Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

29 de Gener de 2015

R commutative Ring. A (commutative) formal (Lie) group (law) over R is a power series

 $F(X, Y) \in R[[X, Y]]$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

such that

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

R commutative Ring. A (commutative) formal (Lie) group (law) over R is a power series

$$F(X,Y) \in R[[X,Y]]$$

such that

•
$$F(X,0) = X$$
 and $F(0, Y) = Y$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

R commutative Ring. A (commutative) formal (Lie) group (law) over R is a power series

$$F(X,Y) \in R[[X,Y]]$$

such that

•
$$F(X,0) = X$$
 and $F(0, Y) = Y$

$$\blacktriangleright F(X,F(Y,Z)) = F(F(X,Y),Z)$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

R commutative Ring. A (commutative) formal (Lie) group (law) over R is a power series

$$F(X,Y) \in R[[X,Y]]$$

such that

•
$$F(X,0) = X$$
 and $F(0, Y) = Y$

$$\blacktriangleright F(X,F(Y,Z)) = F(F(X,Y),Z)$$

$$\blacktriangleright F(X,Y) = F(Y,X)$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

R commutative Ring. A (commutative) formal (Lie) group (law) over R is a power series

$$F(X,Y) \in R[[X,Y]]$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

such that

•
$$F(X,0) = X$$
 and $F(0, Y) = Y$

where
$$X = (X_1, ..., X_d)$$
 and $Y = (Y_1, ..., Y_d)$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

R commutative Ring. A (commutative) formal (Lie) group (law) over R is a power series

$$F(X,Y) \in R[[X,Y]]$$

such that

•
$$F(X,0) = X$$
 and $F(0, Y) = Y$

where
$$X = (X_1, ..., X_d)$$
 and $Y = (Y_1, ..., Y_d)$.

d = the dimension of F.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

くりょう 小田 マイビット 山下 ふんく

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

•
$$F(X, Y) = X + Y$$
 so called $F = \widehat{\mathbb{G}a}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

•
$$F(X,Y) = X + Y$$
 so called $F = \widehat{\mathbb{G}a}$

►
$$F(X, Y) = X + Y - XY = 1 - (1 - X)(1 - Y)$$
 so
called $F = \widehat{\mathbb{G}m}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

►
$$F(X, Y) = X + Y + cXY$$
 for some $c \in R$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

- F(X, Y) = X + Y so called $F = \widehat{\mathbb{G}a}$
- ► F(X, Y) = X + Y XY = 1 (1 X)(1 Y) so called $F = \widehat{\mathbb{G}m}$
- F(X, Y) = X + Y + cXY for some $c \in R$.
- The formal group associated to an elliptic curve.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

- F(X, Y) = X + Y so called $F = \widehat{\mathbb{G}a}$
- ► F(X, Y) = X + Y XY = 1 (1 X)(1 Y) so called $F = \widehat{\mathbb{G}m}$
- F(X, Y) = X + Y + cXY for some $c \in R$.
- The formal group associated to an elliptic curve.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

The Lubin-Tate formal groups.

Points

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Formal group laws give structure of groups on the nilpotent elements of any R-algebra S.

Points

Formal group laws give structure of groups on the nilpotent elements of any R-algebra S.

Also on the set of elements of the ideal J on a R-algebra S which is J-complete.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Points

Formal group laws give structure of groups on the nilpotent elements of any R-algebra S.

Also on the set of elements of the ideal J on a R-algebra S which is J-complete.

Note that the existence of inverses can be deduced from the axioms.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let R be a field, or, more generally, a Dedekind Domain.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト ・母 ト ・目 ・ ・ 目 ・ うへぐ

Let R be a field, or, more generally, a Dedekind Domain. Let T be an smooth (commutative) group scheme over Spec(R) with relative dimension d.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

immersion).

Let R be a field, or, more generally, a Dedekind Domain. Let T be an smooth (commutative) group scheme over Spec(R) with relative dimension d. Let e: Spec(R) $\rightarrow T$ be the zero section (which is a closed

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let R be a field, or, more generally, a Dedekind Domain. Let T be an smooth (commutative) group scheme over Spec(R) with relative dimension d.

