On the order of the reductions of algebraic numbers

Pietro Sgobba

j.w. Antonella Perucca

University of Luxembourg
6 February 2020

The multiplicative order of $(2 \bmod p)$

p odd prime	3	5	7	11	13	17	19	23	29	31	37
$\operatorname{ord}(2 \bmod p)$	2	4	3	10	12	8	18	11	28	5	36

41	43	47	53	59	61	67	71	73	79	83	89	97	\ldots
20	14	23	52	58	60	66	35	9	39	82	11	48	\ldots

p odd prime	3	5	7	11	13	17	19	23	29	31	37
$\operatorname{ord}(2 \bmod p)$	2	4	3	10	12	8	18	11	28	5	36

41	43	47	53	59	61	67	71	73	79	83	89	97	\ldots
20	14	23	52	58	60	66	35	9	39	82	11	48	\ldots

$$
\operatorname{ord}(2 \bmod p) \neq 6 \quad 2^{6}-1=3^{2} \times 7
$$

p odd prime	3	5	7	11	13	17	19	23	29	31	37
$\operatorname{ord}(2 \bmod p)$	2	4	3	10	12	8	18	11	28	5	36

41	43	47	53	59	61	67	71	73	79	83	89	97	\ldots
20	14	23	52	58	60	66	35	9	39	82	11	48	\ldots

$$
\operatorname{ord}(2 \bmod p) \neq 6 \quad 2^{6}-1=3^{2} \times 7
$$

- Artin's Conjecture on primitive roots (1927): Are there infinitely many primes p such that $\operatorname{ord}(2 \bmod p)=p-1$?

p odd prime	3	5	7	11	13	17	19	23	29	31	37
$\operatorname{ord}(2 \bmod p)$	2	4	3	10	12	8	18	11	28	5	36

41	43	47	53	59	61	67	71	73	79	83	89	97	\ldots
20	14	23	52	58	60	66	35	9	39	82	11	48	\ldots

$$
\operatorname{ord}(2 \bmod p) \neq 6 \quad 2^{6}-1=3^{2} \times 7
$$

- Artin's Conjecture on primitive roots (1927): Are there infinitely many primes p such that $\operatorname{ord}(2 \bmod p)=p-1$?
- The density of primes p for which $\operatorname{ord}(2 \bmod p)$ is odd is $\frac{7}{24}$.
- Are there infinitely many primes p such that e.g. $\operatorname{ord}(2 \bmod p) \equiv 1 \bmod 3 ?$

Reductions for number fields

Let K be a number field.
Let $G \subseteq K^{\times}$torsion-free subgroup of finite rank r.
For all but finitely many primes \mathfrak{p} of K the reduction $G \bmod \mathfrak{p}$

- is a cyclic subgroup of $k_{\mathfrak{p}}^{\times}=\left(O_{K} / \mathfrak{p} O_{K}\right)^{\times}$
- has a multiplicative $\operatorname{order}^{\operatorname{ord}_{\mathfrak{p}}}(G)=\#(G \bmod \mathfrak{p})$
- satisfies

$$
\operatorname{ord}_{\mathfrak{p}}(G) \mid \# k_{\mathfrak{p}}^{\times}=N(\mathfrak{p})-1
$$

Reductions for number fields

Let K be a number field.
Let $G \subseteq K^{\times}$torsion-free subgroup of finite rank r.
For all but finitely many primes \mathfrak{p} of K the reduction $G \bmod \mathfrak{p}$

- is a cyclic subgroup of $k_{p}^{\times}=\left(O_{K} / \mathfrak{p} O_{K}\right)^{\times}$
- has a multiplicative $\operatorname{order}_{\operatorname{ord}}^{\mathfrak{p}}(G)=\#(G \bmod \mathfrak{p})$
- satisfies

$$
\operatorname{ord}_{\mathfrak{p}}(G) \mid \# k_{\mathfrak{p}}^{\times}=N(\mathfrak{p})-1
$$

