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What is the goal of this talk (roughly speaking)?

I Initial data: Polynomials f , g with coefficients on Z/pZ, where
p is prime.

I Question: does there is a differential equation of the form

δ
(g
f

)
=

gp

f p
? (1)

I If (1) exists, what we can deduce about the geometry of g , f ?



Background material

A surprising fact

An algorithm

An example

The case of hyperelliptic curves

The case of pairs



BACKGROUND
MATERIAL



Preliminaries

I K any field.
I S = K[x1, . . . , xd ], f ∈ S .

Fact
Sf is not finitely generated as S-module.



Preliminaries

I S = C[x1, . . . , xd ], f ∈ S .
I DS : ring of C-linear differential operators.
I DS [y ] := C[y ]⊗C DS .

Theorem (Bernstein (1972))
There are b(y) ∈ C[y ] and ∆(y) ∈ DS [y ] such that

b(n)f n = ∆(n) • f n+1,

for any n ∈ Z.



Preliminaries

Definition
bf (y) : monic polynomial of smallest degree of the ideal made up
by the b’s.



Why we introduce bf ?

I m: greatest integer root in absolute value of bf .
I (Bernstein, 1972) Sf is generated by 1/f m as left DS -module.
I (Walther, 2005) Sf is not generated by 1/f i for i < m.



End of preliminaries

In general, m can be strictly greater than 1.

Example
If f = x2

1 + x2
2 + x2

3 + x2
4 , then bf (y) = (y + 1)(y + 2).
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New setup

From now on:
I p prime number.
I S = Z/pZ[x1, . . . , xd ], f ∈ S .
I DS : ring of Z/pZ-linear differential operators.



A surprising fact

Theorem (Àlvarez Montaner, Blickle, Lyubeznik (2005))
Sf is generated by 1/f as DS -module.



THE
LEVEL



What is the level?

We have
DS =

⋃
e≥0

D(e)
S ,

where

D(e)
S := S〈∂[t]i | 1 ≤ i ≤ d , 1 ≤ t ≤ pe − 1〉

and

∂
[t]
i :=

1
t!

∂t

∂x ti
.

The exponent e is called the level.



Why the surprising fact is true?

Theorem (Àlvarez Montaner, Blickle, Lyubeznik (2005))
There exists δ ∈ D(e)

S such that δ(1/f ) = 1/f p.



COMPUTING
THE

LEVEL



THE
IDEAL

OF
peTH

ROOTS



The ideal of peth roots

I g ∈ S = Z/pZ[x1, . . . , xd ].

I If γ = (c1, . . . , cd) ∈ Nd , then ||γ|| := max{ci}.
If

g =
∑

0≤||α||≤pe−1

gpe
α xα,

then Ie (gS) is the ideal of S generated by the gα’s.



Calculation of the level

We have

S = I0
(
f p

0−1
)
⊇ I1

(
f p−1) ⊇ I2

(
f p

2−1
)
⊇ . . .

Set
e := inf

{
s ≥ 1 | Is−1

(
f p

s−1−1
)

= Is
(
f p

s−1)} .



Calculation of the level

Theorem (Àlvarez Montaner, Blickle, Lyubeznik (2005))
With the previous choice of e, for any s ≥ 0

Ie−1

(
f p

e−1−1
)

= Ie+s

(
f p

e+s−1
)
.

Moreover,

e = min
{
s ≥ 1 | f p

s−p ∈ Is
(
f p

s−1)[ps ]} .



AN ALGORITHM



Input

I p prime number.
I S = Z/pZ[x1, . . . , xd ], f ∈ S .



The body of the algorithm

Algorithm (B., De Stefani, Vanzo (2015))
Carry out the following steps:
I Compute

(
e, Ie

(
f p

e−1)), where e is the level of δ.
I Write

f p
e−1 =

∑
0≤||α||≤pe−1

f p
e

α xα.

I For each 0 ≤ ||α|| ≤ pe − 1, there is δα ∈ D(e)
S such that

δα

(
xβ
)

=

{
1, if β = α,

0, otherwise.

Here, β ∈ Nd with 0 ≤ ||β|| ≤ pe − 1



The body of the algorithm

Algorithm (B., De Stefani, Vanzo (2015))
I We have

f p
e−p ∈ Ie

(
f p

e−1)[pe ] =
(
f p

e

α | 0 ≤ ||α|| ≤ pe − 1
)
,

hence
f p

e−p =
∑

0≤||α||≤pe−1

sαf
pe
α .

I Set
δ :=

∑
0≤||α||≤pe−1

sαδα.



AN
EXAMPLE



An example

I f = x2y3z5 ∈ Z/2Z[x , y , z ].

I f 15 = x30y45z75 = (xy2z4)16 · (x14y13z11), so level 4.
Now, needed δ1 such that

δ1(x14y13z11) = 1

and
δ1(x iy jzk) = 0 for any 0 ≤ i , j , k ≤ 15 = 24 − 1.



An example (continued)

I δ1 = (∂
[15]
1 ∂

[15]
2 ∂

[15]
3 ) · (xy2z4).

Moreover,

f 24−2 = (x12y10z6) · (x16y32z64) ∈ I4(f 15)[16].

Therefore,

δ = (x12y10z6) · (∂[15]
1 ∂

[15]
2 ∂

[15]
3 ) · (xy2z4).
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Setup

I g ≥ 1
I f (x , y , z) := y2z2g−1 − h(x , z), h ∈ Fp[x , z ]2g+1.

I h(x , 1) has no multiple roots.
I C : f (x , y , z) = 0.
I Write

h(x , 1)(p−1)/2 =
N∑
j=0

cjx
j , N :=

(
p − 1
2

)
(2g + 1).



The Cartier–Manin matrix

Definition (Manin’65)
We define the Cartier–Manin matrix of C as

A :=


cp−1 cp−2 . . . cp−g
c2p−1 c2p−2 . . . c2p−g

...
...

. . .
...

cgp−1 cgp−2 . . . cgp−g

 .



Why you introduce this matrix?

H1(C ,OC )
OO

Serre duality

��

Frob // H1(C ,OC )
OO

Serre duality

��
H0(C ,Ω1

C )
Cart // H0(C ,Ω1

C ).

I Cart is given by A once you fix on H0(C ,Ω1
C ) the basis

x i−1dx

y
(1 ≤ i ≤ g).



Why you introduce this matrix?

Definition
Let C be as before.
I C is ordinary if A is invertible.
I C is supersingular if A 6= 0 and A2 = 0.
I C is superspecial if A = 0.
I C is intermediate if neither of the above holds.



THE CASE
OF

ELLIPTIC CURVES



Ordinary and supersingular elliptic curves

I C ⊆ P2
Z/pZ elliptic curve defined by f .

I f p−1 = c · (xyz)p−1 + . . .

I C is ordinary if c 6= 0, otherwise supersingular.
I (Takagi, Takahashi’08) C is ordinary iff f has level one.



Ordinary and supersingular elliptic curves

Theorem (B., De Stefani, Vanzo (2015))
C is supersingular if and only if f has level two.



THE CASE
OF

GENUS
AT LEAST TWO



Higher genus: the ordinary case

Theorem (Blanco–Chacón, B., Fordham, Yilmaz (2018))
If p > 2g2 − 1 and C is ordinary, then the level of f is 2.



Higher genus: the ordinary case

The converse is, in general, not true.
I p = 11, C : y2z3 − x5 − z5 = 0.
I A has rank 1.
I The level of y2z3 − x5 − z5 is two.



Higher genus: the supersingular (not superspecial) case

Theorem (Blanco–Chacón, B., Fordham, Yilmaz (2018))
If p > 2g2 − 1 and C is supersingular (but not superspecial), then
the level of f is at least 3.



Higher genus: the supersingular (not superspecial) case

I C : y2z3 − x5 − z5 = 0.
I C is supersingular (not superspecial) for p = 13.
I The level of y2z3 − x5 − z5 is 4 for p = 13.
I C is superspecial for p = 17.
I The level of y2z3 − x5 − z5 is 3 for p = 17.
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Based on joint work with:
I Mark Paul Noordman (RijksUniversiteit Groningen).
I Jaap Top (RijksUniversiteit Groningen).



The level of a pair (First try)

I k field ⊇ Fp, p prime.
I f , g ∈ k[x1, . . . , xd ].

Set

level(g , f ) := inf{e ≥ 0 : ∃δ ∈ D(e) such that δ(g/f ) = (g/f )p}.



The level of a pair (Second try)

I k field ⊇ Fp, p prime.
I f , g ∈ k[x1, . . . , xd ].

Lemma
One has

level(g , f ) := inf{e ≥ 0 : Ie(gpf p
e−p) ⊆ Ie(gf p

e−1)}.

In particular:

level(g , f ) = 1⇐⇒ g ∈ I1(gf p−1).



The level of a pair is NOT always finite

I f = xp+1 + yp+1, g = x .

I level(g , f ) =∞.



EXAMPLES
OF PAIRS

WITH
FINITE LEVEL



The case of quadratic forms

I f , g ∈ k[x , y ] quadratic forms.
I
√

(f ) : radical of (f ).

Then:

level(g , f ) :=


0, if g is a multiple of f ,
1, if f is not the square of a linear form,
1, if g ∈

√
(f ),

2, otherwise.



The case f = x3 + y 3 + z3

In this case:

level(f ) =

{
1, if p ≡ 1 (mod 3),

2, if p ≡ 2 (mod 3).

Therefore, ∀g level(g , f ) = 1 if p ≡ 1 (mod 3).



The case f = x3 + y 3 + z3, g = xyz , p = 2, 3

In this case,

xyz /∈ I1(gf p−1) =

{
(x2, y2, z2), if p = 2,
(x2 + 2xy + y2 + 2xz + 2yz + z2), if p = 3.

So, level(g , f ) ≥ 2 and, indeed, level(g , f ) = 2.



f = x3 + y 3 + z3, g ∈ k[x , y , z ] any cubic monomial,
p ≥ 5, p ≡ 2 (mod 3)

In this case, level(g , f ) = 1.



WE
STOP
HERE
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