Let $e: \operatorname{Spec}(R) \to T$ be the zero section (which is a closed immersion).

Then the completion along the zero section of T is (the formal spectrum of) a ring

$$\widehat{A} \cong R[[X_1,\ldots,X_d]].$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let R be a field, or, more generally, a Dedekind Domain. Let T be an smooth (commutative) group scheme over Spec(R) with relative dimension d.

Let $e: \operatorname{Spec}(R) \to T$ be the zero section (which is a closed immersion).

Then the completion along the zero section of T is (the formal spectrum of) a ring

$$\widehat{A} \cong R[[X_1,\ldots,X_d]].$$

The "group operation" on T gives a co-multiplication on A, which determines a formal group (law) via the isomorphism.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let R be a field, or, more generally, a Dedekind Domain. Let T be an smooth (commutative) group scheme over Spec(R) with relative dimension d.

Let $e: \operatorname{Spec}(R) \to T$ be the zero section (which is a closed immersion).

Then the completion along the zero section of T is (the formal spectrum of) a ring

$$\widehat{A} \cong R[[X_1,\ldots,X_d]].$$

The "group operation" on T gives a co-multiplication on \widehat{A} , which determines a formal group (law) via the isomorphism. Note that the isomorphism $\widehat{A} \cong R[[X_1, \ldots, X_d]]$ is determined giving a basis of $\widehat{I}/\widehat{I}^2 \cong \omega_{T/R}$, the cotangent module. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

• $\widehat{\mathbb{G}a}$ is the formal completion of $\mathbb{G}a$.

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $\widehat{\mathbb{G}a}$ is the formal completion of $\mathbb{G}a$.
- $\widehat{\mathbb{G}m}$ is the formal completion of $\mathbb{G}m$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

- $\widehat{\mathbb{G}a}$ is the formal completion of $\mathbb{G}a$.
- $\widehat{\mathbb{G}m}$ is the formal completion of $\mathbb{G}m$.
- ► The formal group associated to an elliptic curve *E* is the formal completion of *E*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Suppose R is a \mathbb{Q} -algebra

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▼ めんぐ

Suppose *R* is a \mathbb{Q} -algebra (i.e. $R \cong R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト・4回ト・4回ト・4回ト・4日ト

Suppose *R* is a \mathbb{Q} -algebra (i.e. $R \cong R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider $f(X) := X + \sum_{i=2}^{\infty} a_n X^n \in R[X]$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへぐ

Suppose *R* is a \mathbb{Q} -algebra (i.e. $R \cong R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider $f(X) := X + \sum_{i=2}^{\infty} a_n X^n \in R[X]$.

Then there exists $f^{-1}(X) \in R[X]$ such that $f^{-1}(f(X)) = X$ and $f(f^{-1}(X)) = X$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose
$$R$$
 is a \mathbb{Q} -algebra (i.e. $R \cong R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider $f(X) := X + \sum_{i=2}^{\infty} a_n X^n \in R[X].$

Then there exists $f^{-1}(X) \in R[X]$ such that $f^{-1}(f(X)) = X$ and $f(f^{-1}(X)) = X$.

Proposition

The series $F(X, Y) := f^{-1}(f(X) + f(Y))$ is a formal group law defined over R.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Suppose
$$R$$
 is a \mathbb{Q} -algebra (i.e. $R \cong R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider $f(X) := X + \sum_{i=2}^{\infty} a_n X^n \in R[X].$

Then there exists $f^{-1}(X) \in R[X]$ such that $f^{-1}(f(X)) = X$ and $f(f^{-1}(X)) = X$.

Proposition

The series $F(X, Y) := f^{-1}(f(X) + f(Y))$ is a formal group law defined over R.

Theorem

All formal group over R appear in this way.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト・日本・日本・日本・日本・日本

Suppose *R* is a \mathbb{Q} -algebra (i.e. $R \cong R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider $f(X) := X + \sum_{i=2}^{\infty} a_n X^n \in R[X]$.

Then there exists $f^{-1}(X) \in R[X]$ such that $f^{-1}(f(X)) = X$ and $f(f^{-1}(X)) = X$.

