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The inverse Galois problem

The inverse Galois problem

Let G be a finite group. Does there exist a Galois extension K/Q such
that Gal(K/Q ) ∼= G ?

For example, let G be Sn, the symmetric group of n letters. Then G is a
Galois group over Q . Moreover, for all positive integer n we can realize
G as the Galois group of the spliting field xn − x − 1.

Galois representations may answer the inverse Galois problem for finite
linear groups.
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Abelian varieties

Let Q be an algebraic closure of Q and let GQ = Gal(Q /Q ).

Let A be a principally polarized abelian variety over Q of dimension d .

Let ` be a prime and A[`] the `-torsion subgroup:

A[`] := {P ∈ A(Q ) | [`]P = 0} ∼= (Z /`Z )2d .

A[`] is a 2d-dimensional F`-vector space, as well as a GQ -module.
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Abelian varieties

The polarization induces a symplectic pairing, the mod ` Weil pairing on
A[`], which is a bilinear, alternating, non-degenerate pairing:

〈 , 〉 : A[`]× A[`]→ µ`

that is Galois invariant: ∀σ ∈ GQ , ∀v ,w ∈ A[`]

〈σv , σw〉 = χ(σ)〈v ,w〉,

where χ : GQ → F×` is the mod ` cyclotomic character.

(A[`], 〈 , 〉) is a symplectic F`-vector space of dimension 2d . This gives a
representation

ρA,` : GQ → GSp(A[`], 〈 , 〉) ∼= GSp2d(F`).
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Abelian varieties

Theorem (Serre)

Let A be a principally polarized abelian variety of dimension d, defined
over Q . Assume that d = 2, 6 or d is odd and, furthermore, assume that
EndQ (A) = Z . Then there exists a bound BA such that for all primes
` > BA the representation ρA,` is surjective.

The conclusion of the theorem is known to be false for general d
(counterexample by Mumford for d = 4).
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Abelian varieties

Open question

Given d as in the theorem, is there a uniform bound Bd depending only
on d , such that for all principally polarized abelian varieties A over Q of
dimension d with EndQ (A) = Z , and all ` > Bd , the representation ρA,`
is surjective?

For elliptic curves an affirmative answer is expected, and this is known as
Serre’s Uniformity Question.

Much easier for semistable elliptic curves:

Theorem (Serre)

Let E/Q be a semistable elliptic curve, and ` ≥ 11 be a prime.
Then ρE ,` is surjective.
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Abelian varieties

Back to the inverse Galois problem

Back to the inverse Galois problem

Uniform realization: GL2(F`)

The Galois representation attached to the `-torsion of the elliptic curve
y2 + y = x3 − x is surjective for all prime `. This gives a realization
GL2(F`) as Galois group for all `.

Uniform realization: GSp4(F`)

Let C be the genus 2 hyperelliptic curve given by y2 = x5 − x + 1 and let
J denotes its Jacobian. Dieulefait proved that ρJ,` is surjective for all odd
prime `. This gives a realization GSp4(F`) as Galois group for all odd `.

GSp6(F`)

What about genus 3 curves?
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The main result

Theorem (A., Lemos and Siksek)

Let A be a semistable principally polarized abelian variety of dimension
d ≥ 1 over Q and let ` ≥ max(5, d + 2) be prime.
Suppose the image of ρA,` : GQ → GSp2d(F`) contains a transvection.
Then ρA,` is either reducible or surjective.
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The main result

Transvection

Transvection

Definition

Let (V , 〈 , 〉) be a finite-dimensional symplectic vector space over F`. A
transvection is an element T ∈ GSp(V , 〈 , 〉) which fixes a hyperplane
H ⊂ V .

Therefore, a transvection is a unipotent element σ ∈ GSp(V , 〈 , 〉) such
that σ − I has rank 1.
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The main result

Transvection

When does ρA,`(GQ ) contain a transvection?

Let q 6= ` be a prime and suppose that the following two conditions are
satisfied:

the special fibre of the Néron model for A at q has toric dimension 1;

` - #Φq, where Φq is the group of connected components of the
special fibre of the Néron model at q.

