Samuele Anni joint with Pedro Lemos and Samir Siksek

University of Warwick

STNB 2016 Universitat de Barcelona, 26th January 2016

1 The inverse Galois problem

- Abelian varieties and the inverse Galois problem
- **3** The main result
- \blacksquare An "algorithm" for the genus 3 case
- **5** FUTURE RESEACH

The inverse Galois problem

Let G be a finite group. Does there exist a Galois extension K/\mathbb{Q} such that $Gal(K/\mathbb{Q}) \cong G$?

For example, let G be S_n , the symmetric group of n letters. Then G is a Galois group over \mathbb{Q} . Moreover, for all positive integer n we can realize G as the Galois group of the spliting field $x^n - x - 1$.

Galois representations may answer the inverse Galois problem for finite linear groups.

Abelian varieties and the inverse Galois problem

- Back to the inverse Galois problem
- **3** The main result
- \blacksquare An "algorithm" for the genus 3 case
- **5** FUTURE RESEACH

ABELIAN VARIETIES

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and let $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Let A be a principally polarized abelian variety over \mathbb{Q} of dimension d.

Let ℓ be a prime and $A[\ell]$ the ℓ -torsion subgroup:

$$A[\ell] := \{ P \in A(\overline{\mathbb{Q}}) \mid [\ell]P = 0 \} \cong (\mathbb{Z}/\ell\mathbb{Z})^{2d}.$$

 $A[\ell]$ is a 2*d*-dimensional \mathbb{F}_{ℓ} -vector space, as well as a $G_{\mathbb{O}}$ -module.

The polarization induces a symplectic pairing, the mod ℓ Weil pairing on $A[\ell]$, which is a bilinear, alternating, non-degenerate pairing:

$$\langle , \rangle : A[\ell] \times A[\ell] \to \mu_{\ell}$$

that is Galois invariant: $\forall \sigma \in G_{\mathbb{Q}}, \ \forall v, w \in A[\ell]$

$$\langle \sigma \mathbf{v}, \sigma \mathbf{w} \rangle = \chi(\sigma) \langle \mathbf{v}, \mathbf{w} \rangle,$$

where $\chi: \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_{\ell}^{\times}$ is the mod ℓ cyclotomic character.

 $(A[\ell], \langle , \rangle)$ is a symplectic \mathbb{F}_{ℓ} -vector space of dimension 2*d*. This gives a representation

$$\overline{\rho}_{\mathcal{A},\ell}: G_{\mathbb{Q}} \to \mathsf{GSp}(\mathcal{A}[\ell], \langle , \rangle) \cong \mathsf{GSp}_{2d}(\mathbb{F}_{\ell}).$$

THEOREM (SERRE)

Let A be a principally polarized abelian variety of dimension d, defined over \mathbb{Q} . Assume that d = 2, 6 or d is odd and, furthermore, assume that $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$. Then there exists a bound B_A such that for all primes $\ell > B_A$ the representation $\overline{\rho}_{A,\ell}$ is surjective.

The conclusion of the theorem is known to be false for general d (counterexample by Mumford for d = 4).

OPEN QUESTION

Given *d* as in the theorem, is there a uniform bound B_d depending only on *d*, such that for all principally polarized abelian varieties *A* over \mathbb{Q} of dimension *d* with $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$, and all $\ell > B_d$, the representation $\overline{\rho}_{A,\ell}$ is surjective?

For elliptic curves an affirmative answer is expected, and this is known as Serre's Uniformity Question.

Much easier for semistable elliptic curves:

THEOREM (SERRE)

Let E/\mathbb{Q} be a semistable elliptic curve, and $\ell \geq 11$ be a prime. Then $\overline{\rho}_{E,\ell}$ is surjective. Inverse Galois problem and uniform realizations

ABELIAN VARIETIES

Back to the inverse Galois problem

BACK TO THE INVERSE GALOIS PROBLEM

UNIFORM REALIZATION: $GL_2(\mathbb{F}_{\ell})$

The Galois representation attached to the ℓ -torsion of the elliptic curve $y^2 + y = x^3 - x$ is surjective for all prime ℓ . This gives a realization $GL_2(\mathbb{F}_\ell)$ as Galois group for all ℓ .