Proposition

The series $F(X, Y) := f^{-1}(f(X) + f(Y))$ is a formal group law defined over R.

Theorem

All formal group over R appear in this way. Hence all formal group over R are (strongly) isomorphic to $\widehat{\mathbb{G}a}$. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose R has characteristic 0

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト・(四ト・(川下・(日下・(日下)
Suppose *R* has characteristic 0 (i.e. $R \hookrightarrow R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト・日本・日本・日本・日本・日本

Suppose *R* has characteristic 0 (i.e. $R \hookrightarrow R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider a sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose *R* has characteristic 0 (i.e. $R \hookrightarrow R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Consider a sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$.

Consider $f(X) := \sum_{i=1}^{\infty} \frac{a_n}{n} X^n \in R_{\mathbb{Q}}[X].$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose *R* has characteristic 0 (i.e. $R \hookrightarrow R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider a sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$.

Consider $f(X) := \sum_{i=1}^{\infty} \frac{a_n}{n} X^n \in R_{\mathbb{Q}}[X].$

Theorem

Suppose that, for any prime number p, $f(X) - p^{-1}f(X^p)$ has coefficients in $R \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose *R* has characteristic 0 (i.e. $R \hookrightarrow R_{\mathbb{Q}} := R \otimes_{\mathbb{Z}} \mathbb{Q}$).

Consider a sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$.

Consider $f(X) := \sum_{i=1}^{\infty} \frac{a_n}{n} X^n \in R_{\mathbb{Q}}[X].$

Theorem

Suppose that, for any prime number p, $f(X) - p^{-1}f(X^p)$ has coefficients in $R \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$.

Then, the series $F(X, Y) := f^{-1}(f(X) + f(Y))$ is a formal group law defined over R.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト ・ 通 ト ・ 画 ト ・ 画 ・ 今 の ぐ

Suppose R has characteristic 0.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Suppose *R* has characteristic 0. Suppose we have $r \ge 1$ and, for any prime number *p*, elements $c_p, c_{p^2}, \ldots, c_{p^r} \in R$. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose *R* has characteristic 0. Suppose we have $r \ge 1$ and, for any prime number *p*, elements $c_p, c_{p^2}, \ldots, c_{p^r} \in R$.

Corollary

Consider the sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$ such that

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{p \text{ prime}} (1 + c_p p^{-s} + c_{p^2} p^{-2s} + \dots + c_{p^r} p^{-rs})^{-1}$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

٠

Suppose *R* has characteristic 0. Suppose we have $r \ge 1$ and, for any prime number *p*, elements $c_p, c_{p^2}, \ldots, c_{p^r} \in R$.

Corollary

Consider the sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$ such that

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{p \text{ prime}} (1 + c_p p^{-s} + c_{p^2} p^{-2s} + \dots + c_{p^r} p^{-rs})^{-1}.$$

Consider $f(X) := \sum_{i=1}^{\infty} \frac{a_n}{n} X^n$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose *R* has characteristic 0. Suppose we have $r \ge 1$ and, for any prime number *p*, elements $c_p, c_{p^2}, \ldots, c_{p^r} \in R$.

Corollary

Consider the sequence $1 = a_1, a_2, \ldots, a_n, \cdots \in R$ such that

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{p \text{ prime}} (1 + c_p p^{-s} + c_{p^2} p^{-2s} + \dots + c_{p^r} p^{-rs})^{-1}.$$

Consider $f(X) := \sum_{i=1}^{\infty} \frac{a_n}{n} X^n$. Then, the series $F(X, Y) := f^{-1}(f(X) + f(Y))$ is a formal group law defined over R. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Example

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Take r = 1 and $c_p = -1$ for all p.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

Example

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Take r = 1 and $c_p = -1$ for all p. Then

$$\sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ●のへで

Example

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Take r = 1 and $c_p = -1$ for all p. Then

$$\sum_{n=1}^{\infty} n^{-s} = \prod_{p \ ext{prime}} (1-p^{-s})^{-1}.$$

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 りゅつ

And the formal group law we get is $\mathbb{G}m$ over \mathbb{Z}

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Let *R* be a local *p*-adic ring, π an uniformizer, *q* number elements of the residue field.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ●のへで

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Let *R* be a local *p*-adic ring, π an uniformizer, *q* number elements of the residue field.