Questions: Are there infinitely many primes \mathfrak{p} for which

$$
\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \bmod d
$$

for some fixed integers a, d ? Does the density exist?

$$
\mathcal{P}:=\left\{\mathfrak{p}: \operatorname{ord}_{\mathfrak{p}}(G) \equiv a \bmod d\right\}
$$

Theorem

Assuming (GRH), the number of primes in \mathcal{P} with norm up to x is

$$
\mathcal{P}(x)=\frac{x}{\log x} \sum_{n, t \geqslant 1} \frac{\mu(n) c(n, t)}{[K(\zeta \operatorname{lcm}(d t, n t), \sqrt[n]{G}): K]}+O\left(\frac{x}{\log ^{3 / 2} x}\right),
$$

where $c(n, t) \in\{0,1\}$, with $c(n, t)=1$ if and only if

- $\operatorname{gcd}(1+a t, d)=1$
- $\operatorname{gcd}(d, n) \mid a$
- the element of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{d t}\right) / \mathbb{Q}\right)$ which maps $\zeta_{d t}$ to $\zeta_{d t}^{1+a t}$ is the identity on $\mathbb{Q}\left(\zeta_{d t}\right) \cap K\left(\zeta_{n t}, \sqrt[n t]{G}\right)$

Ziegler, 2006: case of rank 1

Kummer theory for number fields

Bounded failure of maximality of Kummer degrees:

Theorem

There is an integer $C \geqslant 1$, which depends only on K and G, such that for all $n, m \geqslant 1$ with $n \mid m$ the ratio

$$
\frac{n^{r}}{\left[K\left(\zeta_{m}, \sqrt[n]{G}\right): K\left(\zeta_{m}\right)\right]} \quad \text { divides } \quad C
$$

Direct proof by Perucca, S. (2018)

Properties of the density

Denote the natural density of $\mathcal{P}=\left\{\mathfrak{p}: \operatorname{ord}_{\mathfrak{p}}(G) \equiv a \bmod d\right\}$ by

$$
\operatorname{dens}_{K}(G, a \bmod d)=\sum_{n, t \geqslant 1} \frac{\mu(n) c(n, t)}{\left[K\left(\zeta_{\mathrm{lcm}(d t, n t)}, \sqrt[n t]{G}\right): K\right]}
$$

We investigate whether this density is

- positive
- a rational number
- computable

The prime power case, $d=\ell^{e}$

Let ℓ be a prime number and $e \geqslant 1$.

Proposition (Debry, Perucca, 2016)

Given an integer $x \geqslant 0$ we have that

$$
\operatorname{dens}_{K}\left(\left\{\mathfrak{p}: v_{\ell}\left(\operatorname{ord}_{\mathfrak{p}}(G)\right)=x\right\}\right)
$$

is a positive computable rational number.

Let ℓ be a prime number and $e \geqslant 1$.

Proposition (Debry, Perucca, 2016)

Given an integer $x \geqslant 0$ we have that

$$
\operatorname{dens}_{K}\left(\left\{\mathfrak{p}: v_{\ell}\left(\operatorname{ord}_{\mathfrak{p}}(G)\right)=x\right\}\right)
$$

is a positive computable rational number.

Theorem

Assume (GRH). Suppose that $\zeta_{\ell} \in K$ if ℓ is odd, or that $\zeta_{4} \in K$ if $\ell=2$. Then

$$
\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)
$$

depends on a only through its ℓ-adic valuation, and it is a computable positive rational number.

