Computing Bianchi modular forms with character

Ignasi SÁNCHEZ RODRÍGUEZ

University of Barcelona

Joint work: Lassina DEMBÉLÉ King's College London

37th Seminari de Teoria de Nombres de Barcelona Barcelona, 9th of February, 2024

• Let $\mathbb{Q} \subseteq K' \subseteq K$ be a tower of quadratic extensions. Consider E/K. Then is $A := \operatorname{Res}_{K'/\mathbb{Q}}(E)$ modular?

- Let $\mathbb{Q} \subseteq K' \subseteq K$ be a tower of quadratic extensions. Consider E/K. Then is $A := \operatorname{Res}_{K'/\mathbb{Q}}(E)$ modular?
- Sometimes we can prove it using Faltings-Serre (when the character of A is trivial). We don't have software to compute traces on the modular side otherwise.

- Let $\mathbb{Q} \subseteq K' \subseteq K$ be a tower of quadratic extensions. Consider E/K. Then is $A := \operatorname{Res}_{K'/\mathbb{Q}}(E)$ modular?
- Sometimes we can prove it using Faltings-Serre (when the character of A is trivial). We don't have software to compute traces on the modular side otherwise.
- Some work already done is by Cremona, Bygott, Lingham, Sengün, Gunnells, Yasaki.

- Let $\mathbb{Q} \subseteq K' \subseteq K$ be a tower of quadratic extensions. Consider E/K. Then is $A := \operatorname{Res}_{K'/\mathbb{Q}}(E)$ modular?
- Sometimes we can prove it using Faltings-Serre (when the character of A is trivial). We don't have software to compute traces on the modular side otherwise.
- Some work already done is by Cremona, Bygott, Lingham, Sengün, Gunnells, Yasaki.
- In the totally real case a lot of progress has been achieved. In fact:

Theorem (Dembélé, Donnelly, Greenberg, Voight)

There exists an algorithm that, given a totally real field F, a nonzero ideal \mathfrak{R} of the ring of integers of F, and a weight $k \in (\mathbb{Z}_{\geq 2})^{[F:\mathbb{Q}]}$, computes the space $S_k(\mathfrak{R})$ of Hilbert cusp forms of weight k and level \mathfrak{R} over F as a Hecke module.

• We aim to have a similar theorem for the Bianchi case.

• Lots of methods to compute $S_2(\Gamma_0(N))$. We highlight the one called *Modular Symbols*.

- Lots of methods to compute $S_2(\Gamma_0(N))$. We highlight the one called *Modular Symbols*.
- The set of modular symbols is {{α, β}: α, β ∈ P¹(Q)}/ ~ and they represent paths with endpoints two Γ₀(N)-equivalent cusps; i.e. they represent 1-cycles in the homology group

 $H_1(\Gamma_0(N) \setminus \mathcal{H}^*, \mathbb{C}) \simeq S_2(N) \oplus \overline{S_2(N)}$

- Lots of methods to compute $S_2(\Gamma_0(N))$. We highlight the one called *Modular* Symbols.
- The set of modular symbols is {{α, β}: α, β ∈ P¹(Q)}/ ~ and they represent paths with endpoints two Γ₀(N)-equivalent cusps; i.e. they represent 1-cycles in the homology group

 $H_1(\Gamma_0(N) \setminus \mathcal{H}^*, \mathbb{C}) \simeq S_2(N) \oplus \overline{S_2(N)}$

• We have an explicit description of the action of the Hecke operators on the space of modular symbols.

- Lots of methods to compute $S_2(\Gamma_0(N))$. We highlight the one called *Modular* Symbols.
- The set of modular symbols is {{α, β}: α, β ∈ P¹(Q)}/ ~ and they represent paths with endpoints two Γ₀(N)-equivalent cusps; i.e. they represent 1-cycles in the homology group

 $H_1(\Gamma_0(N) \setminus \mathcal{H}^*, \mathbb{C}) \simeq S_2(N) \oplus \overline{S_2(N)}$

- We have an explicit description of the action of the Hecke operators on the space of modular symbols.
- The Manin trick (the Euclidean algorithm) yields an algorithm for writing an arbitrary modular symbol as a Z-linear combination of a finite set of generating symbols, thereby recovering S₂(N) as a Hecke module.