Take $c_q = -p/\pi$ for q, $c_\ell = 0$ for $\ell \neq q$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Let R be a local p-adic ring, π an uniformizer, q number elements of the residue field.

Take $c_q = -p/\pi$ for q, $c_\ell = 0$ for $\ell \neq q$. Then

$$f(X) = X + \pi^{-1}X^{q} + \pi^{-2}X^{q^{2}} + \dots$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Let *R* be a local *p*-adic ring, π an uniformizer, *q* number elements of the residue field. Take $c_q = -p/\pi$ for *q*, $c_\ell = 0$ for $\ell \neq q$. Then

$$f(X) = X + \pi^{-1}X^{q} + \pi^{-2}X^{q^{2}} + \dots$$

And the formal group law we get is so called Lubin-Tate.

Suppose R has characteristic 0.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

(日) (中) (中) (日) (日) (日)

Suppose R has characteristic 0.

Suppose we have $d \ge 1$, $r \ge 1$ and, for any prime number p, matrices $C_p, C_{p^2}, \ldots, C_{p^r} \in M_d(R)$ which commute with each other for all p and i.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose R has characteristic 0.

Suppose we have $d \ge 1$, $r \ge 1$ and, for any prime number p, matrices $C_p, C_{p^2}, \ldots, C_{p^r} \in M_d(R)$ which commute with each other for all p and i.

Theorem (Honda, 1970)

Consider the sequence $I = A_1, A_2, \ldots, A_n, \cdots \in M_d(R)$ such that

$$\sum_{n=1}^{\infty} A_n n^{-s} = \prod_{p \text{ prime}} (1 + C_p p^{-s} + C_{p^2} p^{-2s} + \dots + C_{p^r} p^{-rs})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Suppose R has characteristic 0.

Suppose we have $d \ge 1$, $r \ge 1$ and, for any prime number p, matrices $C_p, C_{p^2}, \ldots, C_{p^r} \in M_d(R)$ which commute with each other for all p and i.

Theorem (Honda, 1970)

0

Consider the sequence $I = A_1, A_2, \ldots, A_n, \cdots \in M_d(R)$ such that

$$\sum_{n=1}^{\infty} A_n n^{-s} = \prod_{p \text{ prime}} (1 + C_p p^{-s} + C_{p^2} p^{-2s} + \dots + C_{p^r} p^{-rs})^{-1}$$

Then, the series $F(X, Y) := f^{-1}(f(X) + f(Y))$ is a formal group law defined over R of dimension d.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Theorem (Honda)

Let $d \ge 1$ be a square-free integer.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト 《母 》 《田 》 《田 》 《日 》

Theorem (Honda)

Let $d \ge 1$ be a square-free integer. Let

$$L(d,s) = \sum_{n \ge 1} \left(rac{d}{n}
ight) n^{-s} = \prod_{p \ ext{prime}} (1 - \left(rac{d}{p}
ight) p^{-s})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

be the Dirichlet L-series associated d.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Theorem (Honda)

Let $d \ge 1$ be a square-free integer. Let

$$L(d,s) = \sum_{n \ge 1} \left(rac{d}{n}
ight) n^{-s} = \prod_{p \ ext{prime}} (1 - \left(rac{d}{p}
ight) p^{-s})^{-1}$$

be the Dirichlet *L*-series associated *d*. Let \mathcal{T} be the Néron model over \mathbb{Z} of the 1-dimensional norm tori associated to $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Theorem (Honda)

Let $d \ge 1$ be a square-free integer. Let

$$L(d,s) = \sum_{n \ge 1} \left(rac{d}{n}
ight) n^{-s} = \prod_{p \ ext{prime}} (1 - \left(rac{d}{p}
ight) p^{-s})^{-1}$$

be the Dirichlet L-series associated d.

Let \mathcal{T} be the Néron model over \mathbb{Z} of the 1-dimensional norm tori associated to $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$.

