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Cyclotomic extensions

Cyclotomic extensions: number fields

For any n ∈ N and p an odd prime, let
Qn := Q(µpn+1 )

Q ⊂ Q0 ⊂ Q1 ⊂ · · · ⊂ Qn ⊂ · · · ⊂ Q(µp∞ ) .

Qcyc :=
⋃

Q(µpn ) the p-cyclotomic extension of Q.
Qcyc/Q0 is a Zp-extension: let Gal(Qcyc/Q0) := Γ.

Properties

1. Gal(Qcyc/Q) ' lim
←−
n

(
Z/pn+1

)∗
' Z∗p ' Z/(p − 1)× Zp ' Gal(Q0/Q)× Γ.

2. ramified only at ∞ and p, in particular Qcyc/Q0 is ramified (totally) only at p.

QGal(Q0/Q)
cyc is called the cyclotomic Zp-extension of Q.

For any number field K , KQGal(Q0/Q)
cyc is the cyclotomic Zp-extension of K .

The Iwasawa algebra is the ring

Λ := lim
←−
n

Zp[Gal(Qn/Q0)] = Zp[[Γ]] ' Zp[[T ]] .

The last isomorphism is non-canonical and given by γ 7→ T − 1 where γ is a chosen
topological generator of Γ.
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Cyclotomic extensions

Carlitz Cyclotomic extensions: function fields

Let
F := Fq(θ) with q = pr > 3 and fix 1

θ
as the prime at ∞.

Let A := Fp[θ] and fix a prime p of A of degree d.
Let Φ be the Carlitz module associated to A: it is an Fq-linear ring homomorphism

Φ : A→ F{τ}

θ 7→ Φθ = θτ0 + τ ,

where F{τ} is the skew polynomial ring with τ f = f qτ for any f ∈ F .
For any ideal a of A write

Φ[a] := {x ∈ F | Φa(x) = 0 ∀ a ∈ a} ,

it is an A-module isomorphic to A/a.
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Cyclotomic extensions

Cyclotomic extensions: function fields

For any n ∈ N, let
Fn := F(Φ[pn+1])

F ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F(Φ[p∞]) .

F :=
⋃

F(Φ[pn ]) the p-cyclotomic extension of F .
F/F0 is a Z∞p -extension: let Gal(F/F0) := Γ.

Properties

1. Gal(F/F) ' lim
←−
n

(
A/pn+1

)∗
' Gal(F0/F)× Γ := ∆× Γ .

2. ramified only at ∞ and p, in particular F/F0 is ramified (totally) only at p and the
inertia group of ∞ is F∗q ↪→ ∆ (note |∆| = qdeg(p) − 1 = qd − 1).

The Iwasawa algebra is the ring

Λ := lim
←−
n

Zp[Gal(Fn/F0)] = Zp[[Γ]] ' Zp[[Tn : n ∈ N]].
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Iwasawa modules

Iwasawa modules: global fields

F a global field and E/F a finite extension
C` 0(E) the p-part of the group of divisor classes of E of degree 0 (class group);
L(E) the maximal unramified abelian p-extension of E;
C` 0(E) ' Gal(L(E)/E) via the (canonical) Artin map.
Λ(L) := Zp[[Gal(L/F)]] the associated Iwasawa algebra.

Same notations for infinite extensions L/F where

C` 0(L) := lim
←−
E

C` 0(E)

(the limit is on the natural norm maps as E runs among the finite subextensions of L/F).

L(L)
C` 0(L)

L

Gal(L/F)

F

C` 0(L) is a Λ(L)-module
(the action is provided by
conjugation)
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Iwasawa modules

Iwasawa modules: global fields

Theorem (Iwasawa 60’s, Greenberg 70’s,. . . )

Let L/F be a Zd
p-extension (d <∞), (which is ramified in a finite set of places) then C` 0(L)

is a finitely generated torsion Λ(L)-module.

Theorem (Structure Theorem for f.g.t. Iwasawa modules)

Let L/F be a Zd
p-extension (d <∞) and let M be a finitely generated torsion Λ(L)-module.

There is a pseudo-isomorphism (i.e. with pseudo-null kernel and cokernel)

M ∼Λ(L)

s⊕
i=1

Λ(L)/(f ei
i )

where the fi are irreducible elements of Λ(L) ' Zp[[T1, . . . ,Td ]]. A f.g.t. module N is
pseudo-null if ht(AnnΛ(L)(N)) > 2.
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Iwasawa modules

Iwasawa modules: characteristic ideals

Definition (Characteristic ideal)

For a f.g.t module as above we define the characteristic ideal as

ChΛ(L)(M) :=

(
s∏

i=1

f ei
i

)
.

A f.g.t. module N is pseudo-null (i.e. N ∼Λ(L) 0) ⇐⇒ ChΛ(L)(N) = (1).

Theorem (Iwasawa)

Let K∞/K be a Zp-extension of a number field K and let C` 0(Kn) be the p-part of the class
group of the n-th layer of K∞ . Then there exist nonnegative integers µ, λ and ν such that

|C` 0(Kn)| = pµpn+λn+ν ∀n � 0 .

Let C` 0(K∞) be the Iwasawa module associated to K∞ and let fK∞ be a (polynomial)
generator of ChΛ(K∞)(C` 0(K∞)). Then

pµ | fK∞ and pµ+1 - fK∞ ;
λ = deg(fK∞ ).
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Main Conjecture

Main Conjecture: number fields

Let χ be a Dirichlet character associated to the field K , then

L(s, χ) =
∞∑

n=1

χ(n)
ns Re(s) > 1.

For any character ωi (i even and nonzero and ω the Teichmüller character) associated to
Gal(Q(µp)/Q) Iwasawa defined p-adic analogues Lp(s, ωi) of L(s, ωi).

Lp(1−m, ωi) = (1− ωi−m(p)pm−1)L(1−m, ωi−m) for m ≥ 1

Moreover Iwasawa proved that there exist a power series f (T , ωi) ∈ Zp[[T ]] ' Λ(Qcyc) such
that Lp(s, ωi) = f ((1 + p)s − 1, ωi).

Conjecture (Main Conjecture (MC))

Let C` 0(Qcyc)(ωi) be the ωi-part of the Iwasawa module, then

ChΛ(Qcyc)(C` 0(Qcyc)(ωi)) = (f (T , ω1−i)) .

First proof by Mazur-Wiles Invent. Math. ’84. Different proofs and many generalizations
have been investigated since then.
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Fitting versus Characteristic ideal versus Determinant

Fitting-Char-Determinant

Db(R) the derived category of bounded complexes of finitely generated left projective
R-modules, (in particular complexes C• such that H i(C•) = 0 except for a finite list of
i, recall: acyclic if H i(C•) = 0 ∀i).
C• a complex of R-f.g. modules is named perfect if it is quasi-isomorphic to a bounded
complex C ′• with C ′i = 0 for ∀|i| ≥ n(C ′) and C ′j is projective f.g.R-module.
A denotes a commutative ring with 1.
M a finite presentation A-module (in particular finite generated).

Definition (Fitting ideal)

Let Aa φ−→Ab � M be a finite presentation for an A-module M, then

FittA(M) =


0 if a < b
the ideal generated by all the
determinants of the b × b if a > b
minors of the matrix φ

.

For A-non-noetherian there is a definition of Fitt for f.g. A-modules.
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Fitting versus Characteristic ideal versus Determinant

Fitting-Char-Determinant

If A semilocal noetherian, C• acyclic outside degree i and H i(C•) is a f.g. torsion
A-module of pdA(H i(C•) ≤ 1, then Quot(A)⊗L

A C• acyclic, and FitA(H i(C•))
invertible ideal of A.
If A is Iwasawa algebra Zp[∆][[T1, . . . ,Tn ]] and M is torsion A-module and pdA(M) ≤ 1
then chA(M) = FitA(M).
Knudsen-Mumford determinant, (A-noetherian): Det : Db(A)→ Picard(A), for this talk,
restrict C• acyclic outside degree i, and H i(C•) is a f.g. torsion A-module of
pdA(H i(C•)) ≤ 1, then:

Det(C•) = (FitA(H i(C•))(−1)i+1
).

Non-commutative generalizations for Det:

Burns-Flach: Extends to non-commutative Iwasawa algebras Det-functor by virtual
objects (Deligne).
Kato, Burns, Coates, Venjakob, Schneider, Fukaya, ...: Extends to non-commutative
Iwasawa rings by use of K -theory.
Witte: The interpretation of K -theory can be understood inside K -theory of
Waldhausen categories.
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Iwasawa theory for global fields of positive characteristic Iwasawa algebras

Iwasawa algebras for positive char.

For simplicity k = Fq(T), once and for all.
Denote F∞ where F∞/Fq is the unique Zp-extension of Fq .
Consider now K/k, K the rational field of a curve CK , with CK → Ck = P1

Fq
Galois cover

such that Gal(K/k) is a profinite group and its p-Sylow subgroup has finite index, and K/k
is ramified in a finite set of places of k.
Σ: a finite set of places of k containing the ramified places of K/k.

Interesting Galois covers for Iwasawa theory:
1 Burns-Kato-Witte-...: Assume moreover Gal(K/k) is topologically finitely generated (i.e.

p-adic Lie group).
Appears the notion of Λ-ring (Fukaya-Kato): if exists two-sided ideal I of Λ such that
Λ/I n finite and Λ ∼= lim

←
Λ/I n .

Fact: Λ adic Zp-algebra and G profinite group which is topologically generated and has
an p-Sylow subgroup of finite index, then Λ[[G]] is an adic ring.

2 We wish: Gal(K/k) not necessarily topologically finitely generated in order to consider
Carlitz cyclotomic powers or in non-commutative setting torsion of higher Drinfeld
modules (for example GL2(Fq [[T ]])-extensions, following Pink school).

In any case consider the Iwasawa algebra Λ(Gal(K/k)) := Zp[[Gal(K/k)]].
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Iwasawa theory for global fields of positive characteristic Iwasawa algebras

A module on geometric Iwasawa algebras

Denote by
XK/k := lim

←−
U

Zp ⊗ Cl0(KU )

where U over open subgroups of Gal(K/k), a Λ(Gal(K/k))-module.
The cohomological interpretation of XK/k is explained by exact sequences:

0→ H0(D•K/k)→ ⊕v∈ΣK
fin

Λ(Gal(K/k))⊗Λ(Gal(K/k)v) Zp → XK/k →

lim
←−

Norm

Zp ⊗YK/k := lim
←−
U

Cl(OKU ,Σ)→ 0

0→ lim
←−

Norm

Zp ⊗YK/k → H1(D•K/k)→ ⊕v∈ΣΛ(Gal(K/k))⊗Λ(Gal(K/k)v) Zp → Zp → 0

Where

D•K/k := RHomΛ(Gal(K/k))(RΓet(Ck , jk,Σ!(Λ(Gal(K/k)#),Λ(Gal(K/k))[−2]).

and jk,Σ : Spec(Ok,Σ)→ Ck .
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Iwasawa theory for global fields of positive characteristic Iwasawa algebras

Theorem (Burns)

Suppose Gal(K/k) is p-adic Lie Group.
1 If for each v ∈ Σ, Gal(K/k)v is non-trivial and normal, OR
2 If Fqp∞ ⊂ K,

Then, D•K/k,Σ is acyclic outside degree 1 and H1(D•K/k,Σ) is Λ(Gal(K/k))-finitely generated
torsion module with pdΛ(Gal(K/k))(H1(D•K/k,Σ)) ≤ 1.

Theorem (Anglès-Bandini-B.-Longhi)

Consider K/k the Carlitz cyclotomic extension. Then (W ⊗Zp XK/k)(χ) is a finitely
generated torsion W ⊗Zp Λ(Gal(K/k))(χ)-module, where χ any non-trivial p-adic character
of ∆ in W the Witt ring of Fp.
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Iwasawa theory for global fields of positive characteristic Geometric Iwasawa main conjecture in the abelian setting

GIMC: abelian case

Pk the set of places of k.
Define GΣ as the Galois group of the maximal abelian extension FΣ of k which is unramified
outside Σ. For any q ∈PF \ Σ, let Frq ∈ GΣ denote the corresponding (arithmetic)
Frobenius automorphism.

Definition

We define the Stickelberger series by

ΘFS/F,Σ(X) :=
∏

q∈PF−Σ

(1− Fr−1
q Xdeg(q))−1 ∈ Z[[GΣ]][[X ]] . (1)

More generally, for any closed subgroup U < GΣ, we define

Θ
FU

S /F,S(X) := π
GS
GS/U (ΘFS/F,S)(X)

=
∏

q∈Pk−Σ

(1− πGΣ
GΣ/U (Fr−1

q )Xdeg(q))−1 ∈ Z[Gal(FU
Σ /k)][[X ]] ,

where πGΣ
GΣ/U : Z[[GΣ]]→ Z[[Gal(FU

Σ /k)]] is the map induced by the projection GS � GΣ/U.

Francesc Bars (STNB-(UAB)) On geometric IMC January 29, 2016 14 / 26



Iwasawa theory for global fields of positive characteristic Geometric Iwasawa main conjecture in the abelian setting

Theorem (Burns,(Crew, Burns-Lai-Tan))

K/k abelian p-adic Lie extension, and no place of Σ splits completely in K/k, then

Det(D•K/k)−1 = FittΛ(Gal(K/k))(H1(D•K/k)) = (ΘK/k,Σ(1)).

Theorem (Anglès-Bandini-B.-Longhi)

K/k Carlitz cyclotomic extension, then

FittΛ(Gal(K/k)(χ)⊗Zp W (W ⊗Zp XK/k(χ)) = (eχ(ΘK/k,{∞,p}(1))),

if χ an odd p-adic character, W is the Witt ring of Fp. (For even χ non-trivial we obtain
also a statement).

Where here χ = ω̃i
p (a power of the Teichmüller character in zero characteristic), and even if

and only if q − 1 divides i, otherwise odd.
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Iwasawa theory for global fields of positive characteristic Geometric Iwasawa main conjecture in the abelian setting

Link of IMC with positive characteristic Goss-(Pink-Boeckle) L-values

Let Ap be the completion of A = Fq [T ] at p and Dir(Zp,Ap) the Ap-module of Dirichlet
series, i.e., the closure in C0(Zp,Ap) of the module generated by functions ϑu(y) := yu ,
u ∈ U1 = 1 + pAp

∼= Γ .
We shall use a result of Sinnot (2008) to obtain a map

sX : W [[Gal(K/k)]][[X ]] −→ Dir(Zp,Fq [T ]p)[[X ]] ,
and prove

Theorem (Anglès-Bandini-B-Longhi)

For every y ∈ Zp and i ∈ Z/(qd − 1) we have

sX (θK/k,{p,∞}(X , ω̃−i
p ))(y) = Lp(X ,−y, ωi

p) ∈ Fq [T ]p[[X ]],

where Lp is a p-adic L-function.

We mention here for j ≡ i(modqd − 1) Lp(X , j, ωi
p) = (1− πj

pXd)Z(X , j),
where Z(X , j) :=

∑
n≥0 Sn(j)Xn ∈ A[X ], with Sn(j) :=

∑
a∈A+,n

aj .

and for j 6≡ 0(mod q − 1) (1− πj
p)β(j) = Lp(1, j, ωi

p) 6= 0, the Bernouilli-Goss numbers
β(j) = Z(1, j).
And have an Ferrero-Washington style result:

Theorem (Anglès-Bandini-B-Longhi:“µ vanishes”)

For i 6≡ 0(mod q − 1) then θK/k,{p,∞}(1, ω̃i
p) 6≡ 0(mod p)
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

From commutative to non-commutative

For the classical cyclotomic extension over Q, Gcyc := Gal(Q(µp∞ )/Q) ∼= ∆× Zp and
Λcyc ∼= Zp[∆][[T ]], consider:

S = {s ∈ Λcyc|Λcyc/sΛcyc f .g.Zp[∆]−mod}

and the localization sequence in K -theory:

K1(Λcyc)→ K1(Λcyc,S)→d K0(Λcyc,Λcyc,S) = K0(M∆(Λcyc))

where M∆(Λcyc) f.g. Λcyc-modules s.t. f.g. Zp[∆]-modules(=torsion Λcyc-modules).

d(s) = [Λcyc/sΛcyc], s ∈ S .
(f ) = (FittΛcyc (M)), d(f ) = [M ].
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

Localization sequence for rings

Definition
R ring S ⊂ R is a left denominator set if is multiplicatively closed and satisfies:

Ore condition: for each s ∈ S , b ∈ R exists s′ ∈ S , b′ ∈ R such that b′s = s′b.
annihilator condition: for each s ∈ S , b ∈ R with bs = 0 exist s′ ∈ S with s′b = 0.

We have localization sequence:

K1(R)→ K1(S−1R = RS)→d K0(R,RS)
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

Extending localization to complexes

Theorem (Weibel-Yao,Muro,Muro-Tonks,Witte)

The group K0(R,RS): generators [P•] for P• perfect complex of R-modules, s.t.
localization SP• is an acyclic complex.
Relations: not in the talk.
The abelian group K1(R): generators [f ] where f is a quasi-automorphism of a perfect
complex of R-modules P•. (Relations:not in the talk)
K1(RS): generators [f ] with f a morhism of perfect complex P• such that fS is
quasi-automorphism.
d : K1(RS)→ K0(R,RS) given by [f ] 7→ −[Cone(f )•].
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

Localization in non-commutative Iwasawa algebras

The cover K/k for general schemes over Fq instead of curves:
The p-adic Lie extension Y → X (Galois pro-finite cover factors through X ×Fq Fqp∞

with p-Sylow of finite index with Gal(Y/K) and admits a finite set of topological
generators) we think now X separated and geometrically connected scheme of finite type
over Fq .
H := Ker(G := Gal(Y/X)→ Gal(Fqp∞ /Fq)), Gal(Y/X) ∼= H o Gal(Fqp∞ /Fq)
S = {s ∈ Λ(Gal(Y/X))|Λ(G)/Λ(G)s, is f .g. Λ(H)−module}

Theorem (Venjakob)

Given M a f.g. Λ(G)-module, Then:
S-torsion if and only if M is f.g. Λ(H)-module.
K0(Λ(G),Λ(G)S) = K0(MH (G)).

Question

For a non-finite set of topological generators for G (of the cover Y → X): given M as above
and f.g. Λ(H)-module, is then M S-torsion?

Up to know G IS a p-adic Lie extension from above pro-finite cover Y → X , and X proper
over Fq .

Francesc Bars (STNB-(UAB)) On geometric IMC January 29, 2016 20 / 26



Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

First part of geometric non-commutative IMC

F flat Zp-sheaf, U open subgroup of G, fU : Y U → X , (f : Y → X), we have

Theorem (Deligne)

If Fn flat sheaf of Z/pn-modules, then RΓet(X , fU,∗f ∗UFn) is a perfect complex of
Z/pn [G/U ]-modules.

Theorem (Burns,Witte)

F flat Zp-sheaf, then RΓet(X , f∗f ∗F) is a perfect complex of Λ(G)-modules.

First part of IMC for non-commutative Iwasawa rings

Theorem (Burns)

The Λ(G)-complex RΓet(X , f∗f ∗F) satisfies that S−1Λ(G)⊗L
Λ(G) RΓet(X , f∗f ∗F) is acyclic,

and exists ζ(F) ∈ K1(Λ(G)S) such that d(ζ(F)) = [RΓet(X , f∗f ∗F)] in K0(Λ(G),Λ(G)S).

Remark
Witte gave an unified treatment for `-adic Lie extensions with ` 6= p and F a flat Z`-adic
sheaf.

If X only separated, use compact étale complexes.
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

A complex generalization

Any Λ adic ring, and left denominator set S we have,
K1(PDGcont(Λ))→ K1(ΛS)→d K0(PDGcont(Λ,S)

PDGcont is a category of inverse systems of complexes of left Λ-modules indexed by IΛ
(a topological basis for the profinite cover, or the powers of the bilater ideal for a Λ adic
ring), (P•I )I∈IΛ i.e.

for each I ∈ IΛ, P•I a perfect complex of left Λ/I-modules (with further properties)
for I ⊂ J ∈ IΛ, transition maps ϕIJ : P•I → P•J induces isomorphism

Λ/J ⊗Λ/I P•I ∼= P•J .

PDGcont(Λ,S) objects of PDGcont(Λ) for which

0→ S−1Λ⊗Λ lim
←−

I∈IΛ

P•I

is a quasi-isomorphism.
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

The generalization in the cover, ` 6= p

For f : Y → X `-adic Lie pro-cover, Λ = Z`[[G]]-ring of the cover, FG := f∗f ∗F with F flat
Z`-sheaf, and before we observed that

RΓet,c(X , f∗f ∗F) ∈ PDGcont(Λ).

This notion can be extended to complex of sheaves and the above sequence in compact-étale
to obtain:

Theorem (Witte, 2008)

Λ adic ring, such that the characteristic p is invertible in Λ. Assume S ⊂ Λ is a left
denominator set, and RΓet,c(X ,F•G) ∈ PDGcont(Λ,S). Then

dL(F•G , 1) = [RΓet,c(X ,F•G)] ∈ K0(PDGcont(Λ,S),

where

L(F•G , 1) = [S−1Λ⊗L
Λ RΓc,et(X ,F•G)→id−FrobFq S−1Λ⊗L

Λ RΓc,et(X ,F•G)]
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

The source of Witte result

Take the particular case where Λ = Z`, and we consider only sheaves at place 0 of F•G , which
are the Z`-sheaves over X , F, (the cover id : X → X)
Consider the complex RΓc,et(X ,F), and S = Z` − {0} ⊂ Z`.
By SGA5 ζX,F(1) = det(L(F, 1)) =

∏
i det(1− FrobFq |H i

c,et(X ,F ⊗ Q`))(−1)i+1 , where
det : K1(A)→ A∗ for a commutative ring A.
In particular ζX,F(n) = L(F(n), 1) =

∏
i det(1− q−nFrobFq |H i

c,et(X ,F ⊗ Q`))(−1)i+1

Consider n integer such that qn is not eigenvalue of FrFq |H i
c,et(X ,F)⊗Z`

Q`, ∀i then
[Bayer-Neukirch] proved that H i

c,et(X ,F(n)) are finite, i.e. RΓc,et(X ,F(n)) is in
PDGcont(Z`,S) (is S-acyclic, Q` ⊗ Rc,et(X ,F(n)) is quasi-isomorphic to the complex of 0•).
The exact sequence K1(Z`)→ K1(Q`)→ K0(PDGcont(Z`,S)) reads through determinant
(det) in K1 and χ : K0 → `Z via χ(M•) =

∏
n∈Z(Hn(M•))(−1)n to

0→ Z∗` → Q∗` →
x 7→|x|` `Z → 0

Thus the SOURCE result of Witte corresponds to:

Theorem (Bayer-Neukirch, 1978)

Assume p 6= `. Consider n integer such that qn is not eigenvalue of FrFq |H i
c,et(X ,F)⊗Z`

Q`,
∀i then,

|(ζX,F(n))|` = χ(RΓc,et(X ,F(n))) =
∏

i

#H i
c,et(X ,F(n))(−1)i+1

.
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC

Thanks STNB
Thanks Professor Pilar Bayer
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Iwasawa theory for global fields of positive characteristic Non-commutative setting for IMC
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