Then the image of ρA,` contains a transvection (Hall).
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The main result

Transvection

When does ρA,`(GQ ) contain a transvection?

Let C/Q be a hyperelliptic curve of genus d :

C : y2 = f (x)

where f ∈ Z [x ] is a squarefree polynomial.

Let p be an odd prime not dividing the leading coefficient of f such that
f modulo p has one root in Fp having multiplicity precisely 2, with all
other roots simple.
Then the Néron model of the Jacobian at p has toric dimension 1 (Hall).
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The main result

Ingredients of the proof of the main theorem

Ingredients of the proof of the main theorem

In the proof of this theorem we rely on:

the classification due to Arias-de-Reyna, Dieulefait and Wiese of
subgroups of GSp2d(F`) containing a transvection;

results of Raynaud on the image of the inertia subgroup.
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An “algorithm” for the genus 3 case

We now let A/Q be a principally polarized abelian threefold.

Assumptions

(a) A is semistable;

(b) ` ≥ 5;

(c) there is a prime q such that the special fibre of the Néron model for
A at q has toric dimension 1.

(d) ` does not divide gcd({q ·#Φq : q ∈ S}), where S is the set of
primes q satisfying (C) and Φq is the group of connected
components of the special fibre of the Néron model of A at q.

Under these assumptions the image of ρA,` contains a transvection.
Then ρA,` is either reducible or surjective.
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An “algorithm” for the genus 3 case

“Algorithm”

Practical method which should, in most cases, produce a small integer B
(depending on A) such that for ` - B, the representation ρA,` is
irreducible and, hence, surjective.

We will apply this procedure to J, the Jacobian of the hyperelliptic curve

C : y2 + (x4 + x3 + x + 1)y = x6 + x5.

The conductor of J is N = 8907 = 3 · 2969, J is semistable, principally
polarized, and the image of ρJ,` contains a transvection for all ` ≥ 3.
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An “algorithm” for the genus 3 case

Determinants of Jordan–Hölder factors

Let χ : GQ → F×` denote the mod ` cyclotomic character.

We will study the Jordan–Hölder factors W of the GQ -module A[`].
By the determinant of such a W we mean the determinant of the
induced representation GQ → GL(W ).

Lemma

Any Jordan–Hölder factor W of the GQ -module A[`] has determinant χr

for some 0 ≤ r ≤ dim(W ).
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An “algorithm” for the genus 3 case

Weil polynomials

From a prime p 6= ` of good reduction for A, we will denote by

Pp(x) = x6 + αpx5 + βpx4 + γpx3 + pβpx2 + p2αp + p3 ∈ Z [x ]

the characteristic polynomial of Frobenius σp ∈ GQ at p acting on the
Tate module T`(A) (also known as the Weil polynomial of A mod p).
The polynomial Pp is independent of `.
Its roots in F` have the form u, v , w , p/u, p/v , p/w .

P2(x) = x6 + 2x5 + 3x4 + 4x3 + 6x2 + 8x + 8;

P5(x) = x6 + x5 − 2x4 − 12x3 − 10x2 + 25x + 125;

P7(x) = x6 + x5 + 6x4 + 6x3 + 42x2 + 49x + 343.
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An “algorithm” for the genus 3 case

1-dimensional Jordan–Hölder factors

1-dimensional Jordan–Hölder factors

Let T be a non-empty set of primes of good reduction for A. Let

B1(T ) = gcd({p ·#A(Fp) : p ∈ T}).

Lemma

Suppose ` - B1(T ). The GQ -module A[`] does not have any
1-dimensional or 5-dimensional Jordan–Hölder factors.

T = {2, 5, 7}.

#J(F2) = P2(1) = 25, #J(F5) = 27, #J(F7) = 267.

