Bad reduction of genus 3 curves with Complex Multiplication

Elisa Lorenzo García Universiteit Leiden

Joint work with Bouw, Cooley, Lauter, Manes, Newton, Ozman.

January 28, 2015

Index

Motivation

Set up Bad reduction Main Theorem Removing the assumptions

Gross-Zagier Formula

- 2) Set up
 - CM fields and types
 - Abelian Varieties with CM
- 3 Bad reduction
- 4 Main Theorem
 - The statement
 - The Proof
- 5 Removing the assumptions

Gross-Zagier Formula

Gross-Zagier g=1

Given coprime imaginary discriminants d_i , Gross and Zagier [GZ85] define

$$J(d_1, d_2) = \left(\prod_{\substack{[\tau_1], [\tau_2] \\ \text{disc}(\tau_i) = d_i}} (j(\tau_1) - j(\tau_2))\right)^{\frac{8}{w_1w_2}}$$

The τ_i run over equivalence classes, and w_i is the number of units in $\mathbb{Q}(\sqrt{d_i})$.

Under some assumptions, GZ show that $J(d_1, d_2) \in \mathbb{Z}$, and their main result gives a formula for its factorization.

Lauter and Viray generalize the result for other disc. [LV14].

Gross-Zagier Formula

Gross-Zagier g=1

The factorization of the integer $J(d_1, d_2)$, may be reinterpreted as a formula for the number of isomorphisms between reductions of elliptic curves E_i corresponding to the τ_i .

$$v_l(j_1-j_2) = \frac{1}{2}\sum_n \# \operatorname{Isom}_n(E_1, E_2).$$

That is equivalent to counting elements of $End(E_2)$ of fix degree and traces, or to **counting embeddings** of

$$\iota: \operatorname{End}(E_2) \hookrightarrow B_{p,\infty}$$

satisfying certain properties.

Gross-Zagier Formula

Gross-Zagier g=2

Goren and Lauter [GL12], Bruinier and Yang [BY06],[Y10] and Lauter and Viray [LV15] prove generalization of the result of Gross-Zagier for genus 2 curves with CM.

The j-invariant is replaced by the **absolute Igusa invariants**. The function J is not anymore an integer number, but still rational.

Some of the results concern the factorization of the numerators (bad reduction, embedding problem) and others of the denominators (cryptography purposes).

Gross-Zagier Formula

• MAIN PROBLEM: there are not invariants!

Gross-Zagier Formula

- MAIN PROBLEM: there are not invariants!
- We will focus on the **embedding problem** (related with bad reduction and the **numerator** of the invariants)

$$\iota: \ \mathcal{K} = \mathsf{End}^0(J(\mathcal{C})) \hookrightarrow \mathsf{End}^0(\overline{J(\mathcal{C})}) \hookrightarrow \mathcal{M}_3(B_{p,\infty})$$

Bad reduction $\Rightarrow \overline{J(C)}) \sim E^3$ with E supersingular \Rightarrow we have a solution to the embedding problem

CM fields and types Abelian Varieties with CM

1 Motivation

- Gross-Zagier Formula
- 2 Set up
 - CM fields and types
 - Abelian Varieties with CM
- 3 Bad reduction
- 🕘 Main Theorem
 - The statement
 - The Proof
- 5 Removing the assumptions

CM fields and types Abelian Varieties with CM

CM fields and types

Definition

A complex multiplication (CM) field K is an imaginary quadratic extension of a totally real field K^+ .

Let K be a CM-field. The complex embeddings $K \hookrightarrow \mathbb{C}$ come in pairs $\{\psi, \rho \circ \psi\}$, where ρ denotes complex conjugation.

Definition

- A CM-type φ is a choice of one embedding from each of these pairs.
- A CM-type is called *primitive* if it is not induced from a CM-type on any proper CM-subfield of *K*.

CM fields and types Abelian Varieties with CM

Abelian Varieties with CM

Definition

Let A be an abelian variety and let K be a CM-field with $[K : \mathbb{Q}] = 2 \dim(A)$. We say that A has complex multiplication (CM) by K if the endomorphism algebra

 $\operatorname{End}^0(A) = \operatorname{End}(A) \otimes \mathbb{Q}$

contains K. We say that a curve C has CM by K if its Jacobian has CM by K. If End(A) is an order \mathcal{O} in a CM-field K with $[K : \mathbb{Q}] = 2 \dim(A)$, we say that A has CM by \mathcal{O} .

CM fields and types Abelian Varieties with CM

Abelian Varieties with CM

Proposition (Lang)

Let A be an abelian variety with CM by K and defined over a field of characteristic zero. There is a way of defining a CM-type (K, φ) for A. The CM-type (K, φ) is primitive if and only if the abelian variety A is simple.

CM fields and types Abelian Varieties with CM

Abelian Varieties with CM

Proposition (Lang)

Let A be an abelian variety with CM by K and defined over a field of characteristic zero. There is a way of defining a CM-type (K, φ) for A. The CM-type (K, φ) is primitive if and only if the abelian variety A is simple.

If g = 2: (K, φ) primitive iff K does not contain any imaginary quadratic subfield K_1 . This is not true any more if g = 3.

(R1) Restriction 1: we assume that K does not contain any K_1 .

🕕 Motivation

- Gross-Zagier Formula
- 🕗 Set up
 - CM fields and types
 - Abelian Varieties with CM
- 3 Bad reduction
- 4 Main Theorem
 - The statement
 - The Proof

5 Removing the assumptions

Curves with CM

Proposition

Let C be a genus 3 curve with CM by K. One of the following three possibilities holds for the irreducible components of \overline{C} of positive genus:

- (i) (good reduction) \overline{C} is a smooth curve of genus 3,
- (ii) \overline{C} has three irreducible components of genus 1,
- (iii) \overline{C} has an irreducible component of genus 1 and one of genus 2.

Curves with CM

Proposition

Let C be a genus 3 curve with CM by K. One of the following three possibilities holds for the irreducible components of \overline{C} of positive genus:

- (i) (good reduction) \overline{C} is a smooth curve of genus 3,
- (ii) \overline{C} has three irreducible components of genus 1,
- (iii) \overline{C} has an irreducible component of genus 1 and one of genus 2.

Theorem

With notation above. If \overline{J} is not simple, then \overline{J} is isogenous to E^3 .

The statement The Proof

🔟 Motivation

- Gross-Zagier Formula
- 2 Set up
 - CM fields and types
 - Abelian Varieties with CM
- 3 Bad reduction
- 4 Main Theorem
 - The statement
 - The Proof

Removing the assumptions

The statement The Proof

The main Theorem

(R2) Restriction 2: we are in case (ii) in previous proposition.

The statement The Proof

The main Theorem

(R2) Restriction 2: we are in case (ii) in previous proposition.

Theorem

Let C be a genus 3 curves with CM by a CM-field K. Write $K = \mathbb{Q}(\sqrt{\alpha})$ for some totally negative element $\alpha \in K^+/\mathbb{Z}$ with $\sqrt{\alpha} \in \mathcal{O} = \text{End}(J)$. Assume further that we are under restrictions (R1) and (R2). Then any prime $\mathfrak{p} \mid p$ of bad reduction is bounded by $p \leq 4 \operatorname{Tr}_{K^+/\mathbb{Q}}(\alpha)^6/3^6$.

The statement The Proof

Sketch of the proof

Proof (Sketch).

If p is a prime of bad reduction, then there exists an embedding

$$\iota:\ {\sf K}={\sf End}^0(J)\hookrightarrow {\sf End}^0(\overline{J})={\cal M}_3(B_{{\sf P},\infty})$$

such that complex conjugation on the LHS corresponds to the Rosati involution on the RHS. By inspecting the image by this embedding of $\sqrt{\alpha}$ we conclude that for enough big primes p the entries of $\iota(\sqrt{\alpha})$ are in fact in \mathbb{Q} (since elements in an order of $B_{p,\infty}$ with "small norm" commute). This gives us a contradiction with $[\mathbb{Q}(\sqrt{\alpha}):\mathbb{Q}] = 6$.

Restrictions

Motivation

- Gross-Zagier Formula
- Set up
 - CM fields and types
 - Abelian Varieties with CM
- 3 Bad reduction
- 🕘 Main Theorem
 - The statement
 - The Proof

6 Removing the assumptions

Restrictions

(R1) Restriction 1: we assume that K does not contain any K_1 .

We need to introduce the concept of Lie types: work in progress

(R2) Restriction 2: \overline{C} has an irreducible component of genus 1 and one of genus 2.

Ruled out! But we get a bigger bound.

Restrictions

Thank you!

Elisa Lorenzo García Universiteit Leiden Bad reduction of genus 3 curves with CM