On the order of the reductions of algebraic numbers

Pietro Sgobba

j.w. Antonella Perucca

University of Luxembourg

6 February 2020

p o	dd p	rime	3	5	7	11	13	1	7 1	19	23	29	31	. 37	7
ord((2 mc	od <i>p</i>)	2	4	3	10	12	8	1	18	11	28	5	36	5
41	43	47	53	59	6	1 6	67	71	73	79		83	89	97	
20	14	23	52	58	6	0 6	66	35	9	39		82	11	48	

(日)

э

ро	dd pi	rime	3	5	7	11	13	17	7 1	9	23	29	31	37	,
ord((2 mc	od <i>p</i>)	2	4	3	10	12	8	1	8	11	28	5	36	
41	43	47	53	59	6	16	57	71	73	79	8	3 8	89	97	
20	14	23	52	58	6	06	66	35	9	39	8	2	11	48	

ord(2 mod p) \neq 6 $2^{6} - 1 = 3^{2} \times 7$

Pietro Sgobba On the order of the reductions of algebraic numbers

▲御▶ ▲ 臣▶ ▲ 臣▶

э

ро	dd pi	rime	3	5	7	11	13	17	7 1	9	23	29	31	37	,
ord((2 mc	od <i>p</i>)	2	4	3	10	12	8	1	8	11	28	5	36	
41	43	47	53	59	6	16	57	71	73	79	8	3 8	89	97	
20	14	23	52	58	6	06	66	35	9	39	8	2	11	48	

ord(2 mod p) \neq 6 $2^{6} - 1 = 3^{2} \times 7$

 Artin's Conjecture on primitive roots (1927): Are there infinitely many primes p such that ord(2 mod p) = p - 1?

ро	odd p	rime	3	5	7	11	13	17	71	9	23	29	31	. 37	7
ord((2 mc	od <i>p</i>)	2	4	3	10	12	8	1	.8	11	28	5	36	5
41	43	47	53	59	6	1 6	67	71	73	79) (33	89	97	
20	14	23	52	58	6	06	66	35	9	39) (32	11	48	

ord
$$(2 \mod p) \neq 6$$
 $2^6 - 1 = 3^2 \times 7$

- Artin's Conjecture on primitive roots (1927): Are there infinitely many primes p such that ord(2 mod p) = p - 1?
- The density of primes p for which $ord(2 \mod p)$ is odd is $\frac{7}{24}$.
- Are there infinitely many primes p such that e.g. ord(2 mod p) = 1 mod 3 ?

Reductions for number fields

Let K be a number field.

Let $G \subseteq K^{\times}$ torsion-free subgroup of finite rank r.

For all but finitely many primes p of K the reduction G mod p

- is a cyclic subgroup of $k_{\mathfrak{p}}^{ imes} = (O_{\mathcal{K}}/\mathfrak{p}O_{\mathcal{K}})^{ imes}$
- has a multiplicative order $\operatorname{ord}_{\mathfrak{p}}(G) = \#(G \mod \mathfrak{p})$
- satisfies

$$\operatorname{ord}_{\mathfrak{p}}(G) \mid \#k_{\mathfrak{p}}^{\times} = N(\mathfrak{p}) - 1$$

★ ∃ ► < ∃ ►</p>

Reductions for number fields

Let K be a number field.

Let $G \subseteq K^{\times}$ torsion-free subgroup of finite rank r.

For all but finitely many primes p of K the reduction $G \mod p$

- is a cyclic subgroup of $k_{\mathfrak{p}}^{ imes} = (O_{\mathcal{K}}/\mathfrak{p}O_{\mathcal{K}})^{ imes}$
- has a multiplicative order $\operatorname{ord}_{\mathfrak{p}}(G) = \#(G \mod \mathfrak{p})$

satisfies

$$\operatorname{ord}_{\mathfrak{p}}(G) \mid \# k_{\mathfrak{p}}^{\times} = N(\mathfrak{p}) - 1$$