UNIFORM REALIZATION: $\mathsf{GSp}_4(\mathbb{F}_\ell)$

Let *C* be the genus 2 hyperelliptic curve given by $y^2 = x^5 - x + 1$ and let *J* denotes its Jacobian. Dieulefait proved that $\overline{\rho}_{J,\ell}$ is surjective for all odd prime ℓ . This gives a realization $\text{GSp}_4(\mathbb{F}_\ell)$ as Galois group for all odd ℓ .

$\mathsf{GSp}_6(\mathbb{F}_\ell)$

What about genus 3 curves?

- Abelian varieties and the inverse Galois problem
- **③** The main result
 - Transvection
 - Ingredients of the proof of the main theorem
- \blacksquare An "algorithm" for the genus 3 case
- **5** FUTURE RESEACH

THEOREM (A., LEMOS AND SIKSEK)

Let A be a semistable principally polarized abelian variety of dimension $d \ge 1$ over \mathbb{Q} and let $\ell \ge \max(5, d+2)$ be prime. Suppose the image of $\overline{\rho}_{A,\ell}$: $G_{\mathbb{Q}} \to \operatorname{GSp}_{2d}(\mathbb{F}_{\ell})$ contains a transvection. Then $\overline{\rho}_{A,\ell}$ is either reducible or surjective.

THEOREM (A., LEMOS AND SIKSEK)

Let A be a semistable principally polarized abelian variety of dimension $d \ge 1$ over \mathbb{Q} and let $\ell \ge \max(5, d+2)$ be prime. Suppose the image of $\overline{\rho}_{A,\ell}$: $G_{\mathbb{Q}} \to \operatorname{GSp}_{2d}(\mathbb{F}_{\ell})$ contains a transvection. Then $\overline{\rho}_{A,\ell}$ is either reducible or surjective. The main result

TRANSVECTION

TRANSVECTION

DEFINITION

Let (V, \langle , \rangle) be a finite-dimensional symplectic vector space over \mathbb{F}_{ℓ} . A **transvection** is an element $T \in GSp(V, \langle , \rangle)$ which fixes a hyperplane $H \subset V$.

Therefore, a transvection is a unipotent element $\sigma \in GSp(V, \langle , \rangle)$ such that $\sigma - I$ has rank 1.

The main result

- TRANSVECTION

When does $\overline{\rho}_{A,\ell}(\mathcal{G}_{\mathbb{Q}})$ contain a transvection?

Let $q \neq \ell$ be a prime and suppose that the following two conditions are satisfied:

- the special fibre of the Néron model for A at q has toric dimension 1;
- $\ell \nmid \#\Phi_q$, where Φ_q is the group of connected components of the special fibre of the Néron model at q.

Then the image of $\overline{\rho}_{A,\ell}$ contains a transvection (Hall).

The main result

- TRANSVECTION

When does $\overline{\rho}_{A,\ell}(G_{\mathbb{Q}})$ contain a transvection?

Let C/\mathbb{Q} be a hyperelliptic curve of genus d:

$$C: y^2 = f(x)$$

where $f \in \mathbb{Z}[x]$ is a squarefree polynomial.

Let p be an odd prime not dividing the leading coefficient of f such that f modulo p has one root in $\overline{\mathbb{F}}_p$ having multiplicity precisely 2, with all other roots simple.

Then the Néron model of the Jacobian at p has toric dimension 1 (Hall).

The main result

INGREDIENTS OF THE PROOF OF THE MAIN THEOREM

INGREDIENTS OF THE PROOF OF THE MAIN THEOREM

In the proof of this theorem we rely on:

- the classification due to Arias-de-Reyna, Dieulefait and Wiese of subgroups of GSp_{2d}(𝔽_ℓ) containing a transvection;
- results of Raynaud on the image of the inertia subgroup.