Let $\widehat{\mathcal{T}}$ the completion of \mathcal{T} along the zero section.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Theorem (Honda)

Let $d \ge 1$ be a square-free integer. Let

$$L(d,s) = \sum_{n \ge 1} \left(\frac{d}{n}\right) n^{-s} = \prod_{p \text{ prime}} (1 - \left(\frac{d}{p}\right) p^{-s})^{-1}$$

be the Dirichlet L-series associated d.

Let \mathcal{T} be the Néron model over \mathbb{Z} of the 1-dimensional norm tori associated to $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$.

Let $\widehat{\mathcal{T}}$ the completion of \mathcal{T} along the zero section.

Then F_L and $\hat{\mathcal{T}}$ are (strongly) isomorphic.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Theorem (Honda)

Let $d \ge 1$ be a square-free integer. Let

$$L(d,s) = \sum_{n \ge 1} \left(\frac{d}{n}\right) n^{-s} = \prod_{p \text{ prime}} (1 - \left(\frac{d}{p}\right) p^{-s})^{-1}$$

be the Dirichlet L-series associated d.

Let \mathcal{T} be the Néron model over \mathbb{Z} of the 1-dimensional norm tori associated to $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$.

Let $\widehat{\mathcal{T}}$ the completion of \mathcal{T} along the zero section.

Then F_L and $\widehat{\mathcal{T}}$ are (strongly) isomorphic. Moreover F_L is strongly isomorphic over $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ to

 $X+Y+\sqrt{d}XY.$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

Theorem (Honda)

Let *E* be an elliptic curve over \mathbb{Q} .

・ロト・日本・日本・日本・日本・日本

Theorem (Honda)

Let *E* be an elliptic curve over \mathbb{Q} . Let \mathcal{E} be its Néron model over \mathbb{Z} . Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト・日本・日本・日本・日本・日本

Theorem (Honda)

- Let *E* be an elliptic curve over \mathbb{Q} .
- Let \mathcal{E} be its Néron model over \mathbb{Z} .
- Let $\widehat{\mathcal{E}}$ the completion of *E* along the zero section.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Theorem (Honda)

Let *E* be an elliptic curve over \mathbb{Q} . Let \mathcal{E} be its Néron model over \mathbb{Z} . Let $\widehat{\mathcal{E}}$ the completion of *E* along the zero section. Let

$$L(E,s) = \sum_{n \ge 1} a_n n^{-s} = \prod_{p \text{ prime}} (1 + a_p p^{-s} + p^{1-2s})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

be the L-series of E.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Theorem (Honda)

Let *E* be an elliptic curve over \mathbb{Q} . Let \mathcal{E} be its Néron model over \mathbb{Z} . Let $\widehat{\mathcal{E}}$ the completion of *E* along the zero section. Let

$$L(E,s) = \sum_{n \ge 1} a_n n^{-s} = \prod_{p \text{ prime}} (1 + a_p p^{-s} + p^{1-2s})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

be the *L*-series of *E*. Then F_L and $\widehat{\mathcal{E}}$ are (strongly) isomorphic. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

A result for Abelian Tori by Denninger and Nart

Let T be an abelian torus over \mathbb{Q} of dimension d.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

A result for Abelian Tori by Denninger and Nart Let T be an abelian torus over \mathbb{Q} of dimension d.

By abelian we mean that become split over an abelian extension K of \mathbb{Q} .

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

A result for Abelian Tori by Denninger and Nart Let T be an abelian torus over \mathbb{Q} of dimension d.

By abelian we mean that become split over an abelian extension K of \mathbb{Q} .

Consider the natural representation given by the characters:

 $\rho_T : \operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{GL}_d(\mathbb{Z}).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

A result for Abelian Tori by Denninger and Nart Let T be an abelian torus over \mathbb{Q} of dimension d.

By abelian we mean that become split over an abelian extension K of \mathbb{Q} .

Consider the natural representation given by the characters:

 $\rho_T : \operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{GL}_d(\mathbb{Z}).$

For any prime p of good reduction of T, consider the matrix $A_p := \rho_T(\sigma_p)$, where σ_p is the Frobenius at p, and zero otherwise.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's
A result for Abelian Tori by Denninger and Nart Let T be an abelian torus over \mathbb{Q} of dimension d.

By abelian we mean that become split over an abelian extension K of \mathbb{Q} .

