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Post-Quantum Cryptography (1/2)

The first and most widely used public-key cryptosystem is RSA, which was invented by Rivest,
Shamir, and Adleman in 1977. (An equivalent cryptosystem was developed in secret by
Clifford Cocks in 1973 for the British signals intelligence agency and declassified in 1997.)

The security of RSA is based on the difficulty of integer factorization, that is, the problem of
finding the prime factors of large integers.

No efficient (classical) algorithm to factorize large integers is known.

However, in 1994 Peter Shor invented a quantum algorithm, now known as Shor’s algorithm,
that can factorize integers in polynomial time by using a quantum computer.
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Post-Quantum Cryptography (2/2)

Due to the recent progress and the large investments into the development of quantum
computers, an actual implementation of Shor’s algorithm constitutes a real threat to RSA.

Consequently, a lot of effort is put into post-quantum cryptography, that is, public-key
cryptography designed to be resistant even against attacks using quantum computers.

Candidates for Post-Quantum Cryptography includes:

Multivariate Cryptography

Code-based Cryptography

Hash-based Cryptography

Lattice-based Cryptography

Supersingular Elliptic Curve Isogeny Cryptography
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Lattice-Based Cryptography (1/2)

Lattice-Based Cryptography relies its security on the difficulty of problems related to lattices,
that is, subsets of Rn of the form {∑k

i=1 xivi : xi ∈ Z} where v1, . . . , vk ∈ Rn.

It began in 1996 with the seminal work of Ajtai, who gave the first collision-resistant hash
function on random lattices.

Since then, numerous lattice-based encryption and digital signature schemes have been
proposed.

In particular, after a 5-year competion, in 2022 the National Institute of Standard and
Technology decided to standardize three post-quantum digital signatures:
CRYSTALS-Dilithium, Falcon, and SPHINCS+, of which the first two are lattice-based (the
third is hash-based).
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Lattice-Based Cryptography (2/2)

The main building block of lattice-based cryptographic schemes is the Learning With Errors
(LWE) problem, which, roughly speaking, consists of retrieving a secret vector from a noisy
random sample of matrix products.

Learning With Errors (LWE) Problem

Let n,m, q ∈ N and D be a probability distribution over Zq := Z/qZ.

Given m samples (ai , ai · s + ei ) where ai ∈ Zn
q are uniformly distributed random vectors,

ei ∈ Zq are D-distributed random errors (i = 1, . . . ,m), and s ∈ Zn
q is a secret vector; Find

the secret vector s.

LWE-based schemes have solid theoretical security bases but require the ciphertext or the
public key to be nearly quadratic respect to the security parameters. To overcome this,
variants of LWE working over Zq[X ]/(f ), f ∈ Zq[X ], instead of Zn

q have been introduced.
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RLWE & PLWE



RLWE & PLWE

In 2009, Stehlé et al. [1] introduced the Polynomial-LWE (PLWE) variant using power-of-two
degree cyclotomic polynomials.

In 2010, Lyubashevsky et al. [2] introduced the Ring-LWE (RLWE) variant over the ring of
integers of a number field.

The advantage of RLWE is the provable-security (as for LWE).

PLWE is preferable in implementations, where the modular arithmetic of polynomials can be
efficiently implemented.

Therefore, it is interesting to study for which families of polynomials f the RLWE and PLWE
problems are “equivalent”, that is, roughly speaking, every solution of RLWE can be turned
in polynomial time into a solution of PLWE, and vice versa, incurring in a noise increase that
is polynomial in deg(f ).
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When are RLWE & PLWE Equivalent?

(The Formal Definition)



Short Elements

Let K = Q(α) be a monogenic number field of degree m, and let f ∈ Z[X ] be the minimal
polynomial of α over Q, so that K ∼= Z[X ]/(f ).

The geometric notion of short element derives from the choice of a norm on K by embedding
the number field in Cm.

RLWE uses the canonical embedding σ : K → Cm, where σ1, . . . , σm are all the embeddings
of K in C.