Our setting

• Let $K = \mathbb{Q}(\sqrt{-d})$, $d \in \mathbb{Z}_{>0}$, let \mathcal{O}_K the ring of integers of K, and let

$$\mathcal{H}_3 := \mathbb{C} \times \mathbb{R}_{>0} \simeq \mathbb{R} \times i\mathbb{R} \times j\mathbb{R}_{>0} \subseteq \mathbb{H}.$$

- The group $\Gamma := PGL_2(\mathcal{O}_K)$ acts on \mathcal{H}_3 (as subgroup of \mathbb{H}) by hyperbolic isometries.
- The set of cusp forms are the Γ -orbits of $\mathbb{P}^1(\mathcal{O}_K)$. The group Γ also acts on $\mathbb{P}^1(\mathcal{O}_K)$ as fractional linar transformations. Let $\mathcal{H}_3^* := \mathcal{H}_3 \cup \mathbb{P}^1(\mathcal{O}_K)$.
- Let h_K := # Cl(K). For each (a: b) ∈ P¹(O_K) we correspond the class spanned by the ideal (a, b) ∈ Cl(K).

Theorem

There is a 1 to 1 correspondence

$$\mathsf{Cl}(\mathcal{K}) \quad \longleftrightarrow \quad \{\mathsf{\Gamma}\text{-orbits of } \mathbb{P}^1(\mathcal{O}_{\mathcal{K}})\}$$

Distance function and fundamental domain

We start by defining a *distance to cusps* function. Let $(z, t) \in \mathcal{H}_3$ and let $\alpha = (a: b) \in \mathbb{P}^1(\mathcal{O}_K)$. Then:

$$\delta((z,t),\alpha) := \frac{\mathsf{N}_{\mathsf{K}/\mathbb{Q}}((a,b))^2 t}{\mathsf{N}_{\mathsf{K}/\mathbb{Q}}(-bz+a)^2}$$

It is easy to check that this function is invariant under the action of $PGL_2(\mathcal{O}_K)$.

For any $\alpha \in \mathbb{P}^1(\mathbb{Q})$, we define

 $H_{\alpha} := \{ (z,t) \in \mathcal{H}_3 \colon \delta((z,t),\alpha) \leq \delta((z,t),\beta), \ \forall \ \beta \in \mathbb{P}^1(\mathcal{O}_{\mathcal{K}}) \}.$

By invariance above, we have that $\forall g \in \Gamma$, $gH_{\alpha} = H_{g\alpha}$.

Let $\alpha_1, \ldots, \alpha_{h_{\mathcal{K}}}$ be a set of representatives of Γ -orbits of $\mathbb{P}^1(\mathcal{O}_{\mathcal{K}})$. Let

$$\mathcal{F} := H_{\alpha_1} \cup \cdots \cup H_{\alpha_{h_k}}$$

One can always choose the set of α_i such that \mathcal{F} is connected.

Let \mathfrak{n} be a prime ideal of $\mathcal{O}_{\mathcal{K}}$. Then define

$$\Gamma(\mathfrak{n}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \colon c \in \mathfrak{n} \right\}$$

One can prove that $[\Gamma \colon \Gamma \cap \Gamma(\mathfrak{n})] < \infty$ so computing a domain for $\Gamma(\mathfrak{n})$ is to translate the domain for Γ by the elements of the quotient.

Hecke operators I

Let $\Gamma_{\mathfrak{a}} := \operatorname{GL}(\mathcal{O}_{\mathcal{K}} \oplus \mathfrak{a}) = \left\{ \begin{pmatrix} \mathcal{O}_{\mathcal{K}} & \mathfrak{a}^{-1} \\ \mathfrak{a} & \mathcal{O}_{\mathcal{K}} \end{pmatrix} \right\} \cap \operatorname{GL}(\mathcal{K})$. We have a decomposition of $\Gamma \setminus \mathcal{H}_3$ as:

$$\Gamma \backslash \mathcal{H}_3(\mathbb{C}) = \bigsqcup_{[\mathfrak{a}] \in \mathsf{Cl}(\mathcal{K})} \Gamma_{\mathfrak{a}} \backslash \mathcal{H}_3.$$

By a generalisation of Eichler-Shimura,

$$\mathcal{S}_2(\mathfrak{n}) \cong \bigoplus_{[\mathfrak{a}] \in Cl(\mathcal{K})} H^1(\Gamma_{\mathfrak{a}}, \mathbb{C})^+.$$

Let \mathfrak{p} be a prime of $\mathcal{O}_{\mathcal{K}}$ that does not divide \mathfrak{n} nor the discriminant of \mathcal{K} . We define the Hecke operator $T_{\mathfrak{p}}$ for a given element of $\S_2(\mathfrak{n})$ component wise as follows:

Assume that $f \in H^1(\Gamma_{\mathfrak{b}}, \mathbb{C})$ for some $[\mathfrak{b}] \in Cl(\mathcal{K})$. Then, $T_{\mathfrak{p}}f \in H^1(\Gamma_{\mathfrak{a}}, \mathbb{C})$, satisfying $[\mathfrak{b}] = [\mathfrak{p}^{-1}\mathfrak{a}]$. For any fractional ideal \mathfrak{c} , let

$$I_{\mathfrak{c}} := \left\{ \begin{pmatrix} \mathcal{O}_{\mathcal{K}} & \mathcal{O}_{\mathcal{K}} \\ \mathfrak{c} & \mathfrak{c} \end{pmatrix} \right\} \cap \mathsf{GL}_{2}(\mathcal{K}).$$