Questions: Are there infinitely many primes \mathfrak{p} for which

$$\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d$$

for some fixed integers a, d? Does the density exist?

$$\mathcal{P} := \{\mathfrak{p} : \mathsf{ord}_\mathfrak{p}(G) \equiv a \bmod d\}$$

Theorem

Assuming (GRH), the number of primes in \mathcal{P} with norm up to x is

$$\mathcal{P}(x) = \frac{x}{\log x} \sum_{n,t \ge 1} \frac{\mu(n)c(n,t)}{[\mathcal{K}(\zeta_{\mathsf{lcm}(dt,nt)}, \sqrt[nt]{G}) : \mathcal{K}]} + O\left(\frac{x}{\log^{3/2} x}\right),$$

where $c(n, t) \in \{0, 1\}$, with c(n, t) = 1 if and only if

- gcd(1 + at, d) = 1
- gcd(*d*, *n*) | *a*
- the element of Gal($\mathbb{Q}(\zeta_{dt})/\mathbb{Q}$) which maps ζ_{dt} to ζ_{dt}^{1+at} is the identity on $\mathbb{Q}(\zeta_{dt}) \cap K(\zeta_{nt}, \sqrt[nt]{G})$

Ziegler, 2006: case of rank 1

Bounded failure of maximality of Kummer degrees:

Theorem

There is an integer $C \ge 1$, which depends only on K and G, such that for all $n, m \ge 1$ with $n \mid m$ the ratio

$$rac{n^r}{[K(\zeta_m,\sqrt[n]{G}):K(\zeta_m)]}$$
 divides C.

Direct proof by Perucca, S. (2018)

Denote the natural density of $\mathcal{P} = \{\mathfrak{p} : \mathsf{ord}_\mathfrak{p}(G) \equiv a \bmod d\}$ by

$$\mathsf{dens}_{\mathcal{K}}(G, a \bmod d) = \sum_{n,t \geqslant 1} \frac{\mu(n)c(n,t)}{[\mathcal{K}(\zeta_{\mathsf{lcm}(dt,nt)}, \sqrt[nt]{\nabla}G) : \mathcal{K}]}$$

We investigate whether this density is

- positive
- a rational number
- computable

★ ∃ ► < ∃ ►</p>

The prime power case, $d=\ell^e$

Let ℓ be a prime number and $e \ge 1$.

Proposition (Debry, Perucca, 2016)

Given an integer $x \ge 0$ we have that

 $\mathsf{dens}_{\mathcal{K}}(\{\mathfrak{p}: v_{\ell}(\mathsf{ord}_{\mathfrak{p}}(G)) = x\})$

is a positive computable rational number.

A B F A B F

The prime power case, $d = \ell^e$

Let ℓ be a prime number and $e \ge 1$.

Proposition (Debry, Perucca, 2016)

Given an integer $x \ge 0$ we have that

 $\mathsf{dens}_{\mathcal{K}}(\{\mathfrak{p}: v_{\ell}(\mathsf{ord}_{\mathfrak{p}}(G)) = x\})$

is a positive computable rational number.

Theorem

Assume (GRH). Suppose that $\zeta_{\ell} \in K$ if ℓ is odd, or that $\zeta_{4} \in K$ if $\ell = 2$. Then

 $\operatorname{dens}_{K}(G, a \bmod \ell^{e})$

depends on a only through its ℓ -adic valuation, and it is a computable positive rational number.

Uniformity and positivity

Taking ℓ odd and $\ell \mid a$, if \mathfrak{p} is a prime of K of degree 1 and unramified in $K(\zeta_{\ell})$ and such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod \ell^{e}$, then it splits completely in $K(\zeta_{\ell})$

$$\mathsf{dens}_{\mathcal{K}}(\mathsf{G}, \mathsf{\textit{a}} \bmod \ell^e) = \frac{1}{[\mathcal{K}(\zeta_\ell) : \mathcal{K}]} \cdot \mathsf{dens}_{\mathcal{K}(\zeta_\ell)}(\mathsf{G}, \mathsf{a} \bmod \ell^e)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Uniformity and positivity