Consider the natural representation given by the characters:

 $\rho_T : \operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{GL}_d(\mathbb{Z}).$

For any prime p of good reduction of T, consider the matrix $A_p := \rho_T(\sigma_p)$, where σ_p is the Frobenius at p, and zero otherwise.

Define the formal group \widehat{L} to be the one associated to the Dirichlet matrix series

$$L(T,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_p (I_d - A_p p^{-s})^{-1}.$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let T be an abelian torus over \mathbb{Q} of dimension d. Define the formal group \widehat{L} to be the one associated to the Dirichlet matrix series

$$L(T,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_p (I_d - A_p p^{-s})^{-1}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let T be an abelian torus over \mathbb{Q} of dimension d. Define the formal group \widehat{L} to be the one associated to the Dirichlet matrix series

$$L(T,s) := \sum_{n\geq 1} A_n n^{-s} := \prod_p (I_d - A_p p^{-s})^{-1}.$$

Theorem (Deninger, Nart (1990))

Let \mathcal{T} be the Néron model of \mathcal{T} over \mathbb{Z} , and $\widehat{\mathcal{T}}$ its formal completion.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let T be an abelian torus over \mathbb{Q} of dimension d. Define the formal group \widehat{L} to be the one associated to the Dirichlet matrix series

$$L(T,s) := \sum_{n\geq 1} A_n n^{-s} := \prod_p (I_d - A_p p^{-s})^{-1}.$$

Theorem (Deninger, Nart (1990))

Let \mathcal{T} be the Néron model of \mathcal{T} over \mathbb{Z} , and $\widehat{\mathcal{T}}$ its formal completion.

Then there is an isomorphism between $\widehat{\mathcal{T}}$ and $\widehat{\mathcal{L}}$ over \mathbb{Z}_S , where S is the finite set of primes of bad reduction.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let T be an abelian torus over \mathbb{Q} of dimension d. Define the formal group \widehat{L} to be the one associated to the Dirichlet matrix series

$$L(T,s) := \sum_{n\geq 1} A_n n^{-s} := \prod_p (I_d - A_p p^{-s})^{-1}.$$

Theorem (Deninger, Nart (1990))

Let $\mathcal T$ be the Néron model of $\mathcal T$ over $\mathbb Z$, and $\widehat{\mathcal T}$ its formal completion.

Then there is an isomorphism between $\widehat{\mathcal{T}}$ and $\widehat{\mathcal{L}}$ over \mathbb{Z}_S , where S is the finite set of primes of bad reduction.

Theorem (Demchenko, Gurevich, Xarles (2010))

If K/\mathbb{Q} is tamely ramified, the result is true for $S = \emptyset$ (by using the "natural" A_p for the primes of bad reduction).

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication.

There is a real field F of absolute degree d and a homomorphism sending 1 to id:

 $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication.

There is a real field F of absolute degree d and a homomorphism sending 1 to id:

 $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

Then the local L-factor of A relative to F has the form

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

for some $c_p \in \mathcal{O}_F$, $c_{p^2} = 1$ or 0.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

・ロト・日本・日本・日本・日本・日本・日本・日本・日本

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication.

There is a real field F of absolute degree d and a homomorphism sending 1 to id:

 $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

Then the local L-factor of A relative to F has the form

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

for some $c_{p}\in \mathcal{O}_{F}$, $c_{p^{2}}=1$ or 0.

Consider $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A))$ and a faithfull representation $R : \mathcal{O}_A \to M_d(\mathbb{Z}).$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

うしん 同一人用 人用 人用 人口 マ

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$ If $\forall p \ c_p \in \mathcal{O}_A$, we define $C_p := R(c_p)$ and $C_{p^2} = R(c_{p^2}).$ Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \text{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$ If $\forall p \ c_p \in \mathcal{O}_A$, we define $C_p := R(c_p)$ and $C_{p^2} = R(c_{p^2}).$ Define

$$L(A,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_p (I_d - C_p p^{-s} + p C_{p^2} p^{-2s})^{-1}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$ If $\forall p \ c_p \in \mathcal{O}_A$, we define $C_p := R(c_p)$ and $C_{p^2} = R(c_{p^2}).$ Define

$$L(A,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_p (I_d - C_p p^{-s} + p C_{p^2} p^{-2s})^{-1}$$