PLWE uses the coefficient embedding, which maps x ∈ K to the vector (x0, . . . , xm−1) of its
coefficients respect to the power basis 1, α, . . . , αm−1 of K over Q.

As a linear map, the canonical embedding has a matrix representation Vf ∈ Cm×m, so that
σ(x) = Vf · (x0, . . . , xm−1)

⊺ for each x ∈ K .

Carlo Sanna (Non-)Equivalence of RLWE and PLWE 6 / 28



Vandermonde Matrix

Precisely, Vf is the Vandermonde matrix of f , which is defined as

Vf :=



1 α0 α2
0 · · · αm−1

0

1 α1 α2
1 · · · αm−1

1

1 α2 α2
2 · · · αm−1

2

...
...

...
. . .

...

1 αm−1 α2
m−1 · · · αm−1

m−1


,

where α0, . . . , αm are the roots of f (which are distinct, since f is irreducible).

It is well known that
det(Vf ) =

∏
0≤ i < j <m

(αi − αj) ̸= 0.

Hence Vf is invertible.
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Equivalence Between RLWE and PLWE

Let ∥ · ∥ be any fixed norm on Cm (since all such norms are equivalent).

For the equivalence between RLWE and PLWE, it is important to determine when, whether
∥x∥ is small, then so is ∥σ(x)∥, and vice versa. This notion is quantified by Vf having a small
condition number Cond(Vf ).

The condition number of an invertible matrix A ∈ Cm×m is defined as

Cond(A) := ∥A∥ ∥A−1∥

where ∥A∥ :=
√

Tr(A∗ A) =
√∑

i , j |ai , j |2 denotes the Frobenius norm of A, while A∗ is the

conjugate transpose of A.

RLWE and PLWE are equivalent over a family of polynomials F if

Cond(Vf ) ≤ CF (deg(f ))EF , for all f ∈ F ,

where CF ,EF > 0 are constants depending only on the family F .
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Previous Results for Cyclotomic Polynomials



Cyclotomic Polynomials

Equivalence of RLWE and PLWE has been proved for various families of polynomials.
The greatest interest concerns cyclotomic polynomials, which, for efficiency reasons, are
among the most used in cryptographic applications.

Let us recall that the nth cyclotomic polynomial is defined as

Φn(X ) :=
∏

1≤ k ≤ n

gcd(n, k)= 1

(
X − e2πik/n

)
,

that is, Φn(X ) is the monic polynomial having as roots the primitive nth roots of unity.

It can be proved that Φn has integer coefficients and is irreducible over Q. In fact, Φn is the
minimal polynomial of each primitive nth root of unity.

In what follows, let m := φ(n) be the degree of Φn, where φ is the Euler totient function, and
let ζ0, . . . , ζm−1 be the primitive nth roots of unity (in some fixed order), where, to ease the
notation, the dependency on n is omitted.
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Vandermonde Matrices of Cyclotomic Polynomials

Thus the Vandermonde matrix of Φn is

Vn := VΦn =



1 ζ0 ζ20 · · · ζm−1
0

1 ζ1 ζ21 · · · ζm−1
1

1 ζ2 ζ22 · · · ζm−1
2

...
...

...
. . .

...

1 ζm−1 ζ2m−1 · · · ζm−1
m−1


.

The main difficulty in the study of Vn is that the sequence of powers

1, ζj , ζ2j , ζ3j , . . .

is periodic with period length n, but Vn has only m columns and m < n.

Note that ∥Vn∥ = m, since |ζj | = 1. Therefore, computing the condition number
Cond(Vn) := ∥Vn∥ ∥V−1

n ∥ boils down to computing ∥V−1
n ∥.
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The Power-of-Two Case

Proposition

For n = 2k the matrix Vn is a scaled isometry: VnV
∗
n = m Idn, where Idn is the n × n identity

matrix. Furthermore, we have that Cond(Vn) = m.

