Early Contributions to the

Inverse and Embedding Galois Problems

(after N. Vila, A. Arenas, T. Crespo)

Pilar Bayer Isant

UB

STNB, 29th edition
2015-01-29

Contents

- 1983-07-19 N. Vila

Sobre la realització de les extensions centrals del grup alternat com a group de Galois sobre el cos dels racionals

- 1985-07-08 A. Arenas

Un problema aritmético sobre la suma de tres cuadrados

- 1988-02-25 T. Crespo

Sobre el problema de inmersión de la teoría de Galois

INTRODUCTION

- 1892, D. Hilbert
S_{n} and A_{n} are Galois groups over $\mathbb{Q}(T)$

Irreducibility theorem

- 1931, I. Schur

Effective construction of polynomials over \mathbb{Q} realising S_{n} and A_{n} for particular values of n.

- 1970, Y. Yamamoto

For every even integer n there are infinitely many polynomials of type $X^{n}+a X+b \in \mathbb{Z}[X]$ whose Galois group over \mathbb{Q} is isomorphic to S_{n}.

Galois realisations of solvable groups

- 1954, I. R. Shafarevich

Any solvable group is Galois over any number field.

Strategy: Resolution of successive Galois embedding problems.
Shafarevich, I. R.: Construction of fields of algebraic numbers with given solvable Galois group. Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1954), 525-578. Amer. Math. Soc. Transl. 4 (1960), 185-237.

- 1979, J. Neukirch

Simplified proof of Shafarevich's theorem for solvable groups of odd order.

Tools: Use of Galois cohomology
Neukirch, J.: On solvable number fields. Invent. Math. 53 (1979), no. 2, 135-164.

Galois realisations of S_{n} and A_{n}

- 1983, E. Nart \& N. Vila

For every even integer $n>2$ there are infinitely many polynomials $X^{n}+b X^{2}+c X+d \in \mathbb{Z}[X]$ whose Galois group over \mathbb{Q} is isomorphic to A_{n}.
For every odd integer $n>3$ there are infinitely many polynomials $X^{n}+a X^{3}+b X^{2}+c X+d \in \mathbb{Z}[X]$ whose Galois group over \mathbb{Q} is isomorphic to A_{n}.

Tools: Use of a Furtwängler criterion.

Remark. For the cases n even and $4 \nmid n$, explicit equations for A_{n} were not known before.

Nart, E.; Vila, N.: Equations with absolute Galois group isomorphic to A_{n}. J. Number Theory 16 (1983), no. 1, 6-13.

CHAPTER I

1987: San Francisco; MSRI, Galois groups over Q

From September 1981 to July 1983

Galois embedding problems
K field; \bar{K} separable closure of K
$G_{K}=\operatorname{Gal}(\bar{K} \mid K)$ absolute Galois group; $\quad G$ finite group
$K \subseteq L \subseteq \bar{K}$ Galois extension, $\left.L\right|_{G} K$
$\varphi: G_{K} \rightarrow \operatorname{Gal}(L \mid K) \simeq G$
Definition. Given a group extension $\widetilde{G}=A \cdot G$, a solution of the Galois embedding problem

$$
\widetilde{G} \rightarrow G \simeq \operatorname{Gal}(L \mid K)
$$

is a field \widetilde{L} such that $L \subseteq \widetilde{L} \subseteq \bar{K}$ and the diagram

commutes, where φ is given by restriction.

The obstruction to embedding problems

Let $\varepsilon \in H^{2}(G, A)$ be the element defined by an exact sequence

$$
1 \rightarrow A \rightarrow \widetilde{G} \rightarrow G \rightarrow 1
$$

in which A is an abelian group.
Let $\left.L\right|_{G} K$ be a Galois extension defined by a homomorphism

$$
\rho: G_{K} \rightarrow \operatorname{Gal}(L \mid K) \simeq G .
$$

Through the inflation map, we obtain an element

$$
\rho^{*} \varepsilon \in H^{2}\left(G_{K}, A\right) .
$$

Theorem. [Hoechsmann, 1968] The embedding problem $\widetilde{G} \rightarrow G \simeq$ $\operatorname{Gal}(L \mid K)$ is solvable if and only if

$$
\rho^{*} \varepsilon=0 .
$$

Central extensions

An extension $E=N \cdot G$ of a group G is said to be central if it is given by an exact sequence $1 \rightarrow N \rightarrow E \rightarrow G \rightarrow 1$ with $N \subseteq Z(E)$. Then N is an abelian group and the action of G in N is trivial.

A group G is said to be perfect if $[G, G]=G$. In particular, non-abelian simple groups are perfect.

Perfect groups admit universal central extensions $\widetilde{G}=A \cdot G$; they are central extensions such that for any central extension $E=N \cdot G$ there is a unique homomorphism $h: \widetilde{G} \rightarrow E$ making commutative the diagram

Galois realisations of central extensions of perfect groups

Lemma. [Vila] Let $\left.L\right|_{G} K$ be a Galois extension with G a perfect group. Let \widetilde{G} be its universal central extension. If the embedding problem

$$
\widetilde{G} \rightarrow G \simeq \operatorname{Gal}(L \mid K)
$$

admits a solution, then any embedding problem defined by a central extension $E=N \cdot G$ will be solvable.

Proof. (sketch) The proof makes use of an Ikeda's lemma [1960] on the existence of proper solutions.

Remark. The lemma motivated to consider the realisation of central extensions of simple groups as Galois groups. The easiest cases being those of $A_{n}, n \neq 6,7$:

$$
1 \rightarrow C_{2} \rightarrow \widetilde{A}_{n} \rightarrow A_{n} \rightarrow 1
$$

Theorem. [Nart \& Vila] Let K be a number field and R its ring of integers. Let $F(X)=X^{n}+a X^{2}+b X+c \in R[X], a c \neq 0$, be a polynomial satisfying the following conditions:
(i) $F(X)$ is irreducible and primitive.
(ii) $b^{2}(n-1)^{2}=4 a c n(n-2)$.
(iii) $(-1)^{n / 2} c$ is a square.
(iv) If $u=-b(n-1) / 2(n-2) a$, there exists a prime ideal \mathfrak{p} of R such that

$$
c(n-1) \notin \mathfrak{p}, \quad F(u) \in \mathfrak{p}, \quad \text { and } 3 \nmid v_{\mathfrak{p}}(F(u)) .
$$

Then, if n is even and $n>2$, the Galois group of $F(X)$ over K is isomorphic to A_{n}.

The local obstruction at infinity for the Nart-Vila equations

Proposition. [Vila] Let $f(X) \in \mathbf{Q}[X]$ be an irreducible polynomial of degree n whose Galois group is isomorphic to A_{n} and let r_{1} be the number of its real roots. Then

1. $n \equiv r_{1}(\bmod 4)$.
2. The local obstruction at ∞ of the embedding problem $\widetilde{A}_{n} \rightarrow A_{n} \simeq$ $\mathrm{Gal}_{\mathrm{Q}}(\mathrm{f})$ is zero if and only if

$$
n \equiv r_{1} \quad(\bmod 8)
$$

Corollary. The obstruction at ∞ of Nart-Vila equations for A_{n} is trivial if and only if $n \equiv 0$ or $2(\bmod 8)$.

Serre's formula

Suppose that $n \neq 6,7$. The exact sequence $1 \rightarrow C_{2} \rightarrow \widetilde{A}_{n} \rightarrow A_{n} \rightarrow 1$ defines an element $a_{n} \in H^{2}\left(A_{n}, C_{2}\right)$. For any $G \subseteq A_{n}$, let $\varepsilon \in H^{2}\left(G, C_{2}\right)$ be the element obtained by restriction

$$
\text { res : } H^{2}\left(A_{n}, C_{2}\right) \rightarrow H^{2}\left(G, C_{2}\right), \quad a_{n} \mapsto \varepsilon
$$

and denote by \widetilde{G} the corresponding extension of groups. Let $E \mid K$ be an extension of degree $n,\left.L\right|_{G} K$ its Galois closure and $\rho: G_{K} \rightarrow$ $\operatorname{Gal}(L \mid K) \simeq G$. Through the inflation map, we obtain now an element

$$
\rho^{*} \varepsilon \in H^{2}\left(G_{K}, C_{2}\right) \simeq \mathrm{Br}_{2}(K)
$$

Theorem. [Serre, 1984] Let Q_{E} be the n-ary quadratic form

$$
X \rightarrow \operatorname{Tr}_{E \mid K}\left(X^{2}\right)
$$

Then the obstruction to the embedding problem $\widetilde{G} \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is given by

$$
\rho^{*} \varepsilon=w\left(Q_{E}\right)
$$

where w denotes the Hasse-Witt invariant of Q_{E}.

First results

Theorem. [Vila] Suppose that $n>6$ is an even integer. Let L be the splitting field over K of a polynomial $F(X)$, as above. Then the embedding problem $\widetilde{A}_{n} \rightarrow \operatorname{Gal}(L \mid K) \simeq A_{n}$ is solvable if and only if

$$
\begin{array}{ll}
n \equiv 0 & (\bmod 8), \quad \text { or } \\
n \equiv 2 & (\bmod 8)
\end{array} \quad \text { and } n \text { is a sum of two squares. }
$$

Corollary. Any central extension of $A_{n}, n>6$, occurs as Galois group over Q if $n \equiv 0(\bmod 8)$ or $n \equiv 2(\bmod 8)$ and n is a sum of two squares.

In these cases:
$\operatorname{Tr}_{E \mid K}\left(X^{2}\right) \sim\left\{\begin{array}{l}n X_{1}^{2}-(n-2) a X_{2}^{2}+X_{3} X_{4}+\cdots+X_{n-1} X_{n}, \text { if } n \text { is even, } \\ n X_{1}^{2}+X_{2}^{2}+X_{3} X_{4}+\cdots+X_{n-1} X_{n}, \text { if } n \text { is odd. }\end{array}\right.$

How to achieve more values of n

1. Find new irreducible polynomials $f(X) \in \mathrm{Q}[X]$, of degree n, with Galois group isomorphic to A_{n} and with a "computable" trace form and good behaviour at infinity.
2. Compute $w\left(\operatorname{Tr}_{E \mid \mathbf{Q}}\right)$, where $E=\mathbf{Q}(\theta)$, θ a root of $f(X)$.
3. Impose conditions on $f(X)$ in order that $w\left(\operatorname{Tr}_{E \mid \mathrm{Q}}\right)=1$.

Remark. (1) was solved with techniques used by Hurwitz and worked out by Matzat. Afterwards, they gave rise to the so called Thompson rigidity methods.

The starting point was Riemann existence theorem.

Hurwitz presentations

Definition. Let G be a finite group and $t_{i} \in G, 1 \leq i \leq r$. We say that $\left(t_{1}, \ldots, t_{r}\right)$ is a Hurwitz r-presentation of G if $\left\{t_{1}, \ldots, t_{r}\right\}$ generate G and $t_{1} \cdots t_{r}=1$.
$H_{r}(G)$ set of Hurwitz r-presentations
Given $\left(t_{1}, \ldots, t_{r}\right) \in H_{r}(G)$, let $H\left(t_{1}, \ldots, t_{r}\right)$ be the set of $\left(s_{1}, \ldots, s_{r}\right) \in$ $H_{r}(G)$ such that the subgroups $\left\langle s_{i}\right\rangle$ and $\left\langle t_{i}\right\rangle$ are conjugate in G.
$h\left(t_{1}, \ldots, t_{r}\right):=\# H\left(t_{1}, \ldots, t_{r}\right) /$ Aut (G) Hurwitz number

Definition. A finite group is complete if its center is trivial and any automorphism is inner. Ex.: S_{n} is a complete group.

Proposition. Any finite complete group having a Hurwitz presentation with Hurwitz number equal to 1 is Galois over $\mathrm{Q}(T)$.

New S_{n} and A_{n}-equations over $\mathbf{Q}(T)$

Theorem. [Vila] Let n, k be positive integers, $\operatorname{gcd}(n, k)=1, k \leq n$.
(a) Let $s_{1}=(n, n-1, \ldots, 3,2,1), s_{2}=(1,2, \ldots, k)(k+1, \ldots, n), s_{3}=$ $(1, k+1)$. Then $\left(s_{1}, s_{2}, s_{3}\right) \in H_{3}\left(S_{n}\right)$ and $h\left(s_{1}, s_{2}, s_{3}\right)=1$.
(b) For $n \geq 5$, the polynomial $G_{k}(X, T)=X^{n-k}\left(X-\frac{n}{n-k}\right)^{k}-\left(\frac{-k}{n-k}\right)^{k} T$ has Galois group over $\mathbf{Q}(T)$ isomorphic to S_{n}.
(c) For $n \geq 5$ and $k \leq n / 2$, the polynomial

$$
F_{n, k}(X, T)= \begin{cases}X^{n}-A(n X-k(n-k))^{k}, & \text { if } n \text { is odd } \\ X^{n}+k^{n-2 k} B^{n-k-1}(n X+B k(n-k))^{k}, & \text { if } n \text { is even }\end{cases}
$$

$$
\text { where } A=k^{n-2 k}\left(1-(-1)^{(n-1) / 2} n T^{2}\right), B=(-1)^{n / 2} k(n-k) T^{2}+1
$$ has Galois group over $\mathrm{Q}(T)$, and over $\mathrm{Q}(i, T)$, isomorphic to A_{n}.

The computation of the Hasse-Witt invariant
$K=\mathbf{Q}(T)$ or $K=\mathbf{Q}(i, T) ; n \neq 6,7 ; k \leq(n+1) / 3$ odd
$F_{n, k}(X, T)=X^{n}+A(b X+c)^{k} ; E_{n, k}=K(\theta) ; L_{n, k} \mid K$ splitting field
Theorem. [Vila]
(a) $\operatorname{Tr}_{E_{n, k} \mid K}\left(X^{2}\right) \simeq$

$$
\begin{aligned}
& \left\{\begin{array}{l}
n X_{1}^{2}+(-1)^{(n-2) / 2} X_{2}^{2}+X_{3} X_{4}+\cdots+X_{n-1} X_{n}, \text { if } n \text { is even, } \\
n X_{1}^{2}+n C X_{2}^{2}+(-1)^{(n+1) / 2} C X_{3}^{2}+X_{4} X_{5}+\cdots+X_{n-1} X_{n}, \text { if } n \text { is odd, }
\end{array}\right. \\
& \text { where } C=k(n-k)\left(1-(-1)^{(n-1) / 2} n T^{2}\right)
\end{aligned}
$$

(b) $w\left(E_{n, k} \mid \mathbf{Q}\right)=$

$$
\left\{\begin{array}{l}
\left(n,(-1)^{n / 2}\right) \otimes(-1,-1)^{n(n-2) / 8}, \text { if } n \text { is even, } \\
\left(-(n-k) k,(-1)^{(n-1) / 2 n}\right) \otimes(-1,-1)^{(n+1)(n-1) / 8}, \text { if } n \text { is odd. }
\end{array}\right.
$$

(c) $w\left(E_{n, k} \mid \mathbf{Q}(i)\right)=\left\{\begin{array}{l}1, \text { if } n \text { is even, } \\ (-(n-k), n)=1, \text { if } n \text { is odd and } k \text { is a square. }\end{array}\right.$

Galois realisations over $\mathrm{Q}(i)$

Corollary. Let $L_{n, k}$ be the splitting field of the polynomial $F_{n, k}(X, T)$ over $\mathbf{Q}(i, T)$. Then the embedding problem

$$
\tilde{A}_{n} \rightarrow A_{n} \simeq \operatorname{Gal}\left(L_{n, k} \mid \mathbf{Q}(i, T)\right)
$$

is solvable for any even value of n, or for any odd value of n and k a square ($n \neq 6,7$).

Corollary. Any central extension of the alternating group A_{n} occurs infinitely often as Galois group over $\mathbf{Q}(i)$, for any value of $n \neq 6,7$.

Galois realisations over Q

Definition. A positive integer $n, n \not \equiv 0(\bmod 4)$ or $n \not \equiv 7(\bmod 8)$, satisfies the property (N) if there exists a decomposition of n into a sum of three squares $n=x^{2}+y^{2}+z^{2}$ such that $\operatorname{gcd}(x, n)=1$ and $x^{2} \leq(n+1) / 3$.

Theorem. [Vila] The embedding problem $\widetilde{A}_{n} \rightarrow A_{n} \simeq \operatorname{Gal}\left(L_{n, k} \mid \mathbf{Q}(T)\right)$ is solvable for the following values n and k :
(a) $n \equiv 0(\bmod 8), k>0$,
(b) $n \equiv 1(\bmod 8), k$ a square,
(c) $n \equiv 2(\bmod 8)$, and n being a sum of two squares, $k>0$,
(d) $n \equiv 3(\bmod 8), n$ satisfying (\mathbb{N}), and $k=x^{2}$.

If $n \equiv 4,5,6,7(\bmod 8)$, the previous embedding problem is not solvable for any value of k.

Corollary. Any central extension of A_{n} occurs infinitely often as Galois group over Q if
$n \equiv 0,1(\bmod 8)$,
$n \equiv 2(\bmod 8)$, and n is a sum of two squares,
$n \equiv 3(\bmod 8)$, and n satisfies (N).

Remarks

- Vila presented her results at the 1983 Journées Arithmétiques, held at Noordwijkerhout.
- The above articles caught the attention of [Conner; Perlis, 1984], [Serre, 1984; 1988; 1989; 1992], [Schacher; Sonn, 1986], [Feit, 1986; 1989], [Matzat, 1987; 1988; 1991], [Sonn, 1988; 1989; 1991], [Conner; Yui, 1988], [Karpilovski, 1989], [Mestre, 1990; 1994], [Turull, 1992], [Volklein, 1992], [E. Bayer, 1994], [Swallow, 1994], and [Epkenhans, 1994; 1997].
- Mestre [1990] succeeded in proving that \widetilde{A}_{n} occurs as Galois group over $\mathbf{Q}(T)$ for any value of n. For that, Mestre combined some of the above techniques with ideas due to Henniart, Oesterlé, and Serre.

A question of Serre

If $G=\operatorname{Gal}(L \mid K) \subseteq A_{n}, w\left(Q_{E}\right)=0$, and $\widetilde{G}=\operatorname{Gal}(\widetilde{L} \mid K) \subseteq \widetilde{A}_{n}$, how can $\tilde{L}=L(\sqrt{u})$ be effectively constructed?

CHAPTER II

1991: UB
From May 1983 to July 1985

The property (N)

Definition. A positive integer $n, n \not \equiv 0(\bmod 4)$ or $n \not \equiv 7(\bmod 8)$, satisfies the property (N) if there exists a decomposition of n into a sum of three squares $n=x^{2}+y^{2}+z^{2}$ such that $\operatorname{gcd}(x, n)=1$ and $x^{2} \leq(n+1) / 3$.

- Is this property always satisfied?

$$
\text { il se peut que ce soit très difficile Serre, } 1983
$$

- P. Llorente checked that any positive integer $n \leq 600000, n \equiv 3$ (mod 8), satisfies the property (N).
- Gauss, 1800: n admits a primitive representation as a sum of three squares if and only if $n \not \equiv 0,4,7(\bmod 8)$.
- Catalan. If $n=3^{u}$, the three summands can be chosen to be coprime to 3 .
- Arenas: Constructed special families of integers fulfilling the property (N).

The level of an integer: first results

Definition. Given a positive integer $n \neq 4^{a}(8 b+7)$, the level $\ell(n)$ is the maximum value ℓ such that n can be written as a sum of three squares, $n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, with ℓ summands coprime to n.

Corollary. If $n \equiv 3(\bmod 8)$ is a positive integer such that $\ell(n)=3$, then any central extension of the alternating group A_{n} is Galois over \mathbf{Q}.

Theorem. [Arenas] Let $n=m t>1$ be an integer, with $m=$ $2^{\alpha_{0}} p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, \alpha_{i} \geq 0, p_{i} \equiv 1(\bmod 4), t=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}, q_{j} \equiv 3(\bmod 4)$, $\beta_{j} \geq 0$.
(a) If $n \equiv 0(\bmod 2)$ or $n \equiv 0(\bmod 5)$, then $\ell(n) \leq 2$.
(b) If $n=m, \alpha_{0}=0$, then $\ell(n) \geq 2$.
(c) If $n=2^{\alpha_{0}} 5^{\alpha_{1}} p_{1}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \alpha_{0}+\alpha_{1}>0, \alpha_{0} \leq 1$, then $\ell(n)=2$.
(d) If $n=m, \alpha_{0}=0$, and n is an Euler numerus idoneus, then $\ell(n)=2$.
(e) If $n=t$ and $n \not \equiv 7(\bmod 8)$, then $\ell(n)=3$.

A strategy for determining the level

From all the representations of n discard those that are not good! Schinzel/Erdös, 1983

1. Compare numbers of representations of an integer n by different ad hoc ternary quadratic forms.
2. Since the number of representations $r(n, f)$ cannot be determined in general, approximate this number by an average value $r(n$, gen $f)$.
3. Estimate the error $r(n, f)-r(n, \operatorname{gen} f)$.

Some notation

f positive definite ternary quadratic form with integer coefficients
n positive integer
$r(n, f)=\#\left\{\left(x_{i}\right) \in \mathbf{Z}^{3}: f\left(x_{1}, x_{2}, x_{3}\right)=n\right\}$
$r^{*}(n, f)=\#\left\{\left(x_{i}\right) \in \mathbf{Z}^{3}: f\left(x_{1}, x_{2}, x_{3}\right)=n, \operatorname{gcd}\left(x_{i}\right)=1\right\}$
$r_{m}(n, f)=\#\left\{\left(x_{i}\right) \in \mathbf{Z}^{3}: f\left(x_{1}, x_{2}, x_{3}\right) \equiv n(\bmod m)\right\}$

Möbius function:
$\mu(n)=\left\{\begin{array}{l}1, \text { if } n=1, \\ 0, \text { if } n \text { is not square-free, } \\ (-1)^{r}, \text { if } n=p_{1} \ldots p_{r} \text { is a product of distinct primes. }\end{array}\right.$

Sums of three squares

$I_{3}=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$
$d_{i}(n)$ number of representations of n by I_{3} with exactly i components not coprime to n
$g_{1}(n):=\frac{d_{3}(n)}{r\left(n, I_{3}\right)}$
$g_{2}(n):=\frac{d_{2}(n)+d_{3}(n)}{r\left(n, I_{3}\right)}$
$g_{3}(n):=\frac{d_{1}(n)+d_{2}(n)+d_{3}(n)}{r\left(n, I_{3}\right)}$
Lemma. [Arenas] Let n be an odd positive integer, $n \not \equiv 7(\bmod 8)$, or an even positive integer, $n \not \equiv 0,4(\bmod 8)$. Then, for any $1 \leq i \leq 3$,

$$
g_{i}(n)<1 \Longleftrightarrow \ell(n, 3) \geq i
$$

Auxiliary alternating sums

Theorem. [Arenas] For $1 \leq i \leq 3$, define

$$
s_{i}(n)=\rho_{i} \sum(-1)^{i} \mu\left(a_{1}\right) \mu\left(a_{2}\right) \mu\left(a_{3}\right) r\left(n,\left\langle a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\rangle\right)
$$

where $\rho_{i}=3-2[i / 3]$ and the sum runs over those square-free positive integers a_{j} such that $1<a_{j} \mid n$, for $j \leq i$, and $a_{j}=1$, for $j>i$. Then
(a) $s_{3}(n)=d_{3}(n)$,
(b) $s_{2}(n)=d_{2}(n)+3 d_{3}(n)$,
(c) $s_{3}(n)=d_{1}(n)+2 d_{2}(n)+3 d_{3}(n)$.

- $s_{i}(n)$ counts the number of representations of n of level $\leq(3-i)$.

Corollary. Let $n \not \equiv 0,4,7(\bmod 8)$. Then
(a) $g_{1}(n)=\frac{s_{3}(n)}{r\left(n, I_{3}\right)}$,
(b) $g_{2}(n)=\frac{s_{2}(n)-2 s_{3}(n)}{r\left(n, I_{3}\right)}$,
(c) $g_{3}(n)=\frac{s_{1}(n)-s_{2}(n)+s_{3}(n)}{r\left(n, I_{3}\right)}$.

Genus theory

f definite integral quadratic integral form, gen $(f)=\left\{\left[f_{1}\right], \ldots,\left[f_{h}\right]\right\}$

$$
\begin{aligned}
& \operatorname{gen} f=\operatorname{gen} g \Longleftrightarrow f \stackrel{\mathbf{Z}_{p}}{\sim} g, \text { for all } p \in P \cup\{\infty\} \\
& r(n, \operatorname{gen}(f)):=\left(\sum_{i=1}^{h} \frac{1}{o\left(f_{i}\right)}\right)^{-1}\left(\sum_{i=1}^{h} \frac{r\left(n, f_{i}\right)}{o\left(f_{i}\right)}\right)
\end{aligned}
$$

Theorem. [Siegel]

$$
r(n, \operatorname{gen}(f))=\partial_{\infty}(n, f) \prod_{p} \partial_{p}(n, f),
$$

where

$$
\partial_{p}(n, f)=\left\{\begin{array}{l}
\frac{2 \pi n^{1 / 2}}{(\operatorname{det} f)^{1 / 2}}, \text { if } p=\infty, \\
\frac{r_{p^{2 \alpha}}(n, f)}{p^{2 \alpha}}, \text { for all } \alpha \geq 2 \beta+1, p^{\beta} \| 2 n, \text { if } p \text { is prime. }
\end{array}\right.
$$

The average alternating sums attached to n
$f=\left\langle a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\rangle, \quad a_{i} \mid n, \quad a_{i}$ square-free

$$
\begin{gathered}
d_{i, j}:=\operatorname{gcd}\left(a_{i}, a_{j}\right), \quad d_{123}:=\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}\right), \quad d:=d_{123}^{-2} d_{12} d_{13} d_{23} \\
r\left(n,\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)=r\left(n d^{-2},\left\langle b_{1}, b_{2}, b_{3}\right\rangle\right), \text { where } b_{i}=d_{i j}^{-1} d_{i k}^{-1} d_{123} a_{i} \\
S_{i}(n):=\rho_{i} \sum(-1)^{i} \mu\left(a_{1}\right) \mu\left(a_{2}\right) \mu\left(a_{3}\right) r\left(n d^{-2}, \operatorname{gen}\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle\right), \\
S_{i}^{\prime}(n):=\frac{S_{i}(n)}{r\left(n, I_{3}\right)}, \text { for } 1 \leq i \leq 3
\end{gathered}
$$

The main term in the determination of the level of n
$G_{1}(n):=S_{3}^{\prime}(n)$
$G_{2}(n):=S_{2}^{\prime}(n)-2 S_{3}^{\prime}(n)$
$G_{3}(n):=S_{1}^{\prime}(n)-S_{2}^{\prime}(n)+S_{3}^{\prime}(n)$

Computation of the main term $G_{i}(n)$, square-free case
$n=m t$ square-free positive integer
$m=2^{a} p_{1} \ldots p_{r}, p_{i} \equiv 1(\bmod 4), 0 \leq a \leq 1$
$t=q_{1} \ldots q_{s}, q_{j} \equiv 3(\bmod 4)$
Theorem. [Arenas] Let $n=m t$ be square-free, $n \not \equiv 7(\bmod 8)$.
Then
(a) If n is odd,
$G_{1}(n)=1-3 P_{1}(m)+3 P_{2}(m)-P_{3}(m)$,
$G_{2}(n)=1-3 P_{2}(m)+2 P_{3}(m)$,
$G_{3}(n)=1-P_{3}(m)$.
(b) If n is even,
$G_{1}(n)=1-2 P_{1}(m)+P_{2}(m)$,
$G_{2}(n)=1-P_{2}(m)$,
$G_{3}(n)=1$,
where $P_{j}(m)=\prod_{i=1}^{r}\left(1-2 j\left(1+p_{i}\right)^{-1}\right)$, for $1 \leq j \leq 3$.

Computation of the main term $G_{i}(n)$, non square-free case

Definition. Let $n \not \equiv 0,4(\bmod p)$ be a positive integer and let p ba a prime such that $v_{p}(n)=\alpha>0$. Writing $n=m p^{\alpha}$, let

$$
\frac{\partial_{p}\left(m p^{\alpha} d^{-2},\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle\right)}{p \partial_{p}\left(m p^{\alpha}, I_{3}\right)}=:\left\{\begin{array}{l}
\partial_{p}^{\prime}(m, \alpha), \text { if } p \mid b_{i} \text { for exactly one } i, \\
\partial_{p^{2}}^{\prime}(m, \alpha), \text { if } p \mid d
\end{array}\right.
$$

Theorem. [Arenas] Let $n=m p^{\alpha}, \alpha=v_{p}(n)>0$. We assume that α is even if not all the exponents in the factorization of n are odd. $n \not \equiv 0$ (mod 4). Then

$$
\begin{aligned}
G_{1}(n)= & G_{1}(m)+\partial_{p}^{\prime}(m, \alpha)\left(G_{2}(m)-G_{1}(m)\right)+\partial_{p^{2}}^{\prime}(m, \alpha)\left(1-G_{2}(m)\right), \\
G_{2}(n)= & G_{2}(m)+2 \partial_{p}^{\prime}(m, \alpha)\left(G_{3}(m)-G_{2}(m)\right)+ \\
& +\partial_{p^{2}}^{\prime}(m, \alpha)\left(1+G_{2}(m)-2 G_{3}(m)\right), \\
G_{3}(n)= & G_{3}(m)+\left(3 \partial_{p}^{\prime}(m, \alpha)-\partial_{p^{2}}^{\prime}(m, \alpha)\right)\left(1-G_{3}(m)\right) .
\end{aligned}
$$

Bound of the main term $G_{i}(n)$

Lemma. [Arenas] Let $n=m p^{\alpha} \not \equiv 0,4(\bmod 8)$ be a positive integer. If $\alpha>0$ and $p \neq 2$, then
(a) $0 \leq \partial_{p}^{\prime}(m, \alpha)<1 / 2$,
(b) $0 \leq \partial_{p^{2}}^{\prime}(m, \alpha)<p^{-1}$,
(c) $0 \leq 3 \partial_{p}^{\prime}(m, \alpha)-2 \partial_{p^{2}}^{\prime}(m, \alpha)<7 / 13$, if $p \neq 5$.
(d) $3 \partial_{5}^{\prime}(m, \alpha)-2 \partial_{52}^{\prime}(m, \alpha)=1$.
(e) $0 \leq 2 \partial_{p}^{\prime}(m, \alpha)-\partial_{p^{2}}^{\prime}(m, \alpha)<4 / 5$.

Theorem. [Arenas] Let $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be a positive integer with $4 \nmid n$. Then there exist constants $c_{i}=c_{i}\left(p_{1} \cdots p_{k}\right)$ such that

$$
G_{i}(n)<c_{i}\left(p_{1} \ldots p_{k}\right)<1
$$

for $i=1,2,3$ if $\operatorname{gcd}(n, 10)=1$; and $i=1,2$ if $\operatorname{gcd}(n, 10) \neq 1$. In the latter case, we have $G_{3}(n)=1$.

The average level

Definition.

$$
\ell_{a}(n, 3)=\left\{\begin{array}{l}
-1, \text { if } n=4^{a}(8 b+7) \\
0, \text { if } 4 \mid n \text { and } n \neq 4^{a}(8 b+7), \\
2, \text { if } \operatorname{gcd}(n, 10) \neq 1, \\
3, \text { if } \operatorname{gcd}(n, 10)=1
\end{array}\right.
$$

Remark.
For any $n \leq 10^{5}$ is

$$
\ell(n, 3)=\ell_{a}(n, 3),
$$

except for 24 cases in which is $\ell(n, 3)=1$ and $\ell_{a}(n, 3)=2$ and for
$n=13,37,403,793$ for which is $\ell(n, 3)=2$ and $\ell_{a}(n, 3)=3$.

- To bound the error term \rightsquigarrow use modular forms!

Theorem. [Siegel, Shimura] Let (V, B, f) be a quadratic space of dimension $k \geq 3$. Let
$L=\left\langle e_{1}, \ldots, e_{k}\right\rangle$ be a Z-lattice in V,
$L^{\#}:=\{x \in V: B(x, L) \subseteq \mathbf{Z}\}$ its dual lattice,
$e(z):=\exp (2 \pi i z)$.
Define $\theta(L, z)=\theta(f, z)=\sum_{x \in L} e(f(x) z), z \in \mathcal{H}$, $\operatorname{det} L=\operatorname{det}\left(B\left(e_{i}, e_{j}\right)\right)$,
$\chi(m)=\left\{\begin{array}{l}\left(\frac{2 \operatorname{det} L}{m}\right), \text { if } k \text { is odd }, \\ \left(\frac{(-1)^{d / 2} \operatorname{det} L}{m}\right), \text { if } k \text { is even. }\end{array}\right.$
Suppose that $f(L) \mathbf{Z}=\mathbf{Z}$ and that $f\left(L^{\#}\right) \mathbf{Z}=N^{-1} \mathbf{Z}$. Then
(a) $\theta(L, z) \in \mathcal{M}\left(\Gamma_{0}(N), k / 2, \chi\right)$.
(b) $\theta(L, z)-\theta(\operatorname{gen} L, z) \in \mathcal{S}\left(\Gamma_{0}(N), k / 2, \chi\right)$.

The error term $g_{i}(n)-G_{i}(n)$ in the determination of the level

$$
\left.\begin{array}{l}
\theta(f, z):=\sum_{n=0}^{\infty} r(n, f) e(n z) \quad z \in \mathcal{H} \\
\theta(\operatorname{gen} f, z):=\sum_{n=0}^{\infty} r(n, \operatorname{gen} f) e(n z) \\
\theta(z)=\theta\left(I_{1}, z\right)=1+2 \sum_{n=0}^{\infty} e\left(n^{2} z\right) \quad \text { Jacobi theta function } \\
\qquad \mathcal{M}(\Gamma, k)=\mathcal{E}(\Gamma, k) \oplus \mathcal{S}(\Gamma, k) \\
\theta\left(I_{3}, z\right)=\theta^{3}(z) \in \mathcal{M}\left(\Gamma_{0}(4), 3 / 2\right) \\
\theta\left(\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle, z\right) \in \mathcal{M}\left(\Gamma_{0}(N), 3 / 2\right) \\
\theta\left(\operatorname{gen}\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle, z\right) \in \mathcal{E}\left(\Gamma_{0}(N), 3 / 2\right) \\
\theta\left(\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle, z\right)-\theta\left(\operatorname{gen}\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle, z\right) \in \mathcal{S}\left(\Gamma_{0}(N), 3 / 2\right)
\end{array} \quad N=4 b_{1}^{2} b_{2}^{2} b_{3}^{2}\right)
$$

Spinor genus of a quadratic space

$$
\begin{aligned}
& (V, B)=(V, f) \quad K \text {-quadratic space, char }(K) \neq 2 \\
& s_{v}: x \mapsto x-2 v \frac{B(v, x)}{B(v, v)} \quad \text { reflection orthogonal to } v \\
& \begin{aligned}
& \text { Spn }: ~ O(V) \longrightarrow K^{*} /\left(K^{*}\right)^{2} \\
& u=s_{v_{1}} \ldots s_{v_{t}} \longrightarrow f\left(v_{1}\right) \ldots f\left(v_{t}\right) \\
& 1 \rightarrow \mathrm{SO}_{1}(V) \rightarrow \mathrm{SO}(V) \xrightarrow{\mathrm{Spn}} K^{*} /\left(K^{*}\right)^{2} \\
& 1 \rightarrow C_{2} \rightarrow \operatorname{Spn}(V) \rightarrow \mathrm{SO}_{1}(V) \rightarrow 1
\end{aligned}
\end{aligned}
$$

Definition. [Eichler] Two Z-lattices L and M in a Q-quadratic space V are said to be spinor equivalent if there exists a transformation $u \in \mathrm{SO}(V)$ and, for each p, a transformation $v_{p} \in \mathrm{SO}_{1}(V)$ such that

$$
M_{p}=u v_{p} L_{p}
$$

- Properly equivalent lattices are in the same spinor genus, and lattices in the same spinor genus are in the same genus.

Theta series of ternary quadratic forms
$S\left(\Gamma_{0}(N), 3 / 2, \chi\right)=U \oplus U^{\perp}, \quad U=\oplus U(a), \quad 4 s^{2} a \mid N, a$ square-free
U subspace spanned by certain Shimura thetaseries

Theorem. [Schulze-Pillot, 1984] Let L be a lattice of dimension 3, and level N. Let $n_{0} \mid N$ be a square-free integer. Then
(a) $\theta(L, z)-\theta(\operatorname{spn} L) \in U^{\perp}$.
(b) If $g(z)=\sum_{n=1}^{\infty} a(n) e(n z) \in U\left(n_{0}\right)^{\perp}$, then

$$
a\left(n_{0} s^{2}\right)=O\left(s^{1 / 2+\varepsilon}\right)
$$

the O-constant depending on ε, n_{0} and g.
Proof. (sketch) Shimura's lifting from modular forms of weight 3/2 to modular forms of weight 2 maps $U\left(n_{0}\right)^{\perp}$ to $S\left(\Gamma_{0}(N / 2), 2, \chi^{2}\right)$. Then apply Eichler proof of the Ramanujan-Petersson conjecture.

Bound of the error term $g_{i}(n)-G_{i}(n), n$ square-free
$n=m t$ square-free positive integer
$m=2^{a} p_{1} \ldots p_{r}, p_{i} \equiv 1(\bmod 4), 0 \leq a \leq 1$
$t=q_{1} \ldots q_{s}, q_{j} \equiv 3(\bmod 4)$
Theorem. [Arenas] Let $n=m t$ be a square-free positive integer and $f=\left\langle a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\rangle, a_{i} \mid m, \operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for $i \neq j$. Then
(a) $\operatorname{gen} f=\operatorname{spn} f$.
(b) $r(n, f)-r(n$, gen $f)=O_{\varepsilon, m, f}\left(s^{1 / 4+\varepsilon}\right)$, for any $\varepsilon>0$.
(c) If $n \not \equiv 7(\bmod 8)$, then, for any $\varepsilon>0$ is

$$
g_{i}(n)-G_{i}(n)=O_{\varepsilon, m}\left(s^{-1 / 4+\varepsilon}\right)
$$

for $1 \leq i \leq 3$.

The determination of the level, square-free case

Theorem. [Arenas] Let Let $n=m t$ be a square-free positive, $n \not \equiv 7$ (mod 8). There exists a constant $c(m)$ such that

$$
\ell(n)= \begin{cases}2, & \text { if } \operatorname{gcd}(n, 10) \neq 1 \\ 3, & \text { if } \operatorname{gcd}(n, 10)=1\end{cases}
$$

for any $t>c(m)$.

The constants are non-trivial in general:

m	$c(m) \geq$
13	403
10	27190
37	37
13.61	793

Application to the Galois embedding problem
Corollary. Let $n=m t$ be a square-free positive integer, $n \equiv 3(\bmod 8)$, $n \not \equiv 0(\bmod 5)$. Then there exists a constant $c(m)$ such that any central extension of the alternating group A_{n} occurs infinitely often as Galois group over \mathbf{Q}, for any $n>c(m)$.

Bound of the error term $g_{i}(n)-G_{i}(n)$, general case
$n=n_{0} s^{2}$ be a positive integer, $n \not \equiv 0,4,7(\bmod 8)$,
n_{0} its square-free part
$m_{0}=\operatorname{rad}(n)$
Theorem. [Arenas] Let $f=\left\langle b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle$ be a quadratic form such that $b_{i} \mid n, \operatorname{gcd}\left(b_{i}, b_{j}\right)=1$, for $i \neq j, b_{i}$ square-free. Then
(a) $\operatorname{gen} f=\operatorname{spn} f$.
(b) $r(n, f)-r(n, \operatorname{gen} f)=O_{\varepsilon, n_{0}, f}\left(s^{1 / 2+\varepsilon}\right)$, for any $\varepsilon>0$.
(c) For any $\varepsilon>0$ and $1 \leq i \leq 3$, is

$$
g_{i}(n)-G_{i}(n)=O_{\varepsilon, m_{0}}\left(s^{-1 / 2+\varepsilon}\right)
$$

The determination of the level, square-free case
Theorem. [Arenas] Let $n \not \equiv 0,4,7(\bmod 8)$ and $m_{0}=\operatorname{rad}(n)$. There exists a constant $c\left(m_{0}\right)$ such that if $n>c\left(m_{0}\right)$, then

$$
\ell(n)= \begin{cases}2, & \text { if } \operatorname{gcd}(n, 10) \neq 1 \\ 3, & \text { if } \operatorname{gcd}(n, 10)=1\end{cases}
$$

The constants are trivial for $n \leq 10^{5}$, except for:

m_{0}	$c\left(m_{0}\right) \geq$
30	90
390	1170
570	1710
1230	3690
6630	19890

Application to the Galois embedding problem
Corollary. Let $n \equiv 3(\bmod 8), n \not \equiv 0(\bmod 5)$, be a positive integer. Let $m_{0}=\operatorname{rad}(n)$. Then there exists a constant $c\left(m_{0}\right)$ such that any central extension of the alternating group A_{n} occurs infinitely often as Galois group over \mathbf{Q}, for any $n>c\left(m_{0}\right)$.

CHAPTER III

1995: BCN Journées Arithmétiques
From September 1984 to February 1988

First explicit solutions to some Galois embedding problems

$$
1 \rightarrow C_{2} \rightarrow H_{8} \rightarrow C_{2} \times C_{2} \rightarrow 1 \quad \text { the quaternion group }
$$

Theorem. [Dedekind] Let $L=\mathrm{Q}(\sqrt{2}, \sqrt{3})$. The embedding problem $H_{8} \rightarrow C_{2} \times C_{2} \simeq \operatorname{Gal}(L \mid \mathbf{Q})$ is solvable by the field

$$
\widetilde{L}=\mathrm{Q}(\sqrt{(2+\sqrt{2})(3+\sqrt{6})}) .
$$

Theorem. [Witt, 1936] Let K be a field of characteristic $\neq 2$. A biquadratic extension $L=K(\sqrt{a}, \sqrt{b}, \sqrt{c})$, $a b c=1$, can be embedded in a Galois extension $\widetilde{L} \mid K$ with Galois group H_{8} if and only if the quadratic forms

$$
a X_{1}^{2}+b X_{2}^{2}+c X_{3}^{2}, \quad Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}
$$

are K-equivalent.
If the matrix $P=\left(p_{i j}\right) \in \operatorname{SL}(2, K)$ yields the required isomorphism, then all the fields \widetilde{L} solving the embedding problem are given by

$$
\widetilde{L}=\mathrm{Q}\left(\sqrt{r\left(1+p_{11} \sqrt{a}+p_{22} \sqrt{b}+p_{33} \sqrt{c}\right.}\right)
$$

where r runs through K^{*}.

Clifford algebras

$$
\begin{aligned}
& V \simeq K^{n}, \quad Q \text { a quadratic form, } \quad T(V) \text { tensor algebra } \\
& I(Q)=\langle v \otimes v-Q(v) 1\rangle_{v \in V} \subseteq T(V) \\
& \mathrm{Cl}(Q):=T(V) / I(Q) \\
& \alpha: \mathrm{Cl}(Q) \circlearrowleft, \alpha(v):=-v, v \in V \text {, } \\
& \text { two sided ideal } \\
& \text { principal automorphism } \\
& \mathrm{Cl}(Q)=\mathrm{Cl}^{0}(Q) \oplus \mathrm{Cl}^{1}(Q) \\
& \beta: \mathrm{Cl}(Q) \circlearrowleft, \beta\left(v_{1} \ldots v_{k}\right)=v_{k} \ldots v_{1} \\
& N(x):=\beta(x) x, \quad x \in \operatorname{Cl}(V, Q) \\
& \Gamma^{+}(Q)=\left\{x \in \mathrm{Cl}^{0}(Q)^{*}: x V x^{-1}=V\right\} \\
& 1 \rightarrow \Gamma_{0}^{+}(Q) \rightarrow \Gamma^{+}(Q) \xrightarrow{N} K^{*} \\
& 1 \rightarrow C_{2} \rightarrow \Gamma_{0}^{+}(Q) \xrightarrow{\varphi} \mathrm{SO}(Q) \\
& \text { principal antiautomorphism } \\
& \text { spinor norm } \\
& \text { special Clifford group } \\
& \text { reduced Clifford group } \\
& \text { where } \varphi(x)(v):=x v x^{-1}
\end{aligned}
$$

Spinor construction of central extensions

$V=\left\langle e_{1}, \ldots e_{n}\right\rangle_{K}, I_{n}$ standard form
$\mathrm{Cl}(n, K): e_{i}^{2}=1, e_{i} e_{j}=-e_{j} e_{i}, i \neq j$
$n \geq 4, \quad A_{n} \subseteq \operatorname{SO}(n, K), s \mapsto p_{s}, p_{s}\left(e_{i}\right)=e_{s(i)}$
$s=(i, k)(j, \ell) \in A_{n}, \#\{i, j, k, l\}=4, x_{s}=\frac{1}{2}\left(e_{i}-e_{j}\right)\left(e_{k}-e_{\ell}\right) \in \mathrm{CI}(n, K)$

$$
N\left(x_{s}\right)=1, \quad x_{s}^{2}=-1
$$

$x_{s} \in \varphi^{-1}\left(A_{n}\right) \subseteq \Gamma_{0}^{+}(n, K)$, are elements of order 4 .
$\widetilde{A}_{n}:=\varphi^{-1}\left(A_{n}\right)$ is the unique non-trivial double cover of A_{n}.

The Clifford algebra of the trace form
$K \subseteq E \subseteq \bar{K},[E: K]=n,\left.L\right|_{G} K$ its splitting field
$Q(E):=\operatorname{Tr}_{E \mid K}\left(X^{2}\right), d(E):=\operatorname{disc}\left(\operatorname{Tr}_{E \mid K}\left(X^{2}\right)\right), w(E):=w\left(\operatorname{Tr}_{E \mid K}\left(X^{2}\right)\right)$
$\Phi=\operatorname{Hom}_{K}(E, \bar{K}), G$ acts on $\Phi ; G \subseteq A_{n} \Leftrightarrow d(E)=1 \in K^{*} /\left(K^{*}\right)^{2}$
Theorem. [Springer 1959, Serre 1982, Crespo]
(a) The L-quadratic spaces $\left(L^{n}, I_{n}\right)$ and $\left(L \otimes_{K} E, Q(E)\right)$ are isomorphic. Thus, there exists an isomorphism of Clifford algebras

$$
f: \mathrm{Cl}(n, L) \xrightarrow{\sim} \mathrm{CI}\left(L \otimes_{K} E, Q(E)\right)
$$

such that $f\left(L^{n}\right)=L \otimes_{K} E$.
(b) If $d(E)$ and $w(E)$ are trivial, then there exists a K-algebra isomorphism $\mathrm{g}: \mathrm{Cl}(n, K) \xrightarrow{\sim} \mathrm{Cl}(Q(E))$ such that

$$
g\left(\mathrm{Cl}^{0}(n, K)\right)=\mathrm{Cl}^{0}(E), \quad g\left(\mathrm{Cl}^{1}(n, K)\right)=\mathrm{Cl}^{1}(Q(E))
$$

The proof of the proposition (sketch)
(a) $f: \mathrm{CI}(n, L) \xrightarrow{\sim} \mathrm{CI}\left(L \otimes_{K} E, Q(E)\right)$

$$
\begin{gathered}
E=\left\langle e_{1}, \ldots, e_{n}\right\rangle, \quad M=\left(e_{i}^{s_{j}}\right) \in \mathrm{GL}(n, L), \quad s_{j} \in \Phi, \quad 1 \leq i, j \leq n \\
M^{T} M=\left(\operatorname{Tr}_{E \mid K}\left(e_{i} e_{j}\right)\right) \Rightarrow\left(L^{n}, I_{n}\right) \simeq\left(L \otimes_{K} E, Q(E)\right) .
\end{gathered}
$$

The vectors $v_{i}:=f\left(e_{i}\right)$ yield a basis of $\mathrm{Cl}\left(L \otimes_{K} E\right)$ and satisfy

$$
v_{i}^{2}=1, \quad v_{i} v_{j}=-v_{j} v_{i}, \quad \text { for } i \neq j ; \quad v_{i}^{s}=v_{s(i)}, \quad \text { for all } s \in G .
$$

(b) $g: \mathrm{Cl}(n, K) \xrightarrow{\sim} \mathrm{Cl}(Q(E))$, if $d(E)$ and $w(E)$ are trivial.

The proof goes back to Springer. He uses the description of $w(E)$ in terms of non-commutative cohomology classes in $H^{1}\left(G_{K}, \mathrm{SO}(n, \bar{K})\right)$. The elements $w_{i}=g\left(e_{i}\right) \in \mathrm{Cl}^{1}(Q(E))$ are invariant under G. They satisfy

$$
w_{i}^{2}=1, \quad w_{i} w_{j}=-w_{j} w_{i}, \quad \text { for } i \neq j
$$

- Let $\left(u_{s}\right)$ be a system of representatives in \widetilde{G} of the elements of G. From the construction of \widetilde{G} they satisfy

$$
u_{s} e_{i} u_{s}^{-1}=u_{s(i)}, \quad s \in G, \quad 1 \leq i \leq n
$$

- The 2-cocycle $\varepsilon \in H^{2}\left(G, C_{2}\right)$ corresponding to the extension \tilde{G} is defined by a factor set ($a_{s, t}$), $a_{s, t} \in C_{2}$, such that

$$
u_{s} u_{t}=a_{s, t} u_{s t} .
$$

- On the other hand, if the embedding problem is solvable, we need to find an element $\gamma \in L$ such that $\widetilde{L}=L(\sqrt{\gamma})$ and

$$
\begin{aligned}
& \gamma^{s}=b_{s}^{2} \gamma, \text { for all } s \in G, \text { and } b_{s} \in L^{*} \text { satisfying } \\
& \qquad b_{s} b_{t}^{s} b_{s t}^{-1}=a_{s, t}
\end{aligned}
$$

Main tool for the construction of γ : Clifford algebras
$f: \mathrm{Cl}(n, L) \xrightarrow{\sim} \mathrm{Cl}\left(L \otimes_{K} E, Q(E)\right)$
$g: \mathrm{Cl}(n, K) \xrightarrow{\sim} \mathrm{Cl}(Q(E))$, if $d(E)$ and $w(E)$ are trivial.

Theorem. [Crespo] Let $v_{i}=f\left(e_{i}\right), w_{i}=g\left(e_{i}\right)$.
(a) The isomorphisms f, g can be chosen so that the element

$$
z:=\sum_{\epsilon_{j} \in\{0,1\}} v_{1}^{\epsilon_{1}} v_{2}^{\epsilon_{2}} \cdots v_{n}^{\epsilon_{n}} w_{n}^{\epsilon_{n}} \cdots v_{2}^{\epsilon_{2}} v_{1}^{\epsilon_{1}} \in \mathrm{CL}\left(L \otimes_{K} E\right)
$$

is nonzero. Accordingly, z and $N(z)$ are invertible in $\mathrm{CL}^{0}\left(L \otimes_{K} E\right)$ and L, respectively.
(b) Let $m_{s}=f\left(u_{s}\right), b_{s}=m_{s}^{-1} z^{s} z^{-1}$. Then, for all $s, t \in G$, is
(i) $b_{s} \in L^{*}$.
(ii) $N(z)^{s}=b_{s}^{2} N(z)$.
(iii) $b_{s} b_{t}^{s}=a_{s, t} b_{s t}$.

Answering Serre's question

Theorem. [Crespo] Let K be any fiel of characteristic $\neq 2$. Let $E \mid K$ be a separable extension of degree n whose Galois closure $L \mid K$ has a Galois group $\operatorname{Gal}(L \mid K) \simeq G \subseteq A_{n}, n \geq 4, n \neq 6,7$. The spinor embedding problem $\widetilde{G} \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is solvable if and only if $w(E)$ is trivial. If this is the case, the general solution to the embedding problem is

$$
\widetilde{L}=L(\sqrt{r \gamma})
$$

where γ is a nonzero component of $N(z)$ in a G-invariant basis of $\mathrm{CI}\left(L \otimes_{K} E\right)$ and r runs through K^{*}.

Remark. If $Q(E) \simeq I_{n}$ over K, and $P \in \operatorname{GL}(n, K)$ is such that $P^{T}\left(\operatorname{Tr}\left(e_{i} e_{j}\right)\right) P=I_{n}$, then

$$
\gamma=N(z)=2^{n} \operatorname{det}(M P+I)
$$

- In Witt's example: $\operatorname{det}(M P+I)=4\left(p_{11} \sqrt{a}+p_{22} \sqrt{b}+p_{33} \sqrt{c}\right)$.

First Publications

1 Vila, N.: Polynomials over \mathbb{Q} solving an embedding problem. Ann. Inst. Fourier 35(1985), 79-83.

2 Vila, N.: On central extensions of A_{n} as Galois group over Q. Archiv Math. 44 (1985), 424-437.

3 Arenas, A.; Bayer, P.: Arithmetic behaviour of the sums of three squares. J. Number Theory 27 (1987), 273-284.

4 Arenas, A.: An arithmetic problem on the sums of three squares. Acta Arithmetica 51 (1988), 131-140.

5 Arenas, A.: On the summation of the singular series. Manuscripta Mathematica 57 (1987), no.4, 469-475.

6 Crespo, T.: Embedding problems with ramification conditions. Archiv Math. 53 (1989), 270-276.

7 Crespo, T.: Explicit construction of \widetilde{A}_{n}-type fields. J. Algebra 127 (1989), 452461.

8 Crespo, T.: Explicit solutions to embedding problems associated to orthogonal Galois representations. J. Reine Angew. Math. 409 (1990), 180-189.

First Lectures and Proceedings

9. Vila, N.: Sur la résolution d'un problème de plongement. Proceedings of the 13èmes Journées arithmétiques. Noordwijkerhout (Holand), 1983. Lecture Notes in Math. 1068, Springer, 1984, 243-253.
10. Vila, N.: Sur la réalisation des extensions centrales du groupe alterné comme groupe de Galois sur Q. Seminar on Number Theory, 1983-1984, Exp. No. 18, 9 pp., Univ. Bordeaux I, Talence, 1984.
11. Arenas, A.: On positive integers representable as a sum of three squares. Proceedings of the 14èmes Journées arithmétiques. Besançon, 1985. Astérisque No. 147-148 (1987), 259-263.
12. Arenas, A.: Quantitative aspects of the representations of integers by quadratic forms. Théorie des nombres (Quebec, PQ, 1987), 7-14, de Gruyter, Berlin, 1989.
13. T. Crespo: Construcción efectiva de soluciones a problemas de inmersión de la Teoría de Galois. Jornadas Hispano-Lusas. Valladolid, 1988.
14. T. Crespo: Résolution explicite de doubles recouvrements comme groupes de Galois. Journées Arithmétiques. Marseille (France), 1989.

EPILOGE: construction of modular forms of weight one
$H^{2}\left(S_{4}, C_{2}\right) \simeq C_{2} \times C_{2}, \quad 1 \rightarrow C_{2} \rightarrow \widetilde{S}_{4} \rightarrow S_{4} \rightarrow 1$
$f_{4}(X)$ polynomial defining $E,[E: \mathrm{Q}]=4, d=$ discriminant of E

\widetilde{S}_{4}	$1 \widetilde{A}$	$2 \widetilde{A}$	$4 \widetilde{A}$	$3 \widetilde{A}$	$6 \widetilde{A}$	$2 \widetilde{B}$	$8 \widetilde{A}$	$8 \widetilde{B}$
order	1	1	12	6	8	8	6	6
χ_{1}	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	-1	-1	-1
χ_{3}	2	2	2	-1	-1	0	0	0
χ_{4}	3	3	-1	0	0	1	-1	-1
χ_{5}	3	3	-1	0	0	-1	1	1
χ_{6}	2	-2	0	-1	1	0	$i \sqrt{2}$	$-i \sqrt{2}$
χ_{7}	2	-2	0	-1	1	0	$-i \sqrt{2}$	$i \sqrt{2}$
χ_{8}	4	-4	0	1	-1	0	0	0

\widetilde{S}_{4} admits two faithful irreducible representations of dimension 2.

Modular forms of octahedral type

Let $\widetilde{S}_{4} \rightarrow S_{4} \simeq \operatorname{GaI}(L \mid \mathrm{Q})$ be a solvable embedding problem

- $\rho: G_{\mathbf{Q}} \rightarrow \operatorname{Gal}(\widetilde{L} \mid \mathbf{Q}) \simeq \widetilde{S}_{4} \hookrightarrow \mathrm{GL}(2, \mathbf{C})$ odd Galois representation $f(z)=\sum_{n=1}^{\infty} a_{n} q^{n}, \quad q=e^{2 \pi i z}$ modular form of weight one
$\bar{\rho}: G_{\mathbf{Q}} \rightarrow \operatorname{Gal}(L \mid \mathbf{Q}) \simeq S_{4} \hookrightarrow \mathrm{PGL}(2, \mathbf{C})$
$\ell \nmid d$, a prime, $\quad \operatorname{Frob}_{\rho, \ell} \subset \widetilde{S}_{4}, \quad \operatorname{Frob}_{\bar{\rho}, \ell} \subset S_{4} \quad$ conjugacy classes
- $\operatorname{Frob}_{\bar{\rho}, \ell}$ determines only a_{ℓ}^{2}
- Frob $_{\rho, \ell}$ determines a_{ℓ}, but the computation of Frob $_{\rho, \ell}$ requires an explicit solution of the embedding problem.

An explicit reciprocity law of octahedral type

$$
\begin{aligned}
& f(X)=X^{4}-2 X-1 \in \mathbb{Q}[X], \quad x_{i} \in \overline{\mathbb{Q}}, \quad f\left(x_{i}\right)=0,1 \leq i \leq 4, \\
& E=\mathbb{Q}\left(x_{1}\right), L=\mathbb{Q}\left(\left\{x_{i}\right\}\right), d=-688=-2^{4} \cdot 43, \quad \operatorname{Gal}(L \mid \mathbb{Q}) \simeq S_{4} \\
& \Phi\left(S_{4}\right)=\{1 A, 2 A, 2 B, 3 A, 4 A\}
\end{aligned}
$$

$\lambda \mathcal{O}_{1}$	$\operatorname{Fr}_{\ell}(L \mid \mathbb{Q})$	\sharp	δ	$\ell \quad(\neq 2,43)$
$\lambda_{1} \lambda_{1}^{\prime} \lambda_{1}^{\prime \prime} \lambda_{1}^{\prime \prime \prime}$	$1 A$	1	$1 / 24$	$173,487,619,719,827,857, \ldots$
$\lambda_{2} \lambda_{2}^{\prime}$	$2 A$	6	$1 / 4$	$47,59,79,107,181,197, \ldots$
$\lambda_{1} \lambda_{1}^{\prime} \lambda_{2}$	$2 B$	3	$1 / 8$	$c, 19,37,71,113,131,137,149, \ldots$
$\lambda_{1} \lambda_{3}$	$3 A$	8	$1 / 3$	$11,13,17,23,31,41,53,67,83, \ldots$
λ_{4}	$4 A$	6	$1 / 4$	$3,5,7,29,61,73,89,151,163, \ldots$

\widetilde{S}_{4}	$1 \widetilde{A}, 2 \widetilde{A}$	$4 \widetilde{A}$	$2 \widetilde{B}$	$3 \widetilde{A}, 6 \widetilde{A}$	$8 \widetilde{A}, 8 \widetilde{B}$
S_{4}	$1 A$	$2 A$	$2 B$	$3 A$	$4 A$

$$
\widetilde{L}=L(\sqrt{\gamma}), \quad \gamma=3\left(x_{1}^{3} x_{2}^{2}-x_{2}^{2}-x_{1}^{2} x_{2}+x_{1} x_{2}+x_{2}\right)+x_{1}^{3}-2 x_{1}^{2}+4 x_{1}
$$

Fr_{ℓ}	\sharp	$\operatorname{Tr}\left(\mathrm{Fr}_{\ell}\right)$	$\operatorname{det}\left(\mathrm{Fr}_{\ell}\right)$	$\ell \quad(\neq 2,43)$
$1 \widetilde{A}$	1	2	1	$487,619,719, \cdots$
$2 \tilde{A}$	1	-2	1	$173,827,857, \cdots$
$2 \tilde{B}$	6	0	-1	$c, 19,37,71,113,131,137, \cdots$
$3 \tilde{A}$	8	-1	1	$11,17,53,67,97,101, \cdots$
$4 \tilde{A}$	12	0	1	$47,59,79,107,181,197, \cdots$
$6 \tilde{A}$	8	1	1	$13,23,31,41,83,109, \cdots$
$8 \tilde{A}$	6	$i \sqrt{2}$	-1	$7,29,61,89,179, \cdots$
$8 \widetilde{B}$	6	$-i \sqrt{2}$	-1	$3,5,73,151,163, \cdots$

$\square \square \square$

Other contributions...

From 1981 to 1988