Theorem (Denninger, Nart (1990))

Let $\widehat{\mathcal{A}}$ be the formal completion along the zero section of the Neron model of A.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$ If $\forall p \ c_p \in \mathcal{O}_A$, we define $C_p := R(c_p)$ and $C_{p^2} = R(c_{p^2}).$ Define

$$L(A,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_p (I_d - C_p p^{-s} + p C_{p^2} p^{-2s})^{-1}$$

Theorem (Denninger, Nart (1990))

Let $\widehat{\mathcal{A}}$ be the formal completion along the zero section of the Neron model of A. Assume that R is the representation obtained from the cotangent sheaf.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$ If $\forall p \ c_p \in \mathcal{O}_A$, we define $C_p := R(c_p)$ and $C_{p^2} = R(c_{p^2}).$ Define

$$L(A,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_p (I_d - C_p p^{-s} + p C_{p^2} p^{-2s})^{-1}$$

Theorem (Denninger, Nart (1990))

Let $\widehat{\mathcal{A}}$ be the formal completion along the zero section of the Neron model of A. Assume that R is the representation obtained from the cotangent sheaf. Let S be the set of primes of bad unipotent and not additive reduction.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let A be an abelian variety over \mathbb{Q} of dimension d with real multiplication. $\theta: F \to \operatorname{End}(A) \otimes \mathbb{Q}$

$$L_p(A, F, s) = (1 - c_p p^{-s} + p c_{p^2} p^{-2s})^{-1}$$

 $\mathcal{O}_A := \theta^{-1}(\operatorname{End}(A)) \text{ and } R : \mathcal{O}_A \to M_d(\mathbb{Z}).$ If $\forall p \ c_p \in \mathcal{O}_A$, we define $C_p := R(c_p)$ and $C_{p^2} = R(c_{p^2}).$ Define

$$L(A,s) := \sum_{n \ge 1} A_n n^{-s} := \prod_{p} (I_d - C_p p^{-s} + p C_{p^2} p^{-2s})^{-1}$$

Theorem (Denninger, Nart (1990))

Let $\widehat{\mathcal{A}}$ be the formal completion along the zero section of the Neron model of A. Assume that R is the representation obtained from the cotangent sheaf. Let S be the set of primes of bad unipotent and not additive reduction. Then there is an isomorphism between $\widehat{\mathcal{A}}$ and $\widehat{\mathcal{L}}$ over \mathbb{Z}_{S} . Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let $A = J_0(N)^{new}$ be the new part of the modular Jacobian $J_0(N)$, where N is a squarefree integer.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Xavier Xarles

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Let $A = J_0(N)^{new}$ be the new part of the modular Jacobian $J_0(N)$, where N is a squarefree integer. Then A verifies the hypotheses of the Theorem with $S = \emptyset$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let $A = J_0(N)^{new}$ be the new part of the modular Jacobian $J_0(N)$, where N is a squarefree integer. Then A verifies the hypotheses of the Theorem with $S = \emptyset$. Explicitly: Consider the action of the Hecke algebra \mathbb{T} on the new integral cusps forms $S_2(\Gamma_0(N), \mathbb{Z})^{new}$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let $A = J_0(N)^{new}$ be the new part of the modular Jacobian $J_0(N)$, where N is a squarefree integer. Then A verifies the hypotheses of the Theorem with $S = \emptyset$. Explicitly: Consider the action of the Hecke algebra \mathbb{T} on the new integral cusps forms $S_2(\Gamma_0(N), \mathbb{Z})^{new}$. The Hecke operators T_p for the primes $p \nmid N$ (U_p for the primes $p \mid N$) determine then matrices in $M_d(\mathbb{Z})$.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let $A = J_0(N)^{new}$ be the new part of the modular Jacobian $J_0(N)$, where N is a squarefree integer. Then A verifies the hypotheses of the Theorem with $S = \emptyset$. Explicitly: Consider the action of the Hecke algebra \mathbb{T} on the new integral cusps forms $S_2(\Gamma_0(N), \mathbb{Z})^{new}$. The Hecke operators T_p for the primes $p \nmid N$ (U_p for the primes $p \mid N$) determine then matrices in $M_d(\mathbb{Z})$. Consider the matrix formal Dirichlet *L*-series