Proof: Since n = 2k , we have that m = 2k−1 and ζmi = −1 for each i . Hence, the product of
the ith row of Vn and the jth column of V ∗

n is equal to m if i = j , and it is equal to

m−1∑
k =0

(
ζiζj

)k
=

(
ζiζj

)m − 1

ζiζj − 1
= 0

if i ̸= j ; so that VnV
∗
n = m Idn and consequently Cond(Vn) = m. □

Corollary

RLWE and PLWE over the polynomial family (Φ2k )k≥1 are equivalent.
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Some Upper Bounds on Cond(Vn) (1/2)

Theorem (Blanco-Chacón 2020 [3])

Let n = p1 · · · pk , where p1 < · · · < pk are prime numbers. Then

Cond(Vn) ≤ 2p1 · · · pkn2
k+2k−1+k+2.

Corollary

For every fixed k ≥ 1, RLWE and PLWE over the polynomial family (Φp1···pk )p1 < ···< pk are
equivalent.
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Some Upper Bounds on Cond(Vn) (2/2)

Theorem (Blanco-Chacón 2020 [3])

Let p1 < p2 < p3 be prime numbers and let e1, e2, e3 ≥ 1 be integers.

For n = pe11 we have that
Cond(Vn) ≤ 4φ(p1)m.

For n = pe11 pe22 we have that

Cond(Vn) ≤ 2φ(p1p2)m
2.

For n = pe11 pe22 pe33 we have that

Cond(Vn) ≤ 2
(
φ(p1p2p3)

)2
m2.
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Our Contribution



Reduction to Squarefree Numbers

Theorem (Di Scala, S., Signorini 2021 [4])

For every positive integer n, we have

Cond(Vn) =
n

rad(n)
Cond(Vrad(n)),

where rad(n) is the product of the prime factors of n.

Hence, in the study of Cond(Vn), it suffices to consider only squarefree n.
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Exact Formula for Cond(Vn) when n = pk and n = 2kph

Theorem (Di Scala, S., Signorini 2021 [4])

For n = pk , with k ≥ 1 and p a prime number, and for n = 2kph, with k, h ≥ 1 and p an odd
prime number, we have that

Cond(Vn) =
√
2 (1− 1/p)m.

Note that this exact formula improves the previous upper bound for n = pk

Cond(Vn) ≤ 4(p − 1)m,

given by Blanco-Chacón.
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Non-Equivalence of RLWE and PLWE over (Φn)

Theorem (Di Scala, S., Signorini 2022 [5])

There exist infinitely many positive integers n such that

Cond(Vn) > exp
(
n log 2 / log log n

)
/
√
n.

In particular, for every E > 0, we have that Cond(Vn) ̸= O
(
nE

)
.

Corollary

RLWE and PLWE over cyclotomic fields are not equivalent.
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A plot of Cond(Vn) with n squarefree, 1 < n < 10000. The data is partitioned according to
the number ω(n) of prime factors of n.

(Edoardo Signorini: https://github.com/edoars/cyclovandermonde)

https://github.com/edoars/cyclovandermonde


Sketch of the Proofs:

First Results



Ramanujan’s Sums

The Ramanujan’s sum modulo n is the arithmetic function cn defined by

cn(t) :=
m−1∑
j =0

ζtj , for all t ∈ Z.

(Recall that ζ0, . . . , ζm−1 are the primitive nth roots of unity.)

It is easy to check that cn is an even periodic function with period length n.

Furthermore, it holds the von Sterneck formula

cn(t) = µ

(
n

(n, t)

)
φ(t)

φ

(
n

(n, t)

)
where µ is the Möbius function and (n, t) denotes the greatest common divisor.

In particular, cn(t) is an integer.
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Gram Matrix of Vn

Let Gn := V ∗
n Vn be the Gram matrix of Vn. Then we have

Gn =


cn(0) cn(1) · · · cn(m − 1)
cn(1) cn(0) · · · cn(m − 2)
...

...
. . .