B1(T ) = 26.
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An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

2-dimensional Jordan–Hölder factors

Lemma

Suppose the GQ -module A[`] does not have any 1-dimensional
Jordan–Hölder factors, but has either a 2-dimensional or 4-dimensional
irreducible subspace U. Then A[`] has a 2-dimensional Jordan–Hölder
factor W with determinant χ.
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An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

Let N be the conductor of A. Let W be a 2-dimensional Jordan–Hölder
factor of A[`] with determinant χ. The representation

τ : GQ → GL(W ) ∼= GL2(F`)

is odd (as the determinant is χ), irreducible (as W is a Jordan–Hölder
factor) and 2-dimensional. By Serre’s modularity conjecture (Khare,
Wintenberger, Dieulefait, Kisin Theorem), this representation is modular:

τ ∼= ρf ,`

it is equivalent to the mod ` representation attached to a newform f of
level M | N and weight 2.
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An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

Let Of be the ring of integers of the number field generated by the
Hecke eigenvalues of f . Then there is a prime λ | ` of Of such that for
all primes p - `N,

Tr(τ(σp)) ≡ cp(f ) (mod λ)

where σp ∈ GQ is a Frobenius element at p and cp(f ) is the p-th Hecke
eigenvalue of f .

As W is a Jordan–Hölder factor of A[`] we see that x2 − cp(f )x + p is a
factor modulo λ of Pp.
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An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

Now let HM,p be the p-th Hecke polynomial for the new subspace
Snew
2 (M) of cusp forms of weight 2 and level M. This has the form

HM,p =
∏

(x − cp(g)),

where g runs through the newforms of weight 2 and level M. Write

H ′M,p(x) = xdHM,p(x + p/x) ∈ Z [x ],

where d = deg(HM,p) = dim(Snew
2 (M)).

It follows that x2 − cp(f )x + p divides H ′M,p.
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An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

Let
R(M, p) = Res(Pp,H

′
M,p) ∈ Z ,

where Res denotes resultant. If R(M, p) 6= 0 then we have a bound on `.

The integers R(M, p) can be very large. Given a non-empty set T of
rational primes p of good reduction for A, let

R(M,T ) = gcd({p · R(M, p) : p ∈ T}).

In practice, for a suitable choice of T , the value R(M,T ) is fairly small.

The possible values M | N such that Snew
2 (M) 6= 0 are M = 2969

(dimension 247) and M = 8907 (dimension 495).

R(8907, 7) ∼ 1.63× 102344 R(M,T ) =

{
24 M = 2969,

222 M = 8907.



Inverse Galois problem and uniform realizations

An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

Let
B ′2(T ) = lcm(R(M,T ))

where M runs through the divisors of N such that dim(Snew
2 (M)) 6= 0,

and let
B2(T ) = lcm(B1(T ),B ′2(T ))

where B1(T ) is given as before.

Lemma

Let T be a non-empty set of rational primes of good reduction for A, and
suppose ` - B2(T ). Then A[`] does not have 1-dimensional Jordan–Hölder
factors, and does not have irreducible 2- or 4-dimensional subspaces.

B ′2(T ) = B2(T ) = 222



Inverse Galois problem and uniform realizations

An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

We fail to bound ` in the above lemma if R(M, p) = 0 for all primes p of
good reduction.

Here are two situations where this can happen:

A ∼=Q E × A′ where E is an elliptic curve and A′ an abelian surface.

A is of GL2-type.
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An “algorithm” for the genus 3 case

2-dimensional Jordan–Hölder factors

Note that in both these situations EndQ (A) 6= Z .

We expect, but are unable to prove, that if EndQ (A) = Z then there will
be primes p such that R(M, p) 6= 0.
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An “algorithm” for the genus 3 case

3-dimensional Jordan–Hölder factors

3-dimensional Jordan–Hölder factors

Lemma

Suppose A[`] has Jordan–Hölder filtration 0 ⊂ U ⊂ A[`] where both U
and A[`]/U are irreducible and 3-dimensional. Moreover, let u1, u2, u3 be
a basis for U, and let

GQ → GL3(F`), σ 7→ M(σ)

give the action of GQ on U with respect to this basis. Then we can
extend u1, u2, u3 to a symplectic basis u1, u2, u3, w1, w2, w3 for A[`] so
that the action of GQ on A[`] with respect to this basis is given by