AN "ALGORITHM" FOR THE GENUS 3 CASE

1 The inverse Galois problem

2 Abelian varieties and the inverse Galois problem

3 The main result

0 An "algorithm" for the genus 3 case

- 1-dimensional Jordan–Hölder factors
- 2-dimensional Jordan–Hölder factors
- 3-dimensional Jordan–Hölder factors
- Example

An "Algorithm" for the genus 3 case

We now let A/\mathbb{Q} be a principally polarized abelian threefold.

Assumptions

(A) A is semistable;

(B) $\ell \ge 5;$

- (C) there is a prime q such that the special fibre of the Néron model for A at q has toric dimension 1.
- (D) ℓ does not divide gcd({ $q \cdot \#\Phi_q : q \in S$ }), where S is the set of primes q satisfying (C) and Φ_q is the group of connected components of the special fibre of the Néron model of A at q.

Under these assumptions the image of $\overline{\rho}_{A,\ell}$ contains a transvection. Then $\overline{\rho}_{A,\ell}$ is either reducible or surjective. AN "ALGORITHM" FOR THE GENUS 3 CASE

"Algorithm"

Practical method which should, in most cases, produce a small integer B (depending on A) such that for $\ell \nmid B$, the representation $\overline{\rho}_{A,\ell}$ is irreducible and, hence, surjective.

We will apply this procedure to J, the Jacobian of the hyperelliptic curve

$$C : y^{2} + (x^{4} + x^{3} + x + 1)y = x^{6} + x^{5}.$$

The conductor of J is $N = 8907 = 3 \cdot 2969$, J is semistable, principally polarized, and the image of $\overline{\rho}_{I,\ell}$ contains a transvection for all $\ell \geq 3$.

An "Algorithm" for the genus 3 case

DETERMINANTS OF JORDAN-HÖLDER FACTORS

Let $\chi: \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_{\ell}^{\times}$ denote the mod ℓ cyclotomic character.

We will study the Jordan–Hölder factors W of the $G_{\mathbb{Q}}$ -module $A[\ell]$. By the determinant of such a W we mean the determinant of the induced representation $G_{\mathbb{Q}} \rightarrow GL(W)$.

Lemma

Any Jordan–Hölder factor W of the $G_{\mathbb{Q}}$ -module $A[\ell]$ has determinant χ^r for some $0 \leq r \leq \dim(W)$.

AN "ALGORITHM" FOR THE GENUS 3 CASE

Weil polynomials

From a prime $p \neq \ell$ of good reduction for A, we will denote by

$$P_{p}(x) = x^{6} + \alpha_{p}x^{5} + \beta_{p}x^{4} + \gamma_{p}x^{3} + p\beta_{p}x^{2} + p^{2}\alpha_{p} + p^{3} \in \mathbb{Z}[x]$$

the characteristic polynomial of Frobenius $\sigma_p \in G_{\mathbb{Q}}$ at p acting on the Tate module $T_{\ell}(A)$ (also known as the **Weil polynomial** of $A \mod p$). The polynomial P_p is independent of ℓ . Its roots in $\overline{\mathbb{F}}_{\ell}$ have the form u, v, w, p/u, p/v, p/w.

> $P_2(x) = x^6 + 2x^5 + 3x^4 + 4x^3 + 6x^2 + 8x + 8;$ $P_5(x) = x^6 + x^5 - 2x^4 - 12x^3 - 10x^2 + 25x + 125;$ $P_7(x) = x^6 + x^5 + 6x^4 + 6x^3 + 42x^2 + 49x + 343.$

AN "ALGORITHM" FOR THE GENUS 3 CASE

1-DIMENSIONAL JORDAN-HÖLDER FACTORS

1-DIMENSIONAL JORDAN-HÖLDER FACTORS

Let T be a non-empty set of primes of good reduction for A. Let

$$B_1(T) = \gcd(\{p \cdot \#A(\mathbb{F}_p) : p \in T\}).$$

Lemma

Suppose $\ell \nmid B_1(T)$. The $G_{\mathbb{Q}}$ -module $A[\ell]$ does not have any 1-dimensional or 5-dimensional Jordan–Hölder factors.

$$T = \{2, 5, 7\}.$$

$J(\mathbb{F}_2) = P_2(1) = 2^5, \quad \#J(\mathbb{F}_5) = 2^7, \quad \#J(\mathbb{F}_7) = 2^67.$
 $B_1(T) = 2^6.$

An "ALGORITHM" FOR THE GENUS 3 CASE

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Lemma

Suppose the $G_{\mathbb{Q}}$ -module $A[\ell]$ does not have any 1-dimensional Jordan–Hölder factors, but has either a 2-dimensional or 4-dimensional irreducible subspace U. Then $A[\ell]$ has a 2-dimensional Jordan–Hölder factor W with determinant χ .