...
cn(m − 1) cn(m − 2) · · · cn(0)

 =
(
cn(i − j)

)
0≤ i , j <m

.

In particular, Gn is a symmetric Toeplitz matrix with integer entries.

Let λ1, . . . , λm be the eigenvalues of Gn, which are real and positive, since Gn is the Gram
matrix of an invertible matrix. Then

Cond(Vn) = ∥Vn∥∥V−1
n ∥ = m

√
Tr(G−1

n ) = m

√√√√ m∑
i =1

1

λi
.

Hence, studying Cond(Vn) is equivalent to studying the eigenvalues of Gn.
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Reduction to Squarefree Numbers

Lemma

For every positive integer n, we have

det(Gn − x Idm) = hm det
(
Gn′ −

x

h
Idm′

)h

where n′ := rad(n), m′ := φ(n′), and h := n/n′.

Proof (Sketch): von Sterneck formula yields that Gn = h Gn′ ⊗ Idh. Then one uses
det(A⊗ B) = det(A)s det(B)t , for A ∈ Ct×t and B ∈ Cs×s . □

Thus the eigenvalues of Gn are the eigenvalues of Grad(n) multiplied by h both in values and
multiplicities. Hence, from the previous considerations, it follows that

Cond(Vn) =
n

rad(n)
Cond(Vrad(n)).
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The Cases n = pk and n = 2kph

Further work with von Sterneck formula shows that G2n and Gn have the same eigenvalues, for
every odd positive integer n.

Therefore, the computation of the condition number Cond(Vn) for n = pk and n = 2kph is
reduced to the computation of Cond(Vp).

Since

Gp =


p − 1 −1 −1 · · · −1
−1 p − 1 −1 · · · −1
−1 −1 p − 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · p − 1


a bit of computation shows that the eigenvalues of Gp are p and 1, with respective
multiplicities p − 2 and 1.

From this, one gets the formulas for Cond(Vph) and Cond(V2kph).
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Sketch of the Proofs:

Lower Bound for Cond(Vn)



The Proof of the Lower Bound for Cond(Vn)

The main difficulty in proving a lower bound for Cond(Vn) is that the entries of V−1
n are sums

of many roots of unity, but in such sums a lot of “cancellation” can happen.

This is strictly related to the fact that the coefficients of the cyclotomic polynomials are
usually small, despite being sums of many roots of unity.

Lehmer (1966) gave the following enlightening example: Expanding the product

Φ105(X ) :=
∏

1≤ k ≤ 105

gcd(105, k)= 1

(
X − e2πik/105

)
,

one gets that the coefficient of X 7 in Φ105(X ) is the sum of(
48

7

)
= 73, 629, 072

roots of unity. Despite that, such a coefficient is equal to −2.
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Continuing Vn

Let

Wn :=


1 ζ0 ζ20 · · · ζmn−1

0

1 ζ1 ζ21 · · · ζmn−1
1

1 ζ2 ζ22 · · · ζmn−1
2

...
...

...
. . .

...

1 ζm−1 ζ2m−1 · · · ζmn−1
m−1


be the m ×mn matrix obtained by “continuing” Vn to the right.

Lemma

We have Wn W
∗
n = mn Idm.

Proof: The product of the ith row of Wn and the jth column of W ∗
n is

mn−1∑
k =0

(
ζiζj

)k
=

{
mn if i = j ;

0 if i ̸= j .

(This is the orthogonality of roots of unity.) □.
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Coefficients of Φn

Let an(j) denote the coefficient of X j in Φn(X ), that is,

Φn(X ) =
m∑

j =0

an(j)X
j .

The study of the coefficients of the cyclotomic polynomials has a very long history, which goes
back at least to Gauss (see [6] for a survey).

Let A(n) be the maximum of the absolute values of an(0), . . . , an(m − 1).