Hecke Operators II

Now let

$$\Theta(\mathfrak{p})_{\mathfrak{a},\mathfrak{b}}:=\Gamma_{\mathfrak{b}}\backslash\{\varpi\in I_{\mathfrak{b}}I_{\mathfrak{a}}^{-1}\colon \det(\varpi)\mathfrak{a}=\mathfrak{p}\mathfrak{b}\}.$$

Let $\gamma \in \Gamma_{\mathfrak{a}}$ s.t. $\gamma I_{\mathfrak{a}} = I_{\mathfrak{a}}$. Then the map $\varpi \mapsto \varpi \gamma$ on $\mathsf{GL}_2(\mathcal{K})$ induces a bijection of the equivalence classes of $\Theta(\mathfrak{p})_{\mathfrak{a},\mathfrak{b}}$. Therefore, for every $\varpi \in \Theta(\mathfrak{p})_{\mathfrak{a},\mathfrak{b}}$, there exists $\delta_{\varpi} \in \Gamma_{\mathfrak{a}}$ and $\varpi_{\gamma} \in \Theta(\mathfrak{p})_{\mathfrak{a},\mathfrak{b}}$ such that

$$\varpi\gamma = \delta_{\varpi}\varpi_{\gamma}.$$

Finally, for any $z \in \mathcal{H}_3$, one has

$$(T_{\mathfrak{p}}f)(z) = \sum_{\varpi \in \Theta(\mathfrak{p})_{\mathfrak{a},\mathfrak{b}}} f(\delta_{\varpi})^{\varpi}.$$

• We are constructing the fundamental domain with a different philosophy than previous authors, who computed it directly in the Poincaré disc model of \mathcal{H}_3 . We expect numerical accuracy from following this more classical approach. It will also be an improvement on the currant Magma implementation, since it uses Voronoi tesselation due to Yasaki and Gunnells.

- We are constructing the fundamental domain with a different philosophy than previous authors, who computed it directly in the Poincaré disc model of \mathcal{H}_3 . We expect numerical accuracy from following this more classical approach. It will also be an improvement on the currant Magma implementation, since it uses Voronoi tesselation due to Yasaki and Gunnells.
- The way of computing the Hecke action is, to the best of our knowledge, completely new in the Bianchi world. It should speed up computations drastically in cases $h_K > 1$, since we treat the problem as "sum" of class 1 problems.

- We are constructing the fundamental domain with a different philosophy than previous authors, who computed it directly in the Poincaré disc model of \mathcal{H}_3 . We expect numerical accuracy from following this more classical approach. It will also be an improvement on the currant Magma implementation, since it uses Voronoi tesselation due to Yasaki and Gunnells.
- The way of computing the Hecke action is, to the best of our knowledge, completely new in the Bianchi world. It should speed up computations drastically in cases $h_K > 1$, since we treat the problem as "sum" of class 1 problems.
- We can also precompute generators for Cl(K), which will speed up the splitting process.

- We are constructing the fundamental domain with a different philosophy than previous authors, who computed it directly in the Poincaré disc model of \mathcal{H}_3 . We expect numerical accuracy from following this more classical approach. It will also be an improvement on the currant Magma implementation, since it uses Voronoi tesselation due to Yasaki and Gunnells.
- The way of computing the Hecke action is, to the best of our knowledge, completely new in the Bianchi world. It should speed up computations drastically in cases $h_K > 1$, since we treat the problem as "sum" of class 1 problems.
- We can also precompute generators for Cl(K), which will speed up the splitting process.
- We are still finishing the details on the Hecke action! Some details from last slide might need fine tuning.

- We are constructing the fundamental domain with a different philosophy than previous authors, who computed it directly in the Poincaré disc model of H₃.
 We expect numerical accuracy from following this more classical approach. It will also be an improvement on the currant Magma implementation, since it uses Voronoi tesselation due to Yasaki and Gunnells.
- The way of computing the Hecke action is, to the best of our knowledge, completely new in the Bianchi world. It should speed up computations drastically in cases $h_K > 1$, since we treat the problem as "sum" of class 1 problems.
- We can also precompute generators for Cl(K), which will speed up the splitting process.
- We are still finishing the details on the Hecke action! Some details from last slide might need fine tuning.
- In the end, we expect you to be able to feed the program an imaginary quadratic field K/\mathbb{Q} , a level n and a character χ and receive the space $S_2(n, \chi)$, for which you would be able to compute the $T_n(f)$'s for any n.