An "ALGORITHM" FOR THE GENUS 3 CASE

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Let *N* be the conductor of *A*. Let *W* be a 2-dimensional Jordan–Hölder factor of $A[\ell]$ with determinant χ . The representation

$$\tau: G_{\mathbb{Q}} \to \mathrm{GL}(W) \cong \mathrm{GL}_2(\mathbb{F}_{\ell})$$

is **odd** (as the determinant is χ), **irreducible** (as W is a Jordan–Hölder factor) and 2-**dimensional**. By Serre's modularity conjecture (Khare, Wintenberger, Dieulefait, Kisin Theorem), this representation is **modular**:

$$\tau \cong \overline{\rho}_{f,\ell}$$

it is equivalent to the mod ℓ representation attached to a newform f of level $M \mid N$ and weight 2.

An "Algorithm" for the genus 3 case

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Let \mathcal{O}_f be the ring of integers of the number field generated by the Hecke eigenvalues of f. Then there is a prime $\lambda \mid \ell$ of \mathcal{O}_f such that for all primes $p \nmid \ell N$,

$$\operatorname{Tr}(\tau(\sigma_p)) \equiv c_p(f) \pmod{\lambda}$$

where $\sigma_p \in G_{\mathbb{Q}}$ is a Frobenius element at p and $c_p(f)$ is the p-th Hecke eigenvalue of f.

As W is a Jordan–Hölder factor of $A[\ell]$ we see that $x^2 - c_p(f)x + p$ is a factor modulo λ of P_p .

AN "ALGORITHM" FOR THE GENUS 3 CASE

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Now let $H_{M,p}$ be the *p*-th Hecke polynomial for the new subspace $S_2^{\text{new}}(M)$ of cusp forms of weight 2 and level *M*. This has the form

$$H_{M,p}=\prod(x-c_p(g)),$$

where g runs through the newforms of weight 2 and level M. Write

$$H'_{M,p}(x) = x^d H_{M,p}(x+p/x) \in \mathbb{Z}[x],$$

where $d = \deg(H_{M,p}) = \dim(S_2^{\text{new}}(M)).$

It follows that $x^2 - c_p(f)x + p$ divides $H'_{M,p}$.

An "Algorithm" for the genus 3 case

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Let

$$R(M,p) = \operatorname{Res}(P_p, H'_{M,p}) \in \mathbb{Z}$$
,

where Res denotes resultant. If $R(M, p) \neq 0$ then we have a bound on ℓ .

The integers R(M, p) can be very large. Given a non-empty set T of rational primes p of good reduction for A, let

$$R(M, T) = \gcd(\{p \cdot R(M, p) : p \in T\}).$$

In practice, for a suitable choice of T, the value R(M, T) is fairly small.

The possible values $M \mid N$ such that $S_2^{\text{new}}(M) \neq 0$ are M = 2969(dimension 247) and M = 8907 (dimension 495). $R(8907,7) \sim 1.63 \times 10^{2344}$ $R(M,T) = \begin{cases} 2^4 & M = 2969, \\ 2^{22} & M = 8907. \end{cases}$

AN "ALGORITHM" FOR THE GENUS 3 CASE

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Let

$$B_2'(T) = \operatorname{lcm}(R(M, T))$$

where M runs through the divisors of N such that $\dim(S_2^{\mathrm{new}}(M)) \neq 0$, and let

$$B_2(T) = \operatorname{lcm}(B_1(T), B_2'(T))$$

where $B_1(T)$ is given as before.

