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Motivation

Let Q ⊆ K ′ ⊆ K be a tower of quadratic extensions. Consider E/K . Then is
A := ResK ′/Q(E ) modular?

Sometimes we can prove it using Faltings-Serre (when the character of A is
trivial). We don’t have software to compute traces on the modular side
otherwise.

Some work already done is by Cremona, Bygott, Lingham, Sengün, Gunnells,
Yasaki.

In the totally real case a lot of progress has been achieved. In fact:

Theorem (Dembélé, Donnelly, Greenberg, Voight)

There exists an algorithm that, given a totally real field F , a nonzero ideal R of
the ring of integers of F , and a weight k ∈ (Z≥2)

[F :Q], computes the space Sk(R)
of Hilbert cusp forms of weight k and level R over F as a Hecke module.

We aim to have a similar theorem for the Bianchi case.
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Classical Setting

Lots of methods to compute S2(Γ0(N)). We highlight the one called Modular
Symbols.

The set of modular symbols is {{α, β} : α, β ∈ P1(Q)}/ ∼ and they
represent paths with endpoints two Γ0(N)-equivalent cusps; i.e. they
represent 1-cycles in the homology group

H1(Γ0(N)\H∗,C) ≃ S2(N)⊕ S2(N)

We have an explicit description of the action of the Hecke operators on the
space of modular symbols.

The Manin trick (the Euclidean algorithm) yields an algorithm for writing an
arbitrary modular symbol as a Z-linear combination of a finite set of
generating symbols, thereby recovering S2(N) as a Hecke module.
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Our setting

Let K = Q(
√
−d), d ∈ Z>0, let OK the ring of integers of K , and let

H3 := C× R>0 ≃ R× iR× jR>0 ⊆ H.

The group Γ := PGL2(OK ) acts on H3 (as subgroup of H) by hyperbolic
isometries.

The set of cusp forms are the Γ-orbits of P1(OK ). The group Γ also acts on
P1(OK ) as fractional linar transformations. Let H∗

3 := H3 ∪ P1(OK ).

Let hK := #Cl(K ). For each (a : b) ∈ P1(OK ) we correspond the class
spanned by the ideal (a, b) ∈ Cl(K ).

Theorem
There is a 1 to 1 correspondence

Cl(K ) ←→ {Γ-orbits of P1(OK )}
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Distance function and fundamental domain

We start by defining a distance to cusps function. Let (z , t) ∈ H3 and let
α = (a : b) ∈ P1(OK ). Then:

δ((z , t), α) :=
NK/Q((a, b))

2t

NK/Q(−bz + a)2

It is easy to check that this function is invariant under the action of PGL2(OK ).

For any α ∈ P1(Q), we define

Hα := {(z , t) ∈ H3 : δ((z , t), α) ≤ δ((z , t), β), ∀ β ∈ P1(OK )}.

By invariance above, we have that ∀g ∈ Γ, gHα = Hgα.

Let α1, . . . , αhK be a set of representatives of Γ-orbits of P1(OK ). Let

F := Hα1 ∪ · · · ∪ HαhK

One can always choose the set of αi such that F is connected.
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Adding the level

Let n be a prime ideal of OK . Then define

Γ(n) :=

{(
a b
c d

)
∈ Γ: c ∈ n

}
One can prove that [Γ : Γ ∩ Γ(n)] <∞ so computing a domain for Γ(n) is to
translate the domain for Γ by the elements of the quotient.
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Hecke operators I

Let Γa := GL(OK ⊕ a) =

{(
OK a−1

a OK

)}
∩ GL(K ). We have a decomposition of

Γ\H3 as:

Γ\H3(C) =
⊔

[a]∈Cl(K)

Γa\H3.

By a generalisation of Eichler-Shimura,

S2(n) ∼=
⊕

[a]∈Cl(K)

H1(Γa,C)+.

Let p be a prime of OK that does not divide n nor the discriminant of K . We
define the Hecke operator Tp for a given element of §2(n) component wise as
follows:

Assume that f ∈ H1(Γb,C) for some [b] ∈ Cl(K ). Then, Tpf ∈ H1(Γa,C),
satisfying [b] = [p−1a]. For any fractional ideal c, let

Ic :=

{(
OK OK

c c

)}
∩ GL2(K ).
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Hecke Operators II

Now let
Θ(p)a,b := Γb\{ϖ ∈ IbI

−1
a : det(ϖ)a = pb}.

Let γ ∈ Γa s.t. γIa = Ia. Then the map ϖ 7→ ϖγ on GL2(K ) induces a bijection
of the equivalence classes of Θ(p)a,b. Therefore, for every ϖ ∈ Θ(p)a,b, there
exists δϖ ∈ Γa and ϖγ ∈ Θ(p)a,b such that

ϖγ = δϖϖγ .

Finally, for any z ∈ H3, one has

(Tpf )(z) =
∑

ϖ∈Θ(p)a,b

f (δϖ)ϖ.
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Implementation. Possible issues. Closing thoughts

We are constructing the fundamental domain with a different philosophy than
previous authors, who computed it directly in the Poincaré disc model of H3.
We expect numerical accuracy from following this more classical approach. It
will also be an improvement on the currant Magma implementation, since it
uses Voronoi tesselation due to Yasaki and Gunnells.

The way of computing the Hecke action is, to the best of our knowledge,
completely new in the Bianchi world. It should speed up computations
drastically in cases hK > 1, since we treat the problem as ”sum” of class 1
problems.

We can also precompute generators for Cl(K ), which will speed up the
splitting process.

We are still finishing the details on the Hecke action! Some details from last
slide might need fine tuning.

In the end, we expect you to be able to feed the program an imaginary
quadratic field K/Q, a level n and a character χ and receive the space
S2(n, χ), for which you would be able to compute the Tn(f )’s for any n.
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