) = \mathcal{T}(q) \equiv c(q, \mathcal{F})(X) \in \mathbb{T}/l_F \cong \Lambda/b_{\mathcal{F},l}$$

Take a prime $b_{\mathcal{F},l} \subset Q \subset \Lambda$.

Let π_Q be the pseudo-rep. $\overline{\pi} \pmod{Q}$.

$\pi_Q \leadsto \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{\mathcal{F},l} \subset Q \subset \Lambda$.

One concludes by patching together the ϱ_Q's.
Let π be the odd pseudo rep. associated to ϱ.

$\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

Let $\bar{\pi}$ be the pseudo-rep. $\pi \pmod{l_{\mathcal{F}}}$:

$$\text{Tr}(\bar{\pi})(\text{Frob}_q) = \mathcal{T}(q) \equiv c(q, \mathcal{F})(X) \in \mathbb{T}/l_{\mathcal{F}} \simeq \Lambda/b_{\mathcal{F},l}$$

Take a prime $b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda$.

Let π_Q be the pseudo-rep. $\bar{\pi} \pmod{Q}$.

$\pi_Q \rightsquigarrow \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda$.

One concludes by patching together the ϱ_Q's.
Let π be the odd pseudo rep. associated to ϱ.

$\Tr(\varrho) \in T \Rightarrow \Tr(\pi) \in T \Rightarrow \pi$ is takes values in T.

Let $\overline{\pi}$ be the pseudo-rep. $\pi \pmod{l_{\mathcal{F}}}$:

$$\Tr(\overline{\pi})(\Frob_q) = \mathcal{T}(q) \equiv c(q, \mathcal{F})(X) \in T / l_{\mathcal{F}} \simeq \Lambda / b_{\mathcal{F}, l}$$

Take a prime $b_{\mathcal{F}, l} \subseteq Q \subseteq \Lambda$.

Let π_Q be the pseudo-rep. $\overline{\pi} \pmod{Q}$.

$\pi_Q \mapsto \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{\mathcal{F}, l} \subseteq Q \subseteq \Lambda$.

One concludes by patching together the ϱ_Q's.
Let π be the odd pseudo rep. associated to ϱ.

$\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

Let $\bar{\pi}$ be the pseudo-rep. $\pi \pmod{l_F}$:

$$\text{Tr}(\bar{\pi})(\text{Frob}_q) = \mathcal{T}(q) \equiv c(q, F)(X) \in \mathbb{T}/l_F \cong \Lambda/b_{F,1}$$

Take a prime $b_{F,1} \subseteq Q \subseteq \Lambda$.

Let π_Q be the pseudo-rep. $\bar{\pi} \pmod{Q}$.

$\pi_Q \rightsquigarrow \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{F,1} \subseteq Q \subseteq \Lambda$.

One concludes by patching together the ϱ_Q's.
Let π be the odd pseudo rep. associated to ϱ.

$\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

Let $\overline{\pi}$ be the pseudo-rep. $\pi \pmod{l_{\mathcal{F}}}$:

$$\text{Tr}(\overline{\pi})(\text{Frob}_q) = \mathcal{T}(q) \equiv c(q, \mathcal{F})(X) \in \mathbb{T}/l_{\mathcal{F}} \cong \Lambda/b_{\mathcal{F},l}$$

Take a prime $b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda$.

Let π_Q be the pseudo-rep. $\overline{\pi} \pmod{Q}$.

$\pi_Q \longmapsto \varrho_Q$.

The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{\mathcal{F},l} \subseteq Q \subseteq \Lambda$.

One concludes by patching together the ϱ_Q's.
• Let π be the odd pseudo rep. associated to ϱ.

• $\text{Tr}(\varrho) \in \mathbb{T} \Rightarrow \text{Tr}(\pi) \in \mathbb{T} \Rightarrow \pi$ is takes values in \mathbb{T}.

• Let $\overline{\pi}$ be the pseudo-rep. $\pi \pmod{l_F}$:

$$\text{Tr}(\overline{\pi})(\text{Frob}_q) = \mathcal{T}(q) \equiv c(q, F)(X) \in \mathbb{T}/l_F \simeq \Lambda/b_{F,l}$$

• Take a prime $b_{F,l} \subseteq Q \subseteq \Lambda$.

• Let π_Q be the pseudo-rep. $\overline{\pi} \pmod{Q}$.

• $\pi_Q \quad \quad \varrho Q$.

• The proof continues with a difficult and technical argument to ensure that, by making distinct choices of l, we may find infinitely many distinct primes $b_{F,l} \subseteq Q \subseteq \Lambda$.

• One concludes by patching together the ϱQ's.
Wiles’ result and general notations

General strategy of the proof

Tools for the proof

Sketch of the proof

Are there any ordinary primes?
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set

$$\Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}.$$

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?
- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre ’81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set

 $$\Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}.$$

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?
- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre ‘81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set
 \[\Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}. \]

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?

- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre '81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set
 $$\Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}.$$
- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?
- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre '81)
The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set
 \[\Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}. \]

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?

- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre ’81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set
 \[
 \Sigma := \{ p \text{ prime} \mid c_p \equiv 0 \pmod{p} \} .
 \]
- For general f, is it known whether Σ:
 * has a positive density?
 * contains infinitely many primes?
 * is at least non empty?
- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre ’81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set

 $$\Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}.$$

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?

- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
 - For $k > 3$: open.
 - For $k \leq 3$: Σ has a positive density.

Theorem (Serre '81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(\mathcal{N}, \psi)$, set
 \[
 \Sigma := \{ p \text{ prime} \mid c_p \not\equiv 0 \pmod{p} \}.
 \]
- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?
- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.
- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre '81)

The set $S = \{ p \text{ prime} \mid c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set
 $$\Sigma := \{p \text{ prime} \mid c_p \not\equiv 0 \pmod{p}\}.$$

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?

- If f has CM: an affirmative answer is well-known. So assume, from now on, that f does not have CM.

- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre '81)

The set $S = \{p \text{ prime} \mid c_p = 0\}$ has zero density.
On the existence of ordinary primes

- For simplicity, take $F = \mathbb{Q}$.
- For $f(q) = \sum_{n \geq 1} c_n q^n \in S_k(N, \psi)$, set
 $$\Sigma := \{ p \text{ prime \mid } c_p \not\equiv 0 \pmod{p} \}.$$

- For general f, is it known whether Σ:
 - has a positive density?
 - contains infinitely many primes?
 - is at least non empty?

- If f has CM: an affirmative answer is well-known.
 So assume, from now on, that f does not have CM.

- For $k > 3$: open.
- For $k \leq 3$: Σ has a positive density.

Theorem (Serre ’81)

The set $S = \{ p \text{ prime \mid } c_p = 0 \}$ has zero density.
On the existence of ordinary primes

- Suppose that $k \leq 2$. Then, the Ramanujan-Petersson inequality

$$|c_p| \leq 2p^{(k-1)/2} \leq 2\sqrt{p}$$

implies that almost all primes not in Σ are in S. Serre’s theorem $\Rightarrow \Sigma$ has density 1.

- Suppose now that $k = 3$.
 - ϱ_f is odd $\Rightarrow \text{Tr}(\varrho_f)(\sigma) = 0$.
 - Pick a prime $\ell > 2$. Then, the set

$$S_\ell := \{ p \text{ prime} \mid c_p \equiv 0 \pmod{\ell} \}$$

has a positive density.
 - The Ramanujan-Petersson inequality

$$|c_p| \leq 2p$$

implies now that every prime in S_ℓ and not in Σ is in S.
 - Serre’s Theorem \Rightarrow the density of Σ is at least the density of S_ℓ.
On the existence of ordinary primes

- Suppose that $k \leq 2$. Then, the Ramanujan-Petersson inequality

$$|c_p| \leq 2p^{(k-1)/2} \leq 2\sqrt{p}$$

implies that almost all primes not in Σ are in S.

Serre’s theorem $\Rightarrow \Sigma$ has density 1.

- Suppose now that $k = 3$.
 - ϱ_f is odd $\Rightarrow \text{Tr}(\varrho_f)(\sigma) = 0$.
 - Pick a prime $\ell > 2$. Then, the set

$$S_\ell := \{ p \text{ prime} \mid c_p \equiv 0 \pmod{\ell}\}$$

has a positive density.
 - The Ramanujan-Petersson inequality

$$|c_p| \leq 2p$$

implies now that every prime in S_ℓ and not in Σ is in S.

- Serre’s Theorem \Rightarrow the density of Σ is at least the density of S_ℓ.
On the existence of ordinary primes

- Suppose that $k \leq 2$. Then, the Ramanujan-Petersson inequality
 \[|c_p| \leq 2p^{(k-1)/2} \leq 2\sqrt{p} \]
 implies that almost all primes not in Σ are in S.
 Serre’s theorem $\Rightarrow \Sigma$ has density 1.

- Suppose now that $k = 3$.
 - ϱ_f is odd \Rightarrow $\text{Tr}(\varrho_f)(\sigma) = 0$.
 - Pick a prime $\ell > 2$. Then, the set
 \[S_\ell := \{ p \text{ prime} \mid c_p \equiv 0 \pmod{\ell} \} \]
 has a positive density.
 - The Ramanujan-Petersson inequality
 \[|c_p| \leq 2p \]
 implies now that every prime in S_ℓ and not in Σ is in S.
 - Serre’s Theorem \Rightarrow the density of Σ is at least the density of S_ℓ.