Lemma

Let T be a non-empty set of rational primes of good reduction for A, and suppose $\ell \nmid B_2(T)$. Then $A[\ell]$ does not have 1-dimensional Jordan–Hölder factors, and does not have irreducible 2- or 4-dimensional subspaces.

 $B_2'(T) = B_2(T) = 2^{22}$

AN "ALGORITHM" FOR THE GENUS 3 CASE

2-DIMENSIONAL JORDAN-HÖLDER FACTORS

We fail to bound ℓ in the above lemma if R(M, p) = 0 for all primes p of good reduction.

Here are two situations where this can happen:

- $A \cong_{\mathbb{Q}} E \times A'$ where E is an elliptic curve and A' an abelian surface.
- A is of GL₂-type.

AN "ALGORITHM" FOR THE GENUS 3 CASE

└─2-DIMENSIONAL JORDAN-HÖLDER FACTORS

Note that in both these situations $\operatorname{End}_{\overline{\mathbb{O}}}(A) \neq \mathbb{Z}$.

We expect, but are unable to prove, that if $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$ then there will be primes p such that $R(M, p) \neq 0$.

An "ALGORITHM" FOR THE GENUS 3 CASE

- 3-DIMENSIONAL JORDAN-HÖLDER FACTORS

3-DIMENSIONAL JORDAN-HÖLDER FACTORS

Lemma

Suppose $A[\ell]$ has Jordan–Hölder filtration $0 \subset U \subset A[\ell]$ where both U and $A[\ell]/U$ are irreducible and 3-dimensional. Moreover, let u_1 , u_2 , u_3 be a basis for U, and let

$$G_{\mathbb{Q}} \to \mathrm{GL}_3(\mathbb{F}_\ell), \qquad \sigma \mapsto M(\sigma)$$

give the action of $G_{\mathbb{Q}}$ on U with respect to this basis. Then we can extend u_1 , u_2 , u_3 to a symplectic basis u_1 , u_2 , u_3 , w_1 , w_2 , w_3 for $A[\ell]$ so that the action of $G_{\mathbb{Q}}$ on $A[\ell]$ with respect to this basis is given by

$$G_{\mathbb{Q}} \to \mathsf{GSp}_6(\mathbb{F}_\ell), \qquad \sigma \mapsto \left(\begin{array}{c|c} \mathcal{M}(\sigma) & * \\ \hline \mathbf{0} & \chi(\sigma)(\mathcal{M}(\sigma)^t)^{-1} \end{array}
ight).$$

 $\det(U) = \chi^r$ and $\det(A[\ell]/U) = \chi^s$ where $0 \le r$, $s \le 3$ with r + s = 3.

An "Algorithm" for the genus 3 case

- 3-DIMENSIONAL JORDAN-HÖLDER FACTORS

Lemma

Let p be a prime of good reduction for A. For ease write α , β and γ for the coefficients α_p , β_p , γ_p in the equation of the Weil polynomial. Suppose $p + 1 \neq \alpha$. Let

$$\delta = \frac{-p^2\alpha + p^2 + p\alpha^2 - p\alpha - p\beta + p - \beta + \gamma}{(p-1)(p+1-\alpha)} \in \mathbb{Q}, \qquad \epsilon = \delta + \alpha \in \mathbb{Q}.$$

Let $g(x) = (x^3 + \epsilon x^2 + \delta x - p)(x^3 - \delta x^2 - p\epsilon x - p^2) \in \mathbb{Q}[x]$. Write k for the greatest common divisor of the numerators of the coefficients in $P_p - g$. Let

$$K_p = p(p-1)(p+1-\alpha)k.$$

Then $K_p \neq 0$. Moreover, if $\ell \nmid K_p$ then $A[\ell]$ does not have a Jordan–Hölder filtration as in the previous Lemma with det $(U) = \chi$ or χ^2 .