Uniformity and positivity

Taking ℓ odd and $\ell \mid a$, if \mathfrak{p} is a prime of K of degree 1 and unramified in $K\left(\zeta_{\ell}\right)$ and such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv \operatorname{amod} \ell^{e}$, then it splits completely in $K\left(\zeta_{\ell}\right)$

$$
\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)=\frac{1}{\left[K\left(\zeta_{\ell}\right): K\right]} \cdot \operatorname{dens}_{K\left(\zeta_{\ell}\right)}\left(G, a \bmod \ell^{e}\right)
$$

Uniformity and positivity

Taking ℓ odd and $\ell \mid a$, if \mathfrak{p} is a prime of K of degree 1 and unramified in $K\left(\zeta_{\ell}\right)$ and such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv \operatorname{amod} \ell^{e}$, then it splits completely in $K\left(\zeta_{\ell}\right)$

$$
\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)=\frac{1}{\left[K\left(\zeta_{\ell}\right): K\right]} \cdot \operatorname{dens}_{K\left(\zeta_{\ell}\right)}\left(G, a \bmod \ell^{e}\right)
$$

Corollary

Assume (GRH). Suppose that $\ell \mid$ a if ℓ is odd, and that $4 \mid a$ (and $e \geqslant 2)$ if $\ell=2$. Then the density $\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)$ depends on a only through its ℓ-adic valuation, and it is a computable positive rational number.

Uniformity and positivity

Taking ℓ odd and $\ell \mid a$, if \mathfrak{p} is a prime of K of degree 1 and unramified in $K\left(\zeta_{\ell}\right)$ and such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv \operatorname{amod} \ell^{e}$, then it splits completely in $K\left(\zeta_{\ell}\right)$

$$
\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)=\frac{1}{\left[K\left(\zeta_{\ell}\right): K\right]} \cdot \operatorname{dens}_{K\left(\zeta_{\ell}\right)}\left(G, a \bmod \ell^{e}\right)
$$

Corollary

Assume (GRH). Suppose that $\ell \mid$ a if ℓ is odd, and that $4 \mid$ a (and $e \geqslant 2)$ if $\ell=2$. Then the density $\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)$ depends on a only through its ℓ-adic valuation, and it is a computable positive rational number.

Corollary

Assume (GRH). The density $\operatorname{dens}_{K}\left(G, a \bmod \ell^{e}\right)$ is positive.

The composite case

It is known unconditionally that $\operatorname{dens}_{K}(G, 0 \bmod d)$ is a positive computable rational number.

The composite case

It is known unconditionally that $\operatorname{dens}_{K}(G, 0 \bmod d)$ is a positive computable rational number.

Theorem

Assume (GRH). Suppose that $\zeta_{\ell} \in K$ for all $\ell \mid d$, and $\zeta_{4} \in K$ if d is even. Then for a coprime to d

$$
\operatorname{dens}_{K}(G, a \bmod d)
$$

is a computable positive rational number which does not depend on a.

The composite case

It is known unconditionally that $\operatorname{dens}_{K}(G, 0 \bmod d)$ is a positive computable rational number.

Theorem

Assume (GRH). Suppose that $\zeta_{\ell} \in K$ for all $\ell \mid d$, and $\zeta_{4} \in K$ if d is even. Then for a coprime to d

$$
\operatorname{dens}_{K}(G, a \bmod d)
$$

is a computable positive rational number which does not depend on a.

Corollary

Assume (GRH). The density dens $_{K}(G, a \bmod d)$ is positive whenever a is coprime to d.

Take $G=\langle 2,3\rangle \leqslant \mathbb{Q}^{\times}$.

$a \bmod d$	dens $_{\mathbb{Q}}(G, a \bmod d)$	primes up to 10^{6}
$4 \bmod 16$	$17 / 112 \approx 0.1518$	0.1522
$12 \bmod 16$	$17 / 112 \approx 0.1518$	0.1508
$3 \bmod 9$	$2 / 13 \approx 0.1538$	0.1538
$6 \bmod 9$	$2 / 13 \approx 0.1538$	0.1540
$9 \bmod 27$	$2 / 39 \approx 0.0513$	0.0513
$18 \bmod 27$	$2 / 39 \approx 0.0513$	0.0513
$3 \bmod 27$	$2 / 39 \approx 0.0513$	0.0518
$6 \bmod 27$	$2 / 39 \approx 0.0513$	0.0512
$15 \bmod 27$	$2 / 39 \approx 0.0513$	0.0513
$21 \bmod 27$	$2 / 39 \approx 0.0513$	0.0507

Thank you for your attention!