GQ → GSp6(F`), σ 7→
(

M(σ) ∗
0 χ(σ)(M(σ)t)−1

)
.

det(U) = χr and det(A[`]/U) = χs where 0 ≤ r , s ≤ 3 with r + s = 3.
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An “algorithm” for the genus 3 case

3-dimensional Jordan–Hölder factors

Lemma

Let p be a prime of good reduction for A. For ease write α, β and γ for
the coefficients αp, βp, γp in the equation of the Weil polynomial.
Suppose p + 1 6= α. Let

δ =
−p2α + p2 + pα2 − pα− pβ + p − β + γ

(p − 1)(p + 1− α)
∈ Q , ε = δ+α ∈ Q .

Let g(x) = (x3 + εx2 + δx − p)(x3 − δx2 − pεx − p2) ∈ Q [x ].
Write k for the greatest common divisor of the numerators of the
coefficients in Pp − g. Let

Kp = p(p − 1)(p + 1− α)k .

Then Kp 6= 0. Moreover, if ` - Kp then A[`] does not have a
Jordan–Hölder filtration as in the previous Lemma with det(U) = χ or χ2.
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An “algorithm” for the genus 3 case

3-dimensional Jordan–Hölder factors

Lemma

Let p be a prime of good reduction for A. Write α, β and γ for the
coefficients αp, βp, γp in the equation of the Weil polynomial. Suppose
p3 + 1 6= pα. Let ε′ = pδ′ + α ∈ Q where

δ′ =
−p5α + p4 + p3α2 − p3β − p2α + pγ + p − β

(p3 − 1)(p3 + 1− pα)
∈ Q .

Let g ′(x) = (x3 + ε′x2 + δ′x − 1)(x3 − pδ′x2 − p2ε′x − p3) ∈ Q [x ].
Write k ′ for the greatest common divisor of the numerators of the
coefficients in Pp − g ′. Let

K ′p = p(p3 − 1)(p3 + 1− pα)k ′.

Then K ′p 6= 0. Moreover, if ` - K ′p then A[`] does not have a

Jordan–Hölder filtration as in the above Lemma with det(U) = 1 or χ3.
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An “algorithm” for the genus 3 case

3-dimensional Jordan–Hölder factors

Summary

Theorem (A., Lemos and Siksek)

Let A and ` satisfy conditions (A)–(D). Let T be a non-empty set of
primes of good reduction for A. Let

B3(T ) = gcd({Kp : p ∈ T}), B4(T ) = gcd({K ′p : p ∈ T}),

where Kp and K ′p are defined in the last two Lemmas. Let

B(T ) = lcm(B2(T ),B3(T ),B4(T )).

If ` - B(T ) then ρA,` is surjective.

K2 = 14, K5 = 6900, K7 = 83202

K ′2 = 154490, K ′5 = 15531373270380, K ′7 = 10908656905042386

B3(T ) = B4(T ) = 2⇒ B(T ) = 222.
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An “algorithm” for the genus 3 case

Example

Uniform realization: GSp6(F`)

Theorem (A., Lemos and Siksek)

Let C/Q be the following genus 3 hyperelliptic curve,

C : y2 + (x4 + x3 + x + 1)y = x6 + x5.

and write J for its Jacobian. Let ` ≥ 3 be a prime.
Then ρJ,`(GQ ) = GSp6(F`).

Proof.

For ` ≥ 5 we apply the algorithm, look at the glassboard for the
computations. For ` = 3, we prove the result by direct computations.
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Future reseach

Generalization over number fields: obstruction coming from the
Weil pairing, e.g.

E : y2 + (

√
101 + 1

2
)y = x3 + x2 − 2x − 7 over Q (

√
101)

ρE ,`(Gal(Q /Q (
√

101))) ∼= GL2(F`) ∀ prime ` 6= 101

ρE ,101(Gal(Q /Q (
√

101))) ⊆ D · SL2(F101)

where D is the set of invertible squares in F101.

Generalization to higher genus.

Generalization to parametric families, e.g. y2 = xn − x + 1.
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