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Gross-Zagier Formula

Gross-Zagier g=1

Given coprime imaginary discriminants di , Gross and Zagier [GZ85]
de�ne

J(d1, d2) =

 ∏
[τ1], [τ2]

disc(τi ) = di

(j(τ1)− j(τ2))


8

w1w2

,

The τi run over equivalence classes, and wi is the number of units
in Q(

√
di ).

Under some assumptions, GZ show that J(d1, d2) ∈ Z, and their
main result gives a formula for its factorization.

Lauter and Viray generalize the result for other disc. [LV14].
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Gross-Zagier Formula

Gross-Zagier g=1

The factorization of the integer J(d1, d2), may be reinterpreted
as a formula for the number of isomorphisms between
reductions of elliptic curves Ei corresponding to the τi .

vl(j1 − j2) =
1

2

∑
n

#Isomn(E1,E2).

That is equivalent to counting elements of End(E2) of �x degree
and traces, or to counting embeddings of

ι : End(E2) ↪→ Bp,∞

satisfying certain properties.
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Gross-Zagier Formula

Gross-Zagier g=2

Goren and Lauter [GL12], Bruinier and Yang [BY06],[Y10] and
Lauter and Viray [LV15] prove generalization of the result of
Gross�Zagier for genus 2 curves with CM.

The j-invariant is replaced by the absolute Igusa invariants. The
function J is not anymore an integer number, but still rational.

Some of the results concern the factorization of the numerators
(bad reduction, embedding problem) and others of the
denominators (cryptography purposes).
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Gross-Zagier Formula

Gross-Zagier g=3

MAIN PROBLEM: there are not invariants!

We will focus on the embedding problem (related with bad
reduction and the numerator of the invariants)

ι : K = End0(J(C )) ↪→ End0(J(C )) ↪→M3(Bp,∞)

Bad reduction ⇒ J(C )) ∼ E 3 with E supersingular ⇒ we
have a solution to the embedding problem
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CM �elds and types

De�nition

A complex multiplication (CM) �eld K is an imaginary quadratic
extension of a totally real �eld K+.

Let K be a CM-�eld. The complex embeddings K ↪→ C come in
pairs {ψ, ρ ◦ ψ}, where ρ denotes complex conjugation.

De�nition

A CM-type ϕ is a choice of one embedding from each of these
pairs.

A CM-type is called primitive if it is not induced from a
CM-type on any proper CM-sub�eld of K .
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Abelian Varieties with CM

De�nition

Let A be an abelian variety and let K be a CM-�eld with
[K : Q] = 2 dim(A). We say that A has complex multiplication

(CM) by K if the endomorphism algebra

End0(A) = End(A)⊗Q

contains K . We say that a curve C has CM by K if its Jacobian
has CM by K . If End(A) is an order O in a CM-�eld K with
[K : Q] = 2 dim(A), we say that A has CM by O.

Elisa Lorenzo García Universiteit Leiden Bad reduction of genus 3 curves with CM



Motivation
Set up

Bad reduction
Main Theorem

Removing the assumptions

CM �elds and types
Abelian Varieties with CM

Abelian Varieties with CM

Proposition (Lang)

Let A be an abelian variety with CM by K and de�ned over a �eld

of characteristic zero. There is a way of de�ning a CM-type (K , ϕ)
for A. The CM-type (K , ϕ) is primitive if and only if the abelian

variety A is simple.

If g = 2: (K , ϕ) primitive i� K does not contain any imaginary
quadratic sub�eld K1. This is not true any more if g = 3.

(R1) Restriction 1: we assume that K does not contain any K1.
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Curves with CM

Proposition

Let C be a genus 3 curve with CM by K . One of the following

three possibilities holds for the irreducible components of C of

positive genus:

(i) (good reduction) C is a smooth curve of genus 3,

(ii) C has three irreducible components of genus 1,

(iii) C has an irreducible component of genus 1 and one of genus 2.

Theorem

With notation above. If J is not simple, then J is isogenous to E 3.
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The main Theorem

(R2) Restriction 2: we are in case (ii) in previous proposition.

Theorem

Let C be a genus 3 curves with CM by a CM-�eld K . Write

K = Q(
√
α) for some totally negative element α ∈ K+/Z with√

α ∈ O = End(J). Assume further that we are under restrictions

(R1) and (R2).
Then any prime p | p of bad reduction is bounded by

p ≤ 4TrK+/Q(α)
6/36.
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Sketch of the proof

Proof (Sketch).

If p is a prime of bad reduction, then there exists an embedding

ι : K = End0(J) ↪→ End0(J) =M3(Bp,∞)

such that complex conjugation on the LHS corresponds to the
Rosati involution on the RHS. By inspecting the image by this
embedding of

√
α we conclude that for enough big primes p the

entries of ι(
√
α) are in fact in Q (since elements in an order of

Bp,∞ with "small norm" commute). This gives us a contradiction
with [Q(

√
α) : Q] = 6.
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Restrictions

Restrictions

(R1) Restriction 1: we assume that K does not contain any K1.

We need to introduce the concept of Lie types: work in progress ....

(R2) Restriction 2: C has an irreducible component of genus 1
and one of genus 2.

Ruled out! But we get a bigger bound.
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Restrictions

Thank you!
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