$$L(A,s) := \prod_{p \nmid N} \left(I_d - T_p p^{-s} + I_d p^{1-2s} \right)^{-1} \prod_{p \mid N} \left(I_d - U_p p^{-s} \right)^{-1}$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Let $A = J_0(N)^{new}$ be the new part of the modular Jacobian $J_0(N)$, where N is a squarefree integer. Then A verifies the hypotheses of the Theorem with $S = \emptyset$. Explicitly: Consider the action of the Hecke algebra \mathbb{T} on the new integral cusps forms $S_2(\Gamma_0(N), \mathbb{Z})^{new}$. The Hecke operators T_p for the primes $p \nmid N$ (U_p for the primes $p \mid N$) determine then matrices in $M_d(\mathbb{Z})$. Consider the matrix formal Dirichlet *L*-series

$$L(A,s) := \prod_{p \nmid N} \left(I_d - T_p p^{-s} + I_d p^{1-2s} \right)^{-1} \prod_{p \mid N} \left(I_d - U_p p^{-s} \right)^{-1}$$

Theorem (Nart(1993)

There is an isomorphism between $\widehat{\mathcal{A}}$ and $\widehat{\mathcal{L}}$ over \mathbb{Z} .

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Given a modular parametrization

$$\pi: A = J_0(N)^{new} \to E$$

for E an elliptic curve defined over $\mathbb Q$ with conductor N squarefree,

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Given a modular parametrization

$$\pi: A = J_0(N)^{new} \to E$$

for E an elliptic curve defined over $\mathbb Q$ with conductor N squarefree, we have a morphism of formal groups

$$\widehat{\pi}:\widehat{\mathcal{A}}\to\widehat{\mathcal{E}}$$

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Given a modular parametrization

$$\pi: A = J_0(N)^{new} \to E$$

for E an elliptic curve defined over $\mathbb Q$ with conductor N squarefree, we have a morphism of formal groups

$$\widehat{\pi}:\widehat{\mathcal{A}}\to\widehat{\mathcal{E}}$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Conversely

Theorem (Nart(1993))

Any homomorphisms of formal group laws $\widehat{\pi} : \widehat{\mathcal{A}} \to \widehat{\mathcal{E}}$ produce a modular parametrization $\pi : \mathcal{A} \to \mathcal{E}$. Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

Given a modular parametrization

$$\pi: A = J_0(N)^{new} \to E$$

for E an elliptic curve defined over $\mathbb Q$ with conductor N squarefree, we have a morphism of formal groups

$$\widehat{\pi}:\widehat{\mathcal{A}}\to\widehat{\mathcal{E}}$$

Conversely

Theorem (Nart(1993))

Any homomorphisms of formal group laws $\widehat{\pi} : \widehat{\mathcal{A}} \to \widehat{\mathcal{E}}$ produce a modular parametrization $\pi : \mathcal{A} \to \mathcal{E}$.

Theorem (Demchenko, Gurevich, Xarles(2010))

Let T and T' be tori split under tamely ramified abelian extension of $\mathbb Q.$ Then the natural map

$$\operatorname{Hom}(T,T')\cong\operatorname{Hom}(\widehat{\mathcal{T}},\widehat{\mathcal{T}'})$$

is an isomorphism.

Una Passejada Formal A Formal Promenade.

To Enric Nart, in his 60th birthday's

To Enric Nart, in his 60th birthday's

Xavier Xarles

Moltes Felicitats!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

To Enric Nart, in his 60th birthday's

Xavier Xarles

Moltes Felicitats!

Angela

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

To Enric Nart, in his 60th birthday's

Xavier Xarles

Moltes Felicitats! Angela Núria

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

To Enric Nart, in his 60th birthday's

Xavier Xarles

Moltes Felicitats! Angela

Núria

Teresa

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

To Enric Nart, in his 60th birthday's

Xavier Xarles

Moltes Felicitats! Angela Núria Teresa Enric!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで