STNB2016

Barcelona January 28, 2016

Iwasawa theory and STNB, a personal view

Francesc Bars (UAB)

Francesc Bars (STNB-(UAB))

On geometric IMC

January 29, 2016 1 / 26

Image: A matrix and a matrix

Cyclotomic extensions: number fields

For any $n \in \mathbb{N}$ and p an odd prime, let

•
$$\mathbb{Q}_n := \mathbb{Q}(\mu_{p^{n+1}})$$

 $\mathbb{Q} \subset \mathbb{Q}_0 \subset \mathbb{Q}_1 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \mathbb{Q}(\mu_{p^{\infty}})$.

• $\mathbb{Q}_{cyc} := \bigcup \mathbb{Q}(\mu_{p^n})$ the *p*-cyclotomic extension of \mathbb{Q} .

• $\mathbb{Q}_{cyc}/\mathbb{Q}_0$ is a \mathbb{Z}_p -extension: let $\operatorname{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}_0) := \Gamma$.

Properties

1.
$$\operatorname{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}) \simeq \lim_{\stackrel{\leftarrow}{n}} (\mathbb{Z}/p^{n+1})^* \simeq \mathbb{Z}_p^* \simeq \mathbb{Z}/(p-1) \times \mathbb{Z}_p \simeq \operatorname{Gal}(\mathbb{Q}_0/\mathbb{Q}) \times \Gamma.$$

2. ramified only at ∞ and p, in particular $\mathbb{Q}_{cyc}/\mathbb{Q}_0$ is ramified (totally) only at p. $\mathbb{Q}_{cyc}^{\operatorname{Gal}(\mathbb{Q}_0/\mathbb{Q})}$ is called the **cyclotomic** \mathbb{Z}_p -extension of \mathbb{Q} . For any number field K, $K\mathbb{Q}_{cyc}^{\operatorname{Gal}(\mathbb{Q}_0/\mathbb{Q})}$ is the **cyclotomic** \mathbb{Z}_p -extension of K. The **Iwasawa algebra** is the ring

$$\Lambda := \lim_{\stackrel{\longleftarrow}{\underset{n}{\longleftarrow}}} \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}_0)] = \mathbb{Z}_p[[\Gamma]] \simeq \mathbb{Z}_p[[T]] \;.$$

The last isomorphism is non-canonical and given by $\gamma \mapsto T-1$ where γ is a chosen topological generator of Γ .

Carlitz Cyclotomic extensions: function fields

Let

- $F := \mathbb{F}_q(\theta)$ with $q = p^r \ge 3$ and fix $\frac{1}{\theta}$ as the prime at ∞ .
- Let $A := \mathbb{F}_p[\theta]$ and fix a prime \mathfrak{p} of A of degree d.
- Let Φ be the **Carlitz module** associated to A: it is an \mathbb{F}_q -linear ring homomorphism

$$\Phi: A \to F\{\tau\}$$
$$\theta \mapsto \Phi_{\theta} = \theta \tau^0 + \tau ,$$

where $F{\tau}$ is the skew polynomial ring with $\tau f = f^q \tau$ for any $f \in F$.

• For any ideal $\mathfrak a$ of A write

$$\Phi[\mathfrak{a}] := \{ x \in \overline{F} \mid \Phi_a(x) = 0 \,\, \forall \, a \in \mathfrak{a} \} \,\, ,$$

it is an A-module isomorphic to A/\mathfrak{a} .

• • • • • • • • • • • •

Cyclotomic extensions: function fields

For any $n \in \mathbb{N}$, let

• $F_n := F(\Phi[\mathfrak{p}^{n+1}])$

$$F \subset F_0 \subset F_1 \subset \cdots \subset F_n \subset \cdots \subset F(\Phi[\mathfrak{p}^\infty])$$
.

- $\mathcal{F} := \bigcup F(\Phi[\mathfrak{p}^n])$ the \mathfrak{p} -cyclotomic extension of F.
- \mathcal{F}/F_0 is a \mathbb{Z}_p^{∞} -extension: let $\operatorname{Gal}(\mathcal{F}/F_0) := \Gamma$.

Properties

1.
$$\operatorname{Gal}(\mathcal{F}/F) \simeq \lim_{\stackrel{\leftarrow}{n}} \left(A/\mathfrak{p}^{n+1} \right)^* \simeq \operatorname{Gal}(F_0/F) \times \Gamma := \Delta \times \Gamma$$
.

ramified only at ∞ and p, in particular 𝔅/𝑘₀ is ramified (totally) only at p and the inertia group of ∞ is 𝑘_q → Δ (note |Δ| = q^{deg(p)} − 1 = q^d − 1).

The Iwasawa algebra is the ring

$$\Lambda := \lim_{\stackrel{\leftarrow}{n}} \mathbb{Z}_p[\operatorname{Gal}(F_n/F_0)] = \mathbb{Z}_p[[\Gamma]] \simeq \mathbb{Z}_p[[T_n : n \in \mathbb{N}]].$$

Iwasawa modules: global fields

- ${\cal F}$ a global field and $E/{\cal F}$ a finite extension
 - $\mathcal{C}\ell^{0}(E)$ the *p*-part of the group of divisor classes of *E* of degree 0 (class group);
 - L(E) the maximal unramified abelian *p*-extension of E;
 - $\mathcal{C}\ell^0(E) \simeq \operatorname{Gal}(L(E)/E)$ via the (canonical) Artin map.
 - $\Lambda(\mathcal{L}) := \mathbb{Z}_p[[\operatorname{Gal}(\mathcal{L}/F)]]$ the associated Iwasawa algebra.

Same notations for infinite extensions \mathcal{L}/F where

$$\mathcal{C}\ell^{0}(\mathcal{L}) := \lim_{\stackrel{\longleftarrow}{\leftarrow} E} \mathcal{C}\ell^{0}(E)$$

(the limit is on the natural norm maps as E runs among the finite subextensions of \mathcal{L}/F).

DQA

イロト イヨト イヨト イヨト

Iwasawa modules: global fields

Theorem (Iwasawa 60's, Greenberg 70's,...)

Let \mathcal{L}/F be a \mathbb{Z}_p^d -extension ($d < \infty$), (which is ramified in a finite set of places) then $\mathcal{C}\ell^0(\mathcal{L})$ is a finitely generated torsion $\Lambda(\mathcal{L})$ -module.

Theorem (Structure Theorem for f.g.t. Iwasawa modules)

Let \mathcal{L}/F be a \mathbb{Z}_p^d -extension $(d < \infty)$ and let M be a finitely generated torsion $\Lambda(\mathcal{L})$ -module. There is a pseudo-isomorphism (i.e. with pseudo-null kernel and cokernel)

$$M \sim_{\Lambda(\mathcal{L})} \bigoplus_{i=1}^{s} \Lambda(\mathcal{L}) / (f_i^{e_i})$$

where the f_i are irreducible elements of $\Lambda(\mathcal{L}) \simeq \mathbb{Z}_p[[T_1, \ldots, T_d]]$. A f.g.t. module N is pseudo-null if $ht(Ann_{\Lambda(\mathcal{L})}(N)) \ge 2$.

• • • • • • • • • • • •

Iwasawa modules: characteristic ideals

Definition (Characteristic ideal)

For a f.g.t module as above we define the characteristic ideal as

$$Ch_{\Lambda(\mathcal{L})}(M) := \left(\prod_{i=1}^{s} f_i^{e_i}\right) \;.$$

A f.g.t. module N is pseudo-null (i.e. $N \sim_{\Lambda(\mathcal{L})} 0$) $\iff Ch_{\Lambda(\mathcal{L})}(N) = (1)$.

Theorem (Iwasawa)

Let K_{∞}/K be a \mathbb{Z}_p -extension of a number field K and let $\mathcal{C}\ell^0(K_n)$ be the p-part of the class group of the n-th layer of K_{∞} . Then there exist nonnegative integers μ , λ and ν such that

$$|\mathcal{C}\ell^0(K_n)| = p^{\mu p^n + \lambda n + \nu} \quad \forall n \gg 0 .$$

Let $\mathcal{C}\ell^0(K_\infty)$ be the Iwasawa module associated to K_∞ and let f_{K_∞} be a (polynomial) generator of $Ch_{\Lambda(K_\infty)}(\mathcal{C}\ell^0(K_\infty))$. Then

- $p^{\mu} \mid f_{K_{\infty}}$ and $p^{\mu+1} \nmid f_{K_{\infty}}$;
- $\lambda = \deg(f_{K_{\infty}}).$

Main Conjecture: number fields

Let χ be a Dirichlet character associated to the field K, then

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} Re(s) > 1.$$

For any character ω^i (*i* even and nonzero and ω the Teichmüller character) associated to $\operatorname{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ Iwasawa defined *p*-adic analogues $L_p(s,\omega^i)$ of $L(s,\omega^i)$.

$$L_p(1-m,\omega^i) = (1-\omega^{i-m}(p)p^{m-1})L(1-m,\omega^{i-m})$$
 for $m \ge 1$

Moreover Iwasawa proved that there exist a power series $f(T, \omega^i) \in \mathbb{Z}_p[[T]] \simeq \Lambda(\mathbb{Q}_{cyc})$ such that $L_p(s, \omega^i) = f((1+p)^s - 1, \omega^i)$.

Conjecture (Main Conjecture (MC))

Let $\mathcal{C}\ell^{0}(\mathbb{Q}_{cyc})(\omega^{i})$ be the ω^{i} -part of the Iwasawa module, then

$$Ch_{\Lambda(\mathbb{Q}_{cyc})}(\mathfrak{C}\ell^{0}(\mathbb{Q}_{cyc})(\omega^{i})) = (f(T,\omega^{1-i}))$$
.

First proof by Mazur-Wiles Invent. Math. '84. Different proofs and many generalizations have been investigated since then.

Francesc Bars (STNB-(UAB))

Fitting-Char-Determinant

• $D^b(R)$ the derived category of bounded complexes of finitely generated left projective *R*-modules, (in particular complexes C^{\bullet} such that $H^i(C^{\bullet}) = 0$ except for a finite list of *i*, recall: acyclic if $H^i(C^{\bullet}) = 0 \forall i$).

 C^{\bullet} a complex of *R*-f.g. modules is named perfect if it is quasi-isomorphic to a bounded complex C'^{\bullet} with $C'^{i} = 0$ for $\forall |i| \geq n(C')$ and C'^{j} is projective f.g.R-module.

• A denotes a commutative ring with 1. M a finite presentation A-module (in particular finite generated).

Definition (Fitting ideal)

Let
$$A^a \xrightarrow{\phi} A^b \twoheadrightarrow M$$
 be a finite presentation for an A-module M, then

$$\operatorname{Fitt}_{A}(M) = \left\{ \begin{array}{ll} 0 & \text{if } a < b \\ \text{the ideal generated by all the} \\ \text{determinants of the } b \times b & \text{if } a \geqslant b \\ \text{minors of the matrix } \phi \end{array} \right.$$

• For A-non-noetherian there is a definition of Fitt for f.g. A-modules.

(I) (A) (A) (A) (A) (A)

Fitting-Char-Determinant

- If A semilocal noetherian, C^{\bullet} acyclic outside degree i and $H^i(C^{\bullet})$ is a f.g. torsion A-module of $pd_A(H^i(C^{\bullet}) \leq 1$, then $Quot(A) \otimes_A^{\mathbb{L}} C^{\bullet}$ acyclic, and $Fit_A(H^i(C^{\bullet}))$ invertible ideal of A.
- If A is Iwasawa algebra $\mathbb{Z}_p[\Delta][[T_1, \ldots, T_n]]$ and M is torsion A-module and $pd_A(M) \leq 1$ then $ch_A(M) = Fit_A(M)$.
- Knudsen-Mumford determinant, (A-noetherian): $Det : D^b(A) \to Picard(A)$, for this talk, restrict C^{\bullet} acyclic outside degree *i*, and $H^i(C^{\bullet})$ is a f.g. torsion A-module of $pd_A(H^i(C^{\bullet})) \leq 1$, then:

$$Det(C^{\bullet}) = (Fit_A(H^i(C^{\bullet}))^{(-1)^{i+1}}).$$

Non-commutative generalizations for *Det*:

- Burns-Flach: Extends to non-commutative Iwasawa algebras *Det*-functor by virtual objects (Deligne).
- Kato, Burns, Coates, Venjakob, Schneider, Fukaya, ...: Extends to non-commutative Iwasawa rings by use of K-theory.
- Witte: The interpretation of K-theory can be understood inside K-theory of Waldhausen categories.

SOR

イロト イヨト イヨト イヨト

Iwasawa algebras for positive char.

For simplicity $k = \mathbb{F}_q(T)$, once and for all. Denote \mathbb{F}_{∞} where $\mathbb{F}_{\infty}/\mathbb{F}_q$ is the unique \mathbb{Z}_p -extension of \mathbb{F}_q . Consider now K/k, K the rational field of a curve C_K , with $C_K \to C_k = \mathbb{P}^1_{\mathbb{F}_q}$ Galois cover such that Gal(K/k) is a profinite group and its p-Sylow subgroup has finite index, and K/kis ramified in a finite set of places of k.

 Σ : a finite set of places of k containing the ramified places of K/k.

Interesting Galois covers for Iwasawa theory:

• Burns-Kato-Witte-...: Assume moreover Gal(K/k) is topologically finitely generated (i.e. *p*-adic Lie group). Appears the notion of Λ -ring (Fukaya-Kato): if exists two-sided ideal I of Λ such that Λ/I^n finite and $\Lambda \cong \lim \Lambda/I^n$.

Fact: A adic \mathbb{Z}_p -algebra and G profinite group which is topologically generated and has an p-Sylow subgroup of finite index, then $\Lambda[[G]]$ is an adic ring.

2 We wish: Gal(K/k) not necessarily topologically finitely generated in order to consider Carlitz cyclotomic powers or in non-commutative setting torsion of higher Drinfeld modules (for example $GL_2(\mathbb{F}_q[[T]])$ -extensions, following Pink school).

In any case consider the Iwasawa algebra $\Lambda(Gal(K/k)) := \mathbb{Z}_p[[Gal(K/k)]].$

イロト イヨト イヨト イヨト

A module on geometric Iwasawa algebras

Denote by

$$X_{K/k} := \lim_{\stackrel{\longleftarrow}{U}} \mathbb{Z}_p \otimes Cl^0(K^U)$$

where U over open subgroups of Gal(K/k), a $\Lambda(Gal(K/k))$ -module. The cohomological interpretation of $X_{K/k}$ is explained by exact sequences:

$$0 \to H^{0}(D_{K/k}^{\bullet}) \to \bigoplus_{v \in \Sigma_{fin}^{K}} \Lambda(Gal(K/k)) \otimes_{\Lambda(Gal(K/k)_{v})} \mathbb{Z}_{p} \to X_{K/k} \to$$
$$\lim_{k \to \infty} \mathbb{Z}_{p} \otimes Y_{K/k} := \lim_{k \to 0} Cl(\mathbb{O}_{K^{U},\Sigma}) \to 0$$
Norm

$$0 \to \lim_{K \to rm} \mathbb{Z}_p \otimes Y_{K/k} \to H^1(D^{\bullet}_{K/k}) \to \bigoplus_{v \in \Sigma} \Lambda(Gal(K/k)) \otimes_{\Lambda(Gal(K/k)_v)} \mathbb{Z}_p \to \mathbb{Z}_p \to 0$$

Where

(

$$D^{\bullet}_{K/k} := RHom_{\Lambda(Gal(K/k))}(R\Gamma_{et}(C_k, j_{k, \Sigma!}(\Lambda(Gal(K/k)^{\#}), \Lambda(Gal(K/k))[-2]).$$

and $j_{k,\Sigma} : Spec(\mathcal{O}_{k,\Sigma}) \to C_k$.

Image: A math a math

Theorem (Burns)

Suppose Gal(K/k) is p-adic Lie Group.

- If for each $v \in \Sigma$, $Gal(K/k)_v$ is non-trivial and normal, OR
- $each If \mathbb{F}_{q^p^\infty} \subset K,$

Then, $D^{\bullet}_{K/k,\Sigma}$ is acyclic outside degree 1 and $H^1(D^{\bullet}_{K/k,\Sigma})$ is $\Lambda(Gal(K/k))$ -finitely generated torsion module with $pd_{\Lambda(Gal(K/k))}(H^1(D^{\bullet}_{K/k,\Sigma})) \leq 1$.

Theorem (Anglès-Bandini-B.-Longhi)

Consider K/k the Carlitz cyclotomic extension. Then $(W \otimes_{\mathbb{Z}_p} X_{K/k})(\chi)$ is a finitely generated torsion $W \otimes_{\mathbb{Z}_p} \Lambda(Gal(K/k))(\chi)$ -module, where χ any non-trivial p-adic character of Δ in W the Witt ring of \mathbb{F}_p .

Image: A matrix and a matrix

GIMC: abelian case

 \mathscr{P}_k the set of places of k.

Define G_{Σ} as the Galois group of the maximal abelian extension \mathcal{F}_{Σ} of k which is unramified outside Σ . For any $\mathfrak{q} \in \mathscr{P}_F \setminus \Sigma$, let $\operatorname{Fr}_{\mathfrak{q}} \in G_{\Sigma}$ denote the corresponding (arithmetic) Frobenius automorphism.

Definition

We define the Stickelberger series by

$$\Theta_{\mathcal{F}_S/F,\Sigma}(X) := \prod_{\mathfrak{q} \in \mathscr{P}_F - \Sigma} (1 - \operatorname{Fr}_{\mathfrak{q}}^{-1} X^{\operatorname{deg}(\mathfrak{q})})^{-1} \in \mathbb{Z}[[G_{\Sigma}]][[X]] .$$
(1)

More generally, for any closed subgroup $U < G_{\Sigma}$, we define

$$\begin{split} \Theta_{\mathcal{F}_{S}^{U}/F,S}(X) & := \pi_{G_{S}/U}^{G_{S}}(\Theta_{\mathcal{F}_{S}/F,S})(X) \\ & = \prod_{\mathfrak{q} \in \mathscr{P}_{k}-\Sigma} (1 - \pi_{G_{\Sigma}/U}^{G_{\Sigma}}(\mathrm{Fr}_{\mathfrak{q}}^{-1})X^{\mathrm{deg}(\mathfrak{q})})^{-1} \in \mathbb{Z}[\mathrm{Gal}(\mathcal{F}_{\Sigma}^{U}/k)][[X]] \;, \end{split}$$

where $\pi_{G_{\Sigma}/U}^{G_{\Sigma}}$: $\mathbb{Z}[[G_{\Sigma}]] \to \mathbb{Z}[[\operatorname{Gal}(\mathcal{F}_{\Sigma}^{U}/k)]]$ is the map induced by the projection $G_{S} \twoheadrightarrow G_{\Sigma}/U$.

Image: A matrix and a matrix

Theorem (Burns, (Crew, Burns-Lai-Tan))

K/k abelian p-adic Lie extension, and no place of Σ splits completely in K/k, then

$$Det(D^{\bullet}_{K/k})^{-1} = Fitt_{\Lambda(Gal(K/k))}(H^1(D^{\bullet}_{K/k})) = (\Theta_{K/k,\Sigma}(1)).$$

Theorem (Anglès-Bandini-B.-Longhi)

K/k Carlitz cyclotomic extension, then

$$Fitt_{\Lambda(Gal(K/k)(\chi)\otimes_{\mathbb{Z}_p} W}(W\otimes_{\mathbb{Z}_p} X_{K/k}(\chi)) = (e_{\chi}(\Theta_{K/k,\{\infty,\mathfrak{p}\}}(1))),$$

if χ an odd p-adic character, W is the Witt ring of $\mathbb{F}_{\mathfrak{p}}$. (For even χ non-trivial we obtain also a statement).

Where here $\chi = \tilde{\omega}_p^i$ (a power of the Teichmüller character in zero characteristic), and even if and only if q - 1 divides *i*, otherwise odd.

Image: A matrix

Link of IMC with positive characteristic Goss-(Pink-Boeckle) L-values

Let $A_{\mathfrak{p}}$ be the completion of $A = \mathbb{F}_q[T]$ at \mathfrak{p} and $Dir(\mathbb{Z}_p, A_{\mathfrak{p}})$ the $A_{\mathfrak{p}}$ -module of Dirichlet series, i.e., the closure in $C^0(\mathbb{Z}_p, A_{\mathfrak{p}})$ of the module generated by functions $\vartheta_u(y) := y^u$, $u \in U_1 = 1 + \mathfrak{p}A_{\mathfrak{p}} \cong \Gamma$.

We shall use a result of Sinnot (2008) to obtain a map

$$s_X: W[[Gal(K/k)]][[X]] \longrightarrow Dir(\mathbb{Z}_p, \mathbb{F}_q[T]_p)[[X]]$$
,

and prove

Theorem (Anglès-Bandini-B-Longhi)

For every $y \in \mathbb{Z}_p$ and $i \in \mathbb{Z}/(q^d - 1)$ we have

$$s_X(\theta_{K/k,\{\mathfrak{p},\infty\}}(X,\tilde{\omega}_{\mathfrak{p}}^{-i}))(y) = L_{\mathfrak{p}}(X,-y,\omega_{\mathfrak{p}}^{i}) \in \mathbb{F}_q[T]_{\mathfrak{p}}[[X]],$$

where $L_{\mathfrak{p}}$ is a \mathfrak{p} -adic L-function.

We mention here for $j \equiv i(modq^d - 1) L_{\mathfrak{p}}(X, j, \omega_{\mathfrak{p}}^i) = (1 - \pi_{\mathfrak{p}}^j X^d) Z(X, j)$, where $Z(X, j) := \sum_{n \geq 0} S_n(j) X^n \in A[X]$, with $S_n(j) := \sum_{a \in A_{+,n}} a^j$. and for $j \not\equiv 0 \pmod{q-1} (1 - \pi_{\mathfrak{p}}^j) \beta(j) = L_{\mathfrak{p}}(1, j, \omega_{\mathfrak{p}}^i) \neq 0$, the Bernouilli-Goss numbers $\beta(j) = Z(1, j)$. And have an Ferrero-Washington style result:

Theorem (Anglès-Bandini-B-Longhi: " μ vanishes")

For $i \not\equiv 0 \pmod{q-1}$ then $\theta_{K/k, \{\mathfrak{p},\infty\}}(1, \tilde{\omega}^i_{\mathfrak{p}}) \not\equiv 0 \pmod{p}$

From commutative to non-commutative

For the classical cyclotomic extension over \mathbb{Q} , $G_{cyc} := Gal(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}) \cong \Delta \times \mathbb{Z}_p$ and $\Lambda_{cyc} \cong \mathbb{Z}_p[\Delta][[T]]$, consider:

$$S = \{s \in \Lambda_{cyc} | \Lambda_{cyc} / s \Lambda_{cyc} f.g.\mathbb{Z}_p[\Delta] - mod\}$$

and the localization sequence in K-theory:

$$K_1(\Lambda_{cyc}) \to K_1(\Lambda_{cyc,S}) \to^d K_0(\Lambda_{cyc},\Lambda_{cyc,S}) = K_0(\mathfrak{M}_{\Delta}(\Lambda_{cyc}))$$

where $\mathfrak{M}_{\Delta}(\Lambda_{cyc})$ f.g. Λ_{cyc} -modules s.t. f.g. $\mathbb{Z}_p[\Delta]$ -modules(=torsion Λ_{cyc} -modules).

メロト メタト メミト メミト

Localization sequence for rings

Definition

R ring $S \subset R$ is a left denominator set if is multiplicatively closed and satisfies:

- Ore condition: for each $s \in S$, $b \in R$ exists $s' \in S$, $b' \in R$ such that b's = s'b.
- annihilator condition: for each $s \in S$, $b \in R$ with bs = 0 exist $s' \in S$ with s'b = 0.

We have localization sequence:

$$K_1(R) \rightarrow K_1(S^{-1}R = R_S) \rightarrow^d K_0(R, R_S)$$

Extending localization to complexes

Theorem (Weibel-Yao, Muro, Muro-Tonks, Witte)

- The group K₀(R, R_S): generators [P[●]] for P[●] perfect complex of R-modules, s.t. localization SP[●] is an acyclic complex. Relations: not in the talk.
- The abelian group K₁(R): generators [f] where f is a quasi-automorphism of a perfect complex of R-modules P[●]. (Relations:not in the talk)
- $K_1(R_S)$: generators [f] with f a morhism of perfect complex P^{\bullet} such that f_S is quasi-automorphism.
- $d: K_1(R_S) \to K_0(R, R_S)$ given by $[f] \mapsto -[Cone(f)^{\bullet}].$

Localization in non-commutative Iwasawa algebras

- The cover K/k for general schemes over \mathbb{F}_q instead of curves: The *p*-adic Lie extension $Y \to X$ (Galois pro-finite cover factors through $X \times_{\mathbb{F}_q} \mathbb{F}_{q^p}^{\infty}$ with *p*-Sylow of finite index with Gal(Y/K) and admits a finite set of topological generators) we think now X separated and geometrically connected scheme of finite type over \mathbb{F}_q .
 - $H:= Ker(G:= \operatorname{Gal}(Y/X) \to \operatorname{Gal}(\mathbb{F}_{q^p}^{\infty} / \mathbb{F}_q)), \ \operatorname{Gal}(Y/X) \cong H \rtimes \operatorname{Gal}(\mathbb{F}_{q^p}^{\infty} / \mathbb{F}_q)$
- $S = \{s \in \Lambda(Gal(Y/X)) | \Lambda(G) / \Lambda(G)s, \text{ is f.g. } \Lambda(H) module \}$

Theorem (Venjakob)

Given M a f.g. $\Lambda(G)$ -module, Then: S-torsion if and only if M is f.g. $\Lambda(H)$ -module. $K_0(\Lambda(G), \Lambda(G)_S) = K_0(\mathfrak{M}_H(G)).$

Question

For a non-finite set of topological generators for G (of the cover $Y \to X$): given M as above and f.g. $\Lambda(H)$ -module, is then M S-torsion?

Up to know G IS a p-adic Lie extension from above pro-finite cover $Y \to X$, and X proper over \mathbb{F}_q .

20 / 26

First part of geometric non-commutative IMC

 \mathcal{F} flat \mathbb{Z}_p -sheaf, U open subgroup of $G, f_U: Y^U \to X, (f: Y \to X)$, we have

Theorem (Deligne)

If \mathfrak{F}_n flat sheaf of \mathbb{Z}/p^n -modules, then $R\Gamma_{et}(X, f_{U,*}f_U^*\mathfrak{F}_n)$ is a perfect complex of $\mathbb{Z}/p^n[G/U]$ -modules.

Theorem (Burns, Witte)

 \mathfrak{F} flat \mathbb{Z}_p -sheaf, then $R\Gamma_{et}(X, f_*f^*\mathfrak{F})$ is a perfect complex of $\Lambda(G)$ -modules.

First part of IMC for non-commutative Iwasawa rings

Theorem (Burns)

The $\Lambda(G)$ -complex $R\Gamma_{et}(X, f_*f^*\mathfrak{F})$ satisfies that $S^{-1}\Lambda(G) \otimes_{\Lambda(G)}^{\mathbb{L}} R\Gamma_{et}(X, f_*f^*\mathfrak{F})$ is acyclic, and exists $\zeta(\mathfrak{F}) \in K_1(\Lambda(G)_S)$ such that $d(\zeta(\mathfrak{F})) = [R\Gamma_{et}(X, f_*f^*\mathfrak{F})]$ in $K_0(\Lambda(G), \Lambda(G)_S)$.

Remark

Witte gave an unified treatment for ℓ -adic Lie extensions with $\ell \neq p$ and \mathfrak{F} a flat \mathbb{Z}_{ℓ} -adic sheaf.

If X only separated, use compact étale complexes.

• • • • • • • •

A complex generalization

Any Λ adic ring, and left denominator set S we have, $K_1(PDG^{cont}(\Lambda)) \to K_1(\Lambda_S) \to^d K_0(PDG^{cont}(\Lambda, S))$

- PDG^{cont} is a category of inverse systems of complexes of left Λ -modules indexed by \Im_{Λ} (a topological basis for the profinite cover, or the powers of the bilater ideal for a Λ adic ring), $(P_I^{\bullet})_{I \in \Im_{\Lambda}}$ i.e.
 - for each $I \in \mathfrak{I}_{\Lambda}$, P_{I}^{\bullet} a perfect complex of left Λ/I -modules (with further properties)
 - for $I \subset J \in \mathfrak{I}_{\Lambda}$, transition maps $\varphi_{IJ} : P_I^{\bullet} \to P_J^{\bullet}$ induces isomorphism

$$\Lambda/J \otimes_{\Lambda/I} P_I^{\bullet} \cong P_J^{\bullet}.$$

• $PDG^{cont}(\Lambda, S)$ objects of $PDG^{cont}(\Lambda)$ for which

$$0 \to S^{-1} \Lambda \otimes_{\Lambda} \lim_{\substack{\longleftarrow \\ I \in \mathfrak{I}_{\Lambda}}} P_{I}^{\bullet}$$

is a quasi-isomorphism.

• • • • • • • • • • • • •

The generalization in the cover, $\ell \neq p$

For $f: Y \to X$ ℓ -adic Lie pro-cover, $\Lambda = \mathbb{Z}_{\ell}[[G]]$ -ring of the cover, $\mathcal{F}_{G} := f_{*}f^{*}\mathcal{F}$ with \mathcal{F} flat \mathbb{Z}_{ℓ} -sheaf, and before we observed that

$$R\Gamma_{et,c}(X, f_*f^*\mathcal{F}) \in PDG^{cont}(\Lambda).$$

This notion can be extended to complex of sheaves and the above sequence in compact-étale to obtain:

Theorem (Witte, 2008)

 Λ adic ring, such that the characteristic p is invertible in Λ . Assume $S \subset \Lambda$ is a left denominator set, and $R\Gamma_{et,c}(X, \mathfrak{F}_{G}) \in PDG^{cont}(\Lambda, S)$. Then

$$dL(\mathcal{F}_{G}^{\bullet}, 1) = [R\Gamma_{et,c}(X, \mathcal{F}_{G}^{\bullet})] \in K_{0}(PDG^{cont}(\Lambda, S),$$

where

$$L(\mathcal{F}_{G}^{\bullet},1) = [S^{-1}\Lambda \otimes_{\Lambda}^{\mathbb{L}} R\Gamma_{c,et}(\overline{X},\mathcal{F}_{G}^{\bullet}) \to^{id-Frob_{\mathbb{F}_{q}}} S^{-1}\Lambda \otimes_{\Lambda}^{\mathbb{L}} R\Gamma_{c,et}(\overline{X},\mathcal{F}_{G}^{\bullet})]$$

