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o Let Q C K’ C K be a tower of quadratic extensions. Consider E/K. Then is
A := Resy /g(E) modular?

@ Sometimes we can prove it using Faltings-Serre (when the character of A is
trivial). We don't have software to compute traces on the modular side
otherwise.

@ Some work already done is by Cremona, Bygott, Lingham, Sengiin, Gunnells,
Yasaki.

@ In the totally real case a lot of progress has been achieved. In fact:

Theorem (Dembélé, Donnelly, Greenberg, Voight)

There exists an algorithm that, given a totally real field F, a nonzero ideal R of
the ring of integers of F, and a weight k € (Zx2)F"Y, computes the space Si(9R)
of Hilbert cusp forms of weight k and level SR over F as a Hecke module.

@ We aim to have a similar theorem for the Bianchi case.
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Symbols.

@ The set of modular symbols is {{c, B}: a, B € P(Q)}/ ~ and they
represent paths with endpoints two [o(/V)-equivalent cusps; i.e. they
represent 1-cycles in the homology group

Hi(To(N)\H", C) = S(N) © S2(N)

@ We have an explicit description of the action of the Hecke operators on the
space of modular symbols.

@ The Manin trick (the Euclidean algorithm) yields an algorithm for writing an
arbitrary modular symbol as a Z-linear combination of a finite set of
generating symbols, thereby recovering S,(N) as a Hecke module.
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Our setting

o Let K=Q(vV—d), d € Z~o, let Ok the ring of integers of K, and let
Hs = C x Rog ~ R x iR x jRso C H.

@ The group I := PGL,(Ok) acts on H3 (as subgroup of H) by hyperbolic
isometries.

@ The set of cusp forms are the I-orbits of P*(Ox). The group I also acts on
P!(Ok) as fractional linar transformations. Let H3 := H3 UP(Ok).

o Let hx := # CI(K). For each (a: b) € P}(Ok) we correspond the class
spanned by the ideal (a, b) € CI(K).

There is a 1 to 1 correspondence

CI(K) <— {T-orbits of P*(Ok)}
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Distance function and fundamental domain

We start by defining a distance to cusps function. Let (z,t) € H3 and let
a = (a: b) € P1(Ok). Then:

_ Niso((a, b))%t
S((z.00) = o

It is easy to check that this function is invariant under the action of PGL,(Ok).
For any a € P1(Q), we define
Ho = {(z,t) € H3: 6((z, t),a) < 6((z,t), B), V B € PH(Ok)}.

By invariance above, we have that Vg € ', gH, = Hg,.

Let oy, ..., an, be a set of representatives of [-orbits of P1(O). Let
Fi=Hao, U---UHq,,

One can always choose the set of «; such that F is connected.
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Adding the level

Let n be a prime ideal of Ok. Then define

r(n)::{(i Z) er:cen}

One can prove that [[': T NT(n)] < co so computing a domain for I'(n) is to
translate the domain for ' by the elements of the quotient.
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Hecke operators |
Ok a-l

Let [y := GL(Ox ® a) = {( . OK)} N GL(K). We have a decomposition of

F\”Hg as.
MH3(C) = || Ta\Hs.

[a]eCI(K)
By a generalisation of Eichler-Shimura,

Sm= @ H(r..C).

[a]leCI(K)

Let p be a prime of Ok that does not divide n nor the discriminant of K. We
define the Hecke operator T, for a given element of §>(n) component wise as
follows:

Assume that f € H'(T'y, C) for some [b] € CI(K). Then, T,f € H*([4,C),
satisfying [b] = [p~*a]. For any fractional ideal ¢, let

I = { <OCK O(“) } N GLy(K).
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Hecke Operators Il

Now let
O(p)ap :=To\{w € /blcfl: det(w)a = pb}.

Let v € [y s.t. ylqg = ly. Then the map w — w7 on GLa(K) induces a bijection
of the equivalence classes of ©(p)q,5. Therefore, for every @w € ©(p)q,p, there
exists 0 € [ and @y € O(P)q,6 such that

WY = 0.

Finally, for any z € H3, one has

(TN = D f(6=)™.

wE€O(P)a,b
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Implementation. Possible issues. Closing thoughts

@ We are constructing the fundamental domain with a different philosophy than
previous authors, who computed it directly in the Poincaré disc model of H;3.
We expect numerical accuracy from following this more classical approach. It
will also be an improvement on the currant Magma implementation, since it
uses Voronoi tesselation due to Yasaki and Gunnells.
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@ The way of computing the Hecke action is, to the best of our knowledge,
completely new in the Bianchi world. It should speed up computations
drastically in cases hx > 1, since we treat the problem as "sum” of class 1
problems.

@ We can also precompute generators for CI(K), which will speed up the
splitting process.

@ We are still finishing the details on the Hecke action! Some details from last
slide might need fine tuning.

@ In the end, we expect you to be able to feed the program an imaginary
quadratic field K/Q, a level n and a character x and receive the space
Sa(n, x), for which you would be able to compute the T,(f)’s for any n.
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