Theorem (Vaughan 1974 [7])

We have A(n) > exp
(
n log 2 / log log n

)
for infinitely many positive integers n.
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−2.× 1018

−1.× 1018

+1.× 1018

+2.× 1018

0

an(j)

2.× 108 4.× 108 6.× 108 8.× 1080 1.× 109
j

A plot of the coefficients of Φn(X ) for n = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29. The φ(n) + 1 =
1, 021, 870, 081 coefficients were computed using the program SPS4 64 of Arnold and
Monagan [8]. The plot was produced by selecting a random sample of 500, 000 coefficients.



Companion Matrix of Φn

Let Cn be the companion matrix of Φn, which is the m ×m matrix

Cn :=


0 0 · · · 0 −an(0)
1 0 · · · 0 −an(1)
0 1 · · · 0 −an(2)
...

...
. . .

...
...

0 0 · · · 1 −an(m − 1)

 ,

and let
Sn :=

(
Idm | Cm

n | C 2m
n | · · · | C (n−1)m

n

)
be the m ×mn matrix given by juxtapositioning the first n powers of Cm

n .

Lemma

We have V−1
n Wn = Sn.

Proof (Hint): It is due to the fact that ζmk = −∑m−1
j =0 an(j)ζ

j
k , since Φn(ζk) = 0.
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A Formula for ∥V−1
n ∥

Lemma

We have ∥V−1
n ∥2 = 1

mn

∑n−1
k=0 ∥C km

n ∥2.

Proof: From Wn W
∗
n = mn Idm and V−1

n Wn = Sn, it follows that

mn∥V−1
n ∥2 = mnTr

(
V−1
n

(
V−1
n

)∗)
= Tr

(
V−1
n WnW

∗
n

(
V−1
n

)∗)
= Tr(SnS

∗
n ).

Then, by the definition of Sn, we have that

Tr(SnS
∗
n ) = Tr

((
Idm | Cm

n | · · · | C (n−1)m
n

)


Idm

(Cm
n )∗

...(
C

(n−1)m
n

)∗


)

=
n−1∑
k =0

Tr
(
C km
n

(
C km
n

)∗)
=

n−1∑
k =0

∥C km
n ∥2. □
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Powers of the Companion Matrix Cn

Lemma

Let k be a positive integer and let

C :=


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 ck−1

 ∈ Ck×k .

Then, for every integer j ∈ [1, k], the (k − j)th column of C j is equal to
(
c0 c1 · · · ck−1

)⊺
.

(Note: The first column if the 0th.)

Proof: Actually, a stronger claim holds: For every integer j ∈ [1, k], the 0th, 1th, . . . ,
(k − j)th columns of C j are equal to the (j − 1)th, jth, . . . , (k − 1)th columns of C ,
respectively. This follows easily by induction on j .
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The Lower Bound for Cond(Vn)

Putting all together, we get that

∥V−1
n ∥2 = 1

mn

n−1∑
k=0

∥C km
n ∥2 ≥ 1

mn∥Cm
n ∥2 ≥ 1

mn

m−1∑
j =0

|an(j)|2 ≥ 1
mnA(n)

2.

where in the second inequality we used the previous lemma (since m < n).
In turn, this implies that

Cond(Vn) = ∥Vn∥ ∥V−1
n ∥ = m ∥V−1

n ∥ ≥
√

m
n A(n) ≥ 1√

n
A(n).

As a consequence, Vaughan’s lower bound for A(n) yields that

Cond(Vn) > exp
(
n log 2/ log log n

)
/
√
n,

for infinitely many positive integers n. The proof is complete.
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Open Questions



Open Questions

Is there an “explicit formula” for Cond(Vpq) (equivalently, for ∥V−1
pq ∥) for p, q primes ?

What is the maximal order of Cond(Vn) (equivalently, of ∥V−1
n ∥) as n → +∞ ?

What about RLWE-PLWE equivalence for other families of polynomials / number fields ?
For instance, Blanco-Chacón [9] considered the maximal totally real subextension of the
4pth cyclotomic field.

THANKS FOR YOUR ATTENTION!
(references in the next slides)
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