イロト イヨト イヨト イ

The source of Witte result

Take the particular case where $\Lambda = \mathbb{Z}_{\ell}$, and we consider only sheaves at place 0 of $\mathfrak{F}_{G}^{\bullet}$, which are the \mathbb{Z}_{ℓ} -sheaves over X, \mathcal{F} , (the cover $id: X \to X$) Consider the complex $R\Gamma_{c,et}(X,\mathcal{F})$, and $S = \mathbb{Z}_{\ell} - \{0\} \subset \mathbb{Z}_{\ell}$. By SGA5 $\zeta_{X,\mathcal{F}}(1) = \underline{det}(L(\mathcal{F},1)) = \prod_{i} det(1 - Frob_{\mathbb{F}_{q}}|H_{c,et}^{i}(\overline{X}, F \otimes \mathbb{Q}_{\ell}))^{(-1)^{i+1}}$, where $\underline{det}: K_{1}(A) \to A^{*}$ for a commutative ring A. In particular $\zeta_{X,\mathcal{F}}(n) = L(\mathcal{F}(n), 1) = \prod_{i} det(1 - q^{-n}Frob_{\mathbb{F}_{q}}|H_{c,et}^{i}(\overline{X}, \mathcal{F} \otimes \mathbb{Q}_{\ell}))^{(-1)^{i+1}}$ Consider n integer such that q^{n} is not eigenvalue of $Fr_{\mathbb{F}_{q}}|H_{c,et}^{i}(\overline{X}, \mathcal{F} \otimes \mathbb{Q}_{\ell}) \otimes \mathbb{Z}_{\ell} \otimes \mathbb{Q}_{\ell}, \forall i$ then [Bayer-Neukirch] proved that $H_{c,et}^{i}(X, \mathcal{F}(n))$ are finite, i.e. $R\Gamma_{c,et}(X, \mathcal{F}(n))$ is in $PDG^{cont}(\mathbb{Z}_{\ell}, S)$ (is S-acyclic, $\mathbb{Q}_{\ell} \otimes R_{c,et}(X, \mathcal{F}(n))$ is quasi-isomorphic to the complex of 0^{\bullet}). The exact sequence $K_{1}(\mathbb{Z}_{\ell}) \to K_{1}(\mathbb{Q}_{\ell}) \to K_{0}(PDG^{cont}(\mathbb{Z}_{\ell}, S))$ reads through determinant (\underline{det}) in K_{1} and $\chi: K_{0} \to \ell^{\mathbb{Z}}$ via $\chi(M^{\bullet}) = \prod_{n \in \mathbb{Z}} (H^{n}(M^{\bullet}))^{(-1)^{n}}$ to

$$0 \to \mathbb{Z}_{\ell}^* \to \mathbb{Q}_{\ell}^* \to x^{x \mapsto |x|_{\ell}} \ \ell^{\mathbb{Z}} \to 0$$

Thus the SOURCE result of Witte corresponds to:

Theorem (Bayer-Neukirch, 1978)

Assume $p \neq \ell$. Consider n integer such that q^n is not eigenvalue of $Fr_{\mathbb{F}_q}|H_{c,et}^i(\overline{X},\mathfrak{F}) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$, $\forall i$ then,

$$|(\zeta_{X,\mathcal{F}}(n))|_{\ell} = \chi(R\Gamma_{c,et}(X,\mathcal{F}(n))) = \prod_{i} \#H^{i}_{c,et}(X,\mathcal{F}(n))^{(-1)^{i+1}}$$

Thanks STNB Thanks Professor Pilar Bayer

臣

・ロト ・回ト ・ヨト ・ヨト

Bibliography

- Anglès B., Bandini A., Bars F., and Longhi I., *Iwasawa main conjecture for the Carlitz cyclotomic extension and applications.* arXiv:1412.5957 (2014).
- Bayer, P., and Neukirch, J., On values of Zeta functions and *l*-adic Euler characteristics. Inventiones math. 50, 33-64 (1978).
- Burns, D., Congruences between derivatives of geometric L-functions, Inventiones mathematicae, (2011), Volume 184, Issue 2, pp 221-256.
- Burns, D., On main conjectures of geometric Iwasawa theory and related conjectures, preprint 2011.
- Burns, D., and Trihan, F., On geometric Iwasawa theory and special values of Zeta functions. In the book: Arithmetic Geometry over Global Function Fields. Part of the series Advanced Courses in Mathematics CRM Barcelona pp 119-181 (2014), Springer.
- Kato, K., *Iwasawa theory and generalizations*. Proceedings of the ICM, Madrid, Spain 2006, pp 335-357, (2007), EMS.
- Witte, M., Noncommutative Iwasawa main conjecture for varieties over finite fields, PhD thesis, Leipzig University, 2008.
- Witte, M., Noncommutative main conjectures of geometric Iwasawa theory. In the book: Noncommutative Iwasawa Main Conjectures over Totally Real Fields, Volume 29 of the series Springer Proceedings in Mathematics and Statistics pp 183-206 (2012).
- Witte, M., On noncommutative Iwasawa main conjecture for function fields, Preprint 2013.
- Witte, M., On a noncommutative Iwasawa main conjecture for varieties over finite fields. J. Eur. Math. Soc. (JEMS) 16, No. 2, 289-325 (2014).

SOR