The level of pairs of polynomials

Alberto F. Boix

Ben-Gurion University of the Negev

STNB 2020

Based on joint works with:

- Iván Blanco Chacón (University College Dublin).
- Alessandro De Stefani (University of Nebraska).
- Stiofáin Fordham (University College Dublin).
- Mark Paul Noordman (RijksUniversiteit Groningen).
- Emrah Sercan Yilmaz (University College Dublin).
- Jaap Top (RijksUniversiteit Groningen).
- Davide Vanzo (Università di Bologna).

Where you can find more details?

: A. F. Boix, Alessandro De Stefani, and Davide Vanzo.
An algorithm for constructing certain differential operators in positive characteristic
Matematiche (Catania) 70 (2015), no. 1, 239-271.
嗇 Iván Blanco-Chacón, A. F. Boix, Stiofáin Fordham, and Emrah Sercan Yilmaz.
Differential operators and hyperelliptic curves over finite fields Finite Fields Appl. 51 (2018), 351-370.
A. F. Boix, Mark Paul Noordman, and Jaap Top.

The level of pairs of polynomials
Available at https://arxiv.org/pdf/1903.11311.pdf.

What is the goal of this talk (roughly speaking)?

- Initial data: Polynomials f, g with coefficients on $\mathbb{Z} / p \mathbb{Z}$, where p is prime.
- Question: does there is a differential equation of the form

$$
\begin{equation*}
\delta\left(\frac{g}{f}\right)=\frac{g^{p}}{f^{p}} ? \tag{1}
\end{equation*}
$$

- If (1) exists, what we can deduce about the geometry of g, f ?

Background material

A surprising fact

An algorithm

An example

The case of hyperelliptic curves

The case of pairs

BACKGROUND MATERIAL

Preliminaries

- \mathbb{K} any field.
- $S=\mathbb{K}\left[x_{1}, \ldots, x_{d}\right], f \in S$.

Fact
S_{f} is not finitely generated as S-module.

Preliminaries

- $S=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right], f \in S$.
- \mathcal{D}_{S} : ring of \mathbb{C}-linear differential operators.
- $\mathcal{D}_{s}[y]:=\mathbb{C}[y] \otimes_{\mathbb{C}} \mathcal{D}_{s}$.

Theorem (Bernstein (1972))
There are $b(y) \in \mathbb{C}[y]$ and $\Delta(y) \in \mathcal{D}_{s}[y]$ such that

$$
b(n) f^{n}=\Delta(n) \bullet f^{n+1},
$$

for any $n \in \mathbb{Z}$.

Preliminaries

Definition

$b_{f}(y)$: monic polynomial of smallest degree of the ideal made up by the b 's.

Why we introduce b_{f} ?

- m : greatest integer root in absolute value of b_{f}.
- (Bernstein, 1972) S_{f} is generated by $1 / f^{m}$ as left \mathcal{D}_{S}-module.
- (Walther, 2005) S_{f} is not generated by $1 / f^{i}$ for $i<m$.

End of preliminaries

In general, m can be strictly greater than 1 .
Example
If $f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$, then $b_{f}(y)=(y+1)(y+2)$.

$$
\begin{gathered}
\text { A } \\
\text { SURPRISING } \\
\text { FACT }
\end{gathered}
$$

New setup

From now on:

- p prime number.
- $S=\mathbb{Z} / p \mathbb{Z}\left[x_{1}, \ldots, x_{d}\right], f \in S$.
- \mathcal{D}_{S} : ring of $\mathbb{Z} / p \mathbb{Z}$-linear differential operators.

A surprising fact

Theorem (Àlvarez Montaner, Blickle, Lyubeznik (2005)) S_{f} is generated by $1 / f$ as \mathcal{D}_{S}-module.

$$
\begin{aligned}
& \text { THE } \\
& \text { LEVEL }
\end{aligned}
$$

What is the level?

We have

$$
\mathcal{D}_{S}=\bigcup_{e \geq 0} \mathcal{D}_{S}^{(e)}
$$

where

$$
\mathcal{D}_{S}^{(e)}:=S\left\langle\partial_{i}^{[t]} \mid \quad 1 \leq i \leq d, \quad 1 \leq t \leq p^{e}-1\right\rangle
$$

and

$$
\partial_{i}^{[t]}:=\frac{1}{t!} \frac{\partial^{t}}{\partial x_{i}^{t}} .
$$

The exponent e is called the level.

Why the surprising fact is true?

Theorem (Àlvarez Montaner, Blickle, Lyubeznik (2005))
There exists $\delta \in \mathcal{D}_{S}^{(e)}$ such that $\delta(1 / f)=1 / f^{p}$.

COMPUTING THE
 LEVEL

$$
\begin{gathered}
\text { THE } \\
\text { IDEAL } \\
\text { OF } \\
p^{e} \text { TH } \\
\text { ROOTS }
\end{gathered}
$$

The ideal of p^{e} th roots

- $g \in S=\mathbb{Z} / p \mathbb{Z}\left[x_{1}, \ldots, x_{d}\right]$.
- If $\gamma=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{N}^{d}$, then $\|\gamma\|:=\max \left\{c_{i}\right\}$.

If

$$
g=\sum_{0 \leq\|\alpha\| \leq p^{e}-1} g_{\alpha}^{p^{e}} \mathbf{x}^{\alpha}
$$

then $I_{e}(g S)$ is the ideal of S generated by the g_{α} 's.

Calculation of the level

We have

$$
S=I_{0}\left(f^{p^{0}-1}\right) \supseteq I_{1}\left(f^{p-1}\right) \supseteq I_{2}\left(f^{p^{2}-1}\right) \supseteq \ldots
$$

Set

$$
e:=\inf \left\{s \geq 1 \mid \quad I_{s-1}\left(f^{p^{s-1}-1}\right)=I_{s}\left(f^{p^{s}-1}\right)\right\}
$$

Calculation of the level

Theorem (Àlvarez Montaner, Blickle, Lyubeznik (2005)) With the previous choice of e, for any $s \geq 0$

$$
I_{e-1}\left(f^{p^{e-1}-1}\right)=I_{e+s}\left(f^{p^{e+s}-1}\right) .
$$

Moreover,

$$
e=\min \left\{s \geq 1 \mid \quad f^{p^{s}-p} \in I_{s}\left(f^{p^{s}-1}\right)^{\left[p^{s}\right]}\right\} .
$$

AN ALGORITHM

Input

- p prime number.
- $S=\mathbb{Z} / p \mathbb{Z}\left[x_{1}, \ldots, x_{d}\right], f \in S$.

The body of the algorithm

Algorithm (B., De Stefani, Vanzo (2015))
Carry out the following steps:

- Compute $\left(e, I_{e}\left(f^{p^{e}-1}\right)\right)$, where e is the level of δ.
- Write

$$
f^{p^{e}-1}=\sum_{0 \leq\|\alpha\| \leq p^{e}-1} f_{\alpha}^{p^{e}} x^{\alpha} .
$$

- For each $0 \leq\|\alpha\| \leq p^{e}-1$, there is $\delta_{\alpha} \in \mathcal{D}_{S}^{(e)}$ such that

$$
\delta_{\alpha}\left(\mathbf{x}^{\beta}\right)=\left\{\begin{array}{l}
1, \text { if } \beta=\alpha \\
0, \text { otherwise }
\end{array}\right.
$$

Here, $\beta \in \mathbb{N}^{d}$ with $0 \leq\|\beta\| \leq p^{e}-1$

The body of the algorithm

Algorithm (B., De Stefani, Vanzo (2015))

- We have

$$
f^{p^{e}-p} \in I_{e}\left(f^{p^{e}-1}\right)^{\left[p^{e}\right]}=\left(f_{\alpha}^{p^{e}} \mid \quad 0 \leq\|\alpha\| \leq p^{e}-1\right),
$$

hence

$$
f^{p^{e}-p}=\sum_{0 \leq\|\alpha\| \leq p^{e}-1} s_{\alpha} f_{\alpha}^{p^{e}} .
$$

- Set

$$
\delta:=\sum_{0 \leq\|\alpha\| \leq p^{e}-1} s_{\alpha} \delta_{\alpha} .
$$

AN
 EXAMPLE

An example

$$
\begin{aligned}
& f=x^{2} y^{3} z^{5} \in \mathbb{Z} / 2 \mathbb{Z}[x, y, z] . \\
& f^{15}=x^{30} y^{45} z^{75}=\left(x y^{2} z^{4}\right)^{16} \cdot\left(x^{14} y^{13} z^{11}\right), \text { so level } 4 .
\end{aligned}
$$

Now, needed δ_{1} such that

$$
\delta_{1}\left(x^{14} y^{13} z^{11}\right)=1
$$

and

$$
\delta_{1}\left(x^{i} y^{j} z^{k}\right)=0 \text { for any } 0 \leq i, j, k \leq 15=2^{4}-1 .
$$

An example (continued)

- $\delta_{1}=\left(\partial_{1}^{[15]} \partial_{2}^{[15]} \partial_{3}^{[15]}\right) \cdot\left(x y^{2} z^{4}\right)$.

Moreover,

$$
f^{2^{4}-2}=\left(x^{12} y^{10} z^{6}\right) \cdot\left(x^{16} y^{32} z^{64}\right) \in I_{4}\left(f^{15}\right)^{[16]}
$$

Therefore,

$$
\delta=\left(x^{12} y^{10} z^{6}\right) \cdot\left(\partial_{1}^{[15]} \partial_{2}^{[15]} \partial_{3}^{[15]}\right) \cdot\left(x y^{2} z^{4}\right)
$$

$$
\begin{gathered}
\text { THE } \\
\text { CASE } \\
\text { OF } \\
\text { HYPERELLIPTIC } \\
\text { CURVES }
\end{gathered}
$$

Setup

- $g \geq 1$
- $f(x, y, z):=y^{2} z^{2 g-1}-h(x, z), h \in \mathbb{F}_{p}[x, z]_{2 g+1}$.
- $h(x, 1)$ has no multiple roots.
- $C: f(x, y, z)=0$.
- Write

$$
h(x, 1)^{(p-1) / 2}=\sum_{j=0}^{N} c_{j} x^{j}, N:=\left(\frac{p-1}{2}\right)(2 g+1) .
$$

The Cartier-Manin matrix

Definition (Manin'65)
We define the Cartier-Manin matrix of C as

$$
A:=\left(\begin{array}{cccc}
c_{p-1} & c_{p-2} & \ldots & c_{p-g} \\
c_{2 p-1} & c_{2 p-2} & \ldots & c_{2 p-g} \\
\vdots & \vdots & \ddots & \vdots \\
c_{g p-1} & c_{g p-2} & \ldots & c_{g p-g}
\end{array}\right) .
$$

Why you introduce this matrix?

- Cart is given by A once you fix on $H^{0}\left(C, \Omega_{C}^{1}\right)$ the basis

$$
\frac{x^{i-1} d x}{y}(1 \leq i \leq g)
$$

Why you introduce this matrix?

Definition

Let C be as before.

- C is ordinary if A is invertible.
- C is supersingular if $A \neq 0$ and $A^{2}=0$.
- C is superspecial if $A=0$.
- C is intermediate if neither of the above holds.

THE CASE OF ELLIPTIC CURVES

Ordinary and supersingular elliptic curves

- $C \subseteq \mathbb{P}_{\mathbb{Z} / p \mathbb{Z}}^{2}$ elliptic curve defined by f.
- $f^{p-1}=c \cdot(x y z)^{p-1}+\ldots$
- C is ordinary if $c \neq 0$, otherwise supersingular.
- (Takagi, Takahashi'08) C is ordinary iff f has level one.

Ordinary and supersingular elliptic curves

Theorem (B., De Stefani, Vanzo (2015))
C is supersingular if and only if f has level two.

$$
\begin{aligned}
& \text { THE CASE } \\
& \text { OF } \\
& \text { GENUS } \\
& \text { AT LEAST TWO }
\end{aligned}
$$

Higher genus: the ordinary case

Theorem (Blanco-Chacón, B., Fordham, Yilmaz (2018))
If $p>2 g^{2}-1$ and C is ordinary, then the level of f is 2 .

Higher genus: the ordinary case

The converse is, in general, not true.

- $p=11, C: y^{2} z^{3}-x^{5}-z^{5}=0$.
- A has rank 1 .
- The level of $y^{2} z^{3}-x^{5}-z^{5}$ is two.

Higher genus: the supersingular (not superspecial) case

Theorem (Blanco-Chacón, B., Fordham, Yilmaz (2018)) If $p>2 g^{2}-1$ and C is supersingular (but not superspecial), then the level of f is at least 3 .

Higher genus: the supersingular (not superspecial) case

- C $: y^{2} z^{3}-x^{5}-z^{5}=0$.
- C is supersingular (not superspecial) for $p=13$.
- The level of $y^{2} z^{3}-x^{5}-z^{5}$ is 4 for $p=13$.
- C is superspecial for $p=17$.
- The level of $y^{2} z^{3}-x^{5}-z^{5}$ is 3 for $p=17$.

$$
\begin{aligned}
& \text { THE } \\
& \text { CASE } \\
& \text { OF } \\
& \text { PAIRS }
\end{aligned}
$$

Based on joint work with:

- Mark Paul Noordman (RijksUniversiteit Groningen).
- Jaap Top (RijksUniversiteit Groningen).

The level of a pair (First try)

- k field $\supseteq \mathbb{F}_{p}, p$ prime.
- $f, g \in k\left[x_{1}, \ldots, x_{d}\right]$.

Set
$\operatorname{level}(g, f):=\inf \left\{e \geq 0: \exists \delta \in \mathcal{D}^{(e)}\right.$ such that $\left.\delta(g / f)=(g / f)^{p}\right\}$.

The level of a pair (Second try)

$-k$ field $\supseteq \mathbb{F}_{p}, p$ prime.

- $f, g \in k\left[x_{1}, \ldots, x_{d}\right]$.

Lemma
One has

$$
\operatorname{level}(g, f):=\inf \left\{e \geq 0: I_{e}\left(g^{p} f^{p^{e}-p}\right) \subseteq I_{e}\left(g f^{p^{e}-1}\right)\right\}
$$

In particular:

$$
\operatorname{level}(g, f)=1 \Longleftrightarrow g \in I_{1}\left(g f^{p-1}\right)
$$

The level of a pair is NOT always finite

- $f=x^{p+1}+y^{p+1}, g=x$.
- level $(g, f)=\infty$.

$$
\begin{gathered}
\text { EXAMPLES } \\
\text { OF PAIRS } \\
\text { WITH } \\
\text { FINITE LEVEL }
\end{gathered}
$$

The case of quadratic forms

- $f, g \in k[x, y]$ quadratic forms.
- $\sqrt{(f)}$: radical of (f).

Then:

$$
\operatorname{level}(g, f):=\left\{\begin{array}{l}
0, \text { if } g \text { is a multiple of } f, \\
1, \text { if } f \text { is not the square of a linear form, } \\
1, \text { if } g \in \sqrt{(f)} \\
2, \text { otherwise. }
\end{array}\right.
$$

The case $f=x^{3}+y^{3}+z^{3}$

In this case:

$$
\operatorname{level}(f)= \begin{cases}1, & \text { if } p \equiv 1 \quad(\bmod 3) \\ 2, & \text { if } p \equiv 2 \quad(\bmod 3)\end{cases}
$$

Therefore, $\forall g$ level $(g, f)=1$ if $p \equiv 1(\bmod 3)$.

The case $f=x^{3}+y^{3}+z^{3}, g=x y z, p=2,3$

In this case,
$x y z \notin I_{1}\left(g f^{p-1}\right)=\left\{\begin{array}{l}\left(x^{2}, y^{2}, z^{2}\right), \text { if } p=2, \\ \left(x^{2}+2 x y+y^{2}+2 x z+2 y z+z^{2}\right), \text { if } p=3 .\end{array}\right.$
So, level $(g, f) \geq 2$ and, indeed, level $(g, f)=2$.

In this case, level $(g, f)=1$.

$$
\begin{aligned}
& \text { WE } \\
& \text { STOP } \\
& \text { HERE }
\end{aligned}
$$