An "Algorithm" for the genus 3 case

- 3-DIMENSIONAL JORDAN-HÖLDER FACTORS

Lemma

Let p be a prime of good reduction for A. Write α , β and γ for the coefficients α_p , β_p , γ_p in the equation of the Weil polynomial. Suppose $p^3 + 1 \neq p\alpha$. Let $\epsilon' = p\delta' + \alpha \in \mathbb{Q}$ where

$$\delta' = \frac{-p^5\alpha + p^4 + p^3\alpha^2 - p^3\beta - p^2\alpha + p\gamma + p - \beta}{(p^3 - 1)(p^3 + 1 - p\alpha)} \in \mathbb{Q}.$$

Let $g'(x) = (x^3 + \epsilon' x^2 + \delta' x - 1)(x^3 - p\delta' x^2 - p^2\epsilon' x - p^3) \in \mathbb{Q}[x]$. Write k' for the greatest common divisor of the numerators of the coefficients in $P_p - g'$. Let

$$K'_{p} = p(p^{3}-1)(p^{3}+1-p\alpha)k'.$$

Then $K'_p \neq 0$. Moreover, if $\ell \nmid K'_p$ then $A[\ell]$ does not have a Jordan–Hölder filtration as in the above Lemma with det(U) = 1 or χ^3 .

An "Algorithm" for the genus 3 case

- 3-DIMENSIONAL JORDAN-HÖLDER FACTORS

SUMMARY

THEOREM (A., LEMOS AND SIKSEK)

Let A and ℓ satisfy conditions (A)–(D). Let T be a non-empty set of primes of good reduction for A. Let

$$B_3(T) = \gcd(\{K_p : p \in T\}), \qquad B_4(T) = \gcd(\{K'_p : p \in T\}),$$

where K_p and K'_p are defined in the last two Lemmas. Let

 $B(T) = \operatorname{lcm}(B_2(T), B_3(T), B_4(T)).$

If $\ell \nmid B(T)$ then $\overline{\rho}_{A,\ell}$ is surjective.

 $K_2 = 14, \quad K_5 = 6900, \quad K_7 = 83202$ $K'_2 = 154490, \quad K'_5 = 15531373270380, \quad K'_7 = 10908656905042386$ $B_3(T) = B_4(T) = 2 \Rightarrow B(T) = 2^{22}.$

AN "ALGORITHM" FOR THE GENUS 3 CASE

EXAMPLE

UNIFORM REALIZATION: $\mathsf{GSp}_6(\mathbb{F}_\ell)$

THEOREM (A., LEMOS AND SIKSEK)

Let C/\mathbb{Q} be the following genus 3 hyperelliptic curve,

$$C : y^2 + (x^4 + x^3 + x + 1)y = x^6 + x^5.$$

and write J for its Jacobian. Let $\ell \geq 3$ be a prime. Then $\overline{\rho}_{J,\ell}(G_{\mathbb{Q}}) = \mathsf{GSp}_6(\mathbb{F}_{\ell}).$

Proof.

For $\ell \ge 5$ we apply the algorithm, look at the glassboard for the computations. For $\ell = 3$, we prove the result by direct computations.

- Future reseach

1 The inverse Galois problem

- Abelian varieties and the inverse Galois problem
- **3** The main result
- 0 An "algorithm" for the genus 3 case
- **5** FUTURE RESEACH

FUTURE RESEACH

FUTURE RESEACH

• Generalization over **number fields**: obstruction coming from the Weil pairing, e.g.

$$E: y^{2} + \left(\frac{\sqrt{101} + 1}{2}\right)y = x^{3} + x^{2} - 2x - 7 \quad \text{over } \mathbb{Q}\left(\sqrt{101}\right)$$
$$\overline{\rho}_{E,\ell}(\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{101}))) \cong \mathsf{GL}_{2}(\mathbb{F}_{\ell}) \quad \forall \text{ prime } \ell \neq 101$$
$$\rho_{E,101}(\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{101}))) \subseteq D \cdot \mathsf{SL}_{2}(\mathbb{F}_{101})$$

where D is the set of invertible squares in \mathbb{F}_{101} .

- Generalization to higher genus.
- Generalization to parametric families, e.g. $y^2 = x^n x + 1$.

Samuele Anni joint with Pedro Lemos and Samir Siksek

University of Warwick

STNB 2016 Universitat de Barcelona, 26th January 2016

Thanks!