Taking ℓ odd and $\ell \mid a$, if \mathfrak{p} is a prime of K of degree 1 and unramified in $K(\zeta_{\ell})$ and such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod \ell^{e}$, then it splits completely in $K(\zeta_{\ell})$

$$\operatorname{dens}_{K}(G, a \bmod \ell^{e}) = \frac{1}{[K(\zeta_{\ell}) : K]} \cdot \operatorname{dens}_{K(\zeta_{\ell})}(G, a \bmod \ell^{e})$$

Corollary

Assume (GRH). Suppose that $\ell \mid a$ if ℓ is odd, and that $4 \mid a$ (and $e \ge 2$) if $\ell = 2$. Then the density dens_K(G, a mod ℓ^e) depends on a only through its ℓ -adic valuation, and it is a computable positive rational number.

伺 ト イヨト イヨト

Uniformity and positivity

Taking ℓ odd and $\ell \mid a$, if \mathfrak{p} is a prime of K of degree 1 and unramified in $K(\zeta_{\ell})$ and such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod \ell^{e}$, then it splits completely in $K(\zeta_{\ell})$

$$\mathsf{dens}_{\mathcal{K}}(G, a \bmod \ell^e) = \frac{1}{[\mathcal{K}(\zeta_\ell) : \mathcal{K}]} \cdot \mathsf{dens}_{\mathcal{K}(\zeta_\ell)}(G, a \bmod \ell^e)$$

Corollary

Assume (GRH). Suppose that $\ell \mid a$ if ℓ is odd, and that $4 \mid a$ (and $e \ge 2$) if $\ell = 2$. Then the density dens_K(G, a mod ℓ^e) depends on a only through its ℓ -adic valuation, and it is a computable positive rational number.

Corollary

Assume (GRH). The density dens_K(G, a mod ℓ^e) is positive.

・ロト ・ 同ト ・ ヨト ・ ヨト

The composite case

It is known unconditionally that $dens_{\kappa}(G, 0 \mod d)$ is a positive computable rational number.

直 ト イヨ ト イヨト

It is known unconditionally that $dens_{\kappa}(G, 0 \mod d)$ is a positive computable rational number.

Theorem

Assume (GRH). Suppose that $\zeta_{\ell} \in K$ for all $\ell \mid d$, and $\zeta_{4} \in K$ if d is even. Then for a coprime to d

 $dens_{\mathcal{K}}(G, a \bmod d)$

is a computable positive rational number which does not depend on a. It is known unconditionally that $dens_{\kappa}(G, 0 \mod d)$ is a positive computable rational number.

Theorem

Assume (GRH). Suppose that $\zeta_{\ell} \in K$ for all $\ell \mid d$, and $\zeta_{4} \in K$ if d is even. Then for a coprime to d

 $dens_K(G, a \mod d)$

is a computable positive rational number which does not depend on a.

Corollary

Assume (GRH). The density $dens_{\kappa}(G, a \mod d)$ is positive whenever a is coprime to d.

An example

Take
$$G = \langle 2, 3 \rangle \leqslant \mathbb{Q}^{\times}$$
.

<i>a</i> mod <i>d</i>	$dens_{\mathbb{Q}}(G, a \mod d)$	primes up to 10 ⁶
4 mod 16	17/112 pprox 0.1518	0.1522
12 mod 16	17/112pprox 0.1518	0.1508
3 mod 9	2/13 pprox 0.1538	0.1538
6 mod 9	2/13pprox 0.1538	0.1540
9 mod 27	2/39 pprox 0.0513	0.0513
18 mod 27	2/39pprox 0.0513	0.0513
3 mod 27	2/39 pprox 0.0513	0.0518
6 mod 27	2/39pprox 0.0513	0.0512
15 mod 27	2/39pprox 0.0513	0.0513
21 mod 27	2/39pprox 0.0513	0.0507

< ロ > < 部 > < 注 > < 注 > < </p>

2

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで