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INTRODUCTION

• 1892, D. Hilbert

Sn and An are Galois groups over Q(T )

Irreducibility theorem

• 1931, I. Schur

Effective construction of polynomials over Q realising Sn and An for

particular values of n.

• 1970, Y. Yamamoto

For every even integer n there are infinitely many polynomials of type

Xn + aX + b ∈ Z[X] whose Galois group over Q is isomorphic to Sn.



Galois realisations of solvable groups

• 1954, I. R. Shafarevich

Any solvable group is Galois over any number field.

Strategy: Resolution of successive Galois embedding problems.

Shafarevich, I. R.: Construction of fields of algebraic numbers with given solvable

Galois group. Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1954), 525–578. Amer. Math.

Soc. Transl. 4 (1960), 185–237.

• 1979, J. Neukirch

Simplified proof of Shafarevich’s theorem for solvable groups of odd
order.

Tools: Use of Galois cohomology

Neukirch, J.: On solvable number fields. Invent. Math. 53 (1979), no. 2, 135–164.



Galois realisations of Sn and An

• 1983, E. Nart & N. Vila

For every even integer n > 2 there are infinitely many polynomials
Xn + bX2 + cX + d ∈ Z[X] whose Galois group over Q is isomorphic to
An.
For every odd integer n > 3 there are infinitely many polynomials
Xn+aX3+bX2+cX+d ∈ Z[X] whose Galois group over Q is isomorphic
to An.

Tools: Use of a Furtwängler criterion.

Remark. For the cases n even and 4 - n, explicit equations for An were
not known before.

Nart, E.; Vila, N.: Equations with absolute Galois group isomorphic to An. J. Number

Theory 16 (1983), no. 1, 6–13.
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CHAPTER I
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Galois embedding problems

K field; K separable closure of K

GK = Gal(K|K) absolute Galois group; G finite group

K ⊆ L ⊆ K Galois extension, L|GK

ϕ : GK → Gal(L|K) ' G

Definition. Given a group extension G̃ = A ·G, a solution of the Galois
embedding problem

G̃→ G ' Gal(L|K)

is a field L̃ such that L ⊆ L̃ ⊆ K and the diagram

Gal(L̃|K)
o��

ϕ
//Gal(L|K)

o
��

G̃ //G

commutes, where ϕ is given by restriction.



The obstruction to embedding problems

Let ε ∈ H2(G,A) be the element defined by an exact sequence

1→ A→ G̃→ G→ 1

in which A is an abelian group.

Let L|GK be a Galois extension defined by a homomorphism

ρ : GK → Gal(L|K) ' G.

Through the inflation map, we obtain an element

ρ∗ε ∈ H2(GK, A).

Theorem. [Hoechsmann, 1968] The embedding problem G̃→ G '
Gal(L|K) is solvable if and only if

ρ∗ε = 0.



Central extensions

An extension E = N ·G of a group G is said to be central if it is given

by an exact sequence 1→ N → E → G→ 1 with N ⊆ Z(E). Then N is

an abelian group and the action of G in N is trivial.

A group G is said to be perfect if [G,G] = G. In particular, non-abelian

simple groups are perfect.

Perfect groups admit universal central extensions G̃ = A · G; they are

central extensions such that for any central extension E = N ·G there is

a unique homomorphism h : G̃→ E making commutative the diagram

1 //A //

��

G̃
h
��

π //G //1

1 //N //E //G //1.



Galois realisations of central extensions of perfect groups

Lemma. [Vila] Let L|GK be a Galois extension with G a perfect

group. Let G̃ be its universal central extension. If the embedding

problem

G̃→ G ' Gal(L|K)

admits a solution, then any embedding problem defined by a central

extension E = N ·G will be solvable.

Proof. (sketch) The proof makes use of an Ikeda’s lemma [1960] on

the existence of proper solutions.

Remark. The lemma motivated to consider the realisation of central

extensions of simple groups as Galois groups. The easiest cases being

those of An, n 6= 6,7:

1→ C2 → Ãn → An → 1.



Theorem. [Nart & Vila] Let K be a number field and R its ring

of integers. Let F (X) = Xn + aX2 + bX + c ∈ R[X], ac 6= 0, be a

polynomial satisfying the following conditions:

(i) F (X) is irreducible and primitive.

(ii) b2(n− 1)2 = 4acn(n− 2).

(iii) (−1)n/2c is a square.

(iv) If u = −b(n− 1)/2(n− 2)a, there exists a prime ideal p of R such

that

c(n− 1) 6∈ p, F (u) ∈ p, and 3 - vp(F (u)).

Then, if n is even and n > 2, the Galois group of F (X) over K is

isomorphic to An.



The local obstruction at infinity for the Nart-Vila equations

Proposition. [Vila] Let f(X) ∈ Q[X] be an irreducible polynomial of

degree n whose Galois group is isomorphic to An and let r1 be the

number of its real roots. Then

1. n ≡ r1 (mod 4).

2. The local obstruction at ∞ of the embedding problem Ãn → An '
GalQ(f) is zero if and only if

n ≡ r1 (mod 8).

Corollary. The obstruction at∞ of Nart-Vila equations for An is trivial

if and only if n ≡ 0 or 2 (mod 8).



Serre’s formula

Suppose that n 6= 6,7. The exact sequence 1 → C2 → Ãn → An → 1
defines an element an ∈ H2(An, C2). For any G ⊆ An, let ε ∈ H2(G,C2)
be the element obtained by restriction

res : H2(An, C2)→ H2(G,C2), an 7→ ε,

and denote by G̃ the corresponding extension of groups. Let E|K
be an extension of degree n, L|GK its Galois closure and ρ : GK →
Gal(L|K) ' G. Through the inflation map, we obtain now an element

ρ∗ε ∈ H2(GK, C2) ' Br2(K).

Theorem. [Serre, 1984] Let QE be the n-ary quadratic form

X → TrE|K(X2).

Then the obstruction to the embedding problem G̃→ G ' Gal(L|K) is
given by

ρ∗ε = w(QE),

where w denotes the Hasse-Witt invariant of QE.



First results

Theorem. [Vila] Suppose that n > 6 is an even integer. Let L be

the splitting field over K of a polynomial F (X), as above. Then the

embedding problem Ãn → Gal(L|K) ' An is solvable if and only if

n ≡ 0 (mod 8), or
n ≡ 2 (mod 8) and n is a sum of two squares.

Corollary. Any central extension of An, n > 6, occurs as Galois group

over Q if n ≡ 0 (mod 8) or n ≡ 2 (mod 8) and n is a sum of two

squares.

In these cases:

TrE|K(X2) ∼


nX2

1 − (n− 2)aX2
2 +X3X4 + · · ·+Xn−1Xn, if n is even,

nX2
1 +X2

2 +X3X4 + · · ·+Xn−1Xn, if n is odd.



How to achieve more values of n

1. Find new irreducible polynomials f(X) ∈ Q[X], of degree n, with

Galois group isomorphic to An and with a “computable” trace form

and good behaviour at infinity.

2. Compute w(TrE|Q), where E = Q(θ), θ a root of f(X).

3. Impose conditions on f(X) in order that w(TrE|Q) = 1.

Remark. (1) was solved with techniques used by Hurwitz and worked

out by Matzat. Afterwards, they gave rise to the so called Thompson

rigidity methods.

The starting point was Riemann existence theorem.



Hurwitz presentations

Definition. Let G be a finite group and ti ∈ G, 1 ≤ i ≤ r. We say that

(t1, . . . , tr) is a Hurwitz r-presentation of G if {t1, . . . , tr} generate G

and t1 · · · tr = 1.

Hr(G) set of Hurwitz r-presentations

Given (t1, . . . , tr) ∈ Hr(G), let H(t1, . . . , tr) be the set of (s1, . . . , sr) ∈
Hr(G) such that the subgroups 〈si〉 and 〈ti〉 are conjugate in G.

h(t1, . . . , tr) :=#H(t1, . . . , tr)/Aut(G) Hurwitz number

Definition. A finite group is complete if its center is trivial and any

automorphism is inner. Ex.: Sn is a complete group.

Proposition. Any finite complete group having a Hurwitz presentati-

on with Hurwitz number equal to 1 is Galois over Q(T ).



New Sn and An-equations over Q(T )

Theorem. [Vila] Let n, k be positive integers, gcd(n, k) = 1, k ≤ n.

(a) Let s1 = (n, n − 1, . . . ,3,2,1), s2 = (1,2, . . . , k)(k + 1, . . . , n), s3 =
(1, k + 1). Then (s1, s2, s3) ∈ H3(Sn) and h(s1, s2, s3) = 1.

(b) For n ≥ 5, the polynomial Gk(X,T ) = Xn−k
(
X −

n

n− k

)k
−
( −k
n− k

)k
T

has Galois group over Q(T ) isomorphic to Sn.

(c) For n ≥ 5 and k ≤ n/2, the polynomial

Fn,k(X,T ) =


Xn −A(nX − k(n− k))k, if n is odd,

Xn + kn−2kBn−k−1(nX +Bk(n− k))k, if n is even,

where A = kn−2k(1− (−1)(n−1)/2nT2), B = (−1)n/2k(n− k)T2 + 1
has Galois group over Q(T ), and over Q(i, T ), isomorphic to An.



The computation of the Hasse-Witt invariant

K = Q(T ) or K = Q(i, T ); n 6= 6,7; k ≤ (n+ 1)/3 odd
Fn,k(X,T ) = Xn +A(bX + c)k; En,k = K(θ); Ln,k|K splitting field

Theorem. [Vila]

(a) TrEn,k|K(X2) 'nX2
1 + (−1)(n−2)/2X2

2 +X3X4 + · · ·+Xn−1Xn, if n is even,

nX2
1 + nCX2

2 + (−1)(n+1)/2CX2
3 +X4X5 + · · ·+Xn−1Xn, if n is odd,

where C = k(n− k)(1− (−1)(n−1)/2nT2).

(b) w(En,k|Q) =(n, (−1)n/2)⊗ (−1,−1)n(n−2)/8, if n is even,

(−(n− k)k, (−1)(n−1)/2n)⊗ (−1,−1)(n+1)(n−1)/8, if n is odd.



(c) w(En,k|Q(i)) =

1, if n is even,

(−(n− k), n) = 1, if n is odd and k is a square.

Galois realisations over Q(i)

Corollary. Let Ln,k be the splitting field of the polynomial Fn,k(X,T )

over Q(i, T ). Then the embedding problem

Ãn → An ' Gal(Ln,k|Q(i, T ))

is solvable for any even value of n, or for any odd value of n and k a

square (n 6= 6,7).

Corollary. Any central extension of the alternating group An occurs

infinitely often as Galois group over Q(i), for any value of n 6= 6,7.



Galois realisations over Q
Definition. A positive integer n, n 6≡ 0 (mod 4) or n 6≡ 7 (mod 8),
satisfies the property (N) if there exists a decomposition of n into a
sum of three squares n = x2 + y2 + z2 such that gcd(x, n) = 1 and
x2 ≤ (n+ 1)/3.

Theorem. [Vila]The embedding problem Ãn → An ' Gal(Ln,k|Q(T ))
is solvable for the following values n and k:

(a) n ≡ 0 (mod 8), k > 0,
(b) n ≡ 1 (mod 8), k a square,
(c) n ≡ 2 (mod 8), and n being a sum of two squares, k > 0,
(d) n ≡ 3 (mod 8), n satisfying (N), and k = x2.
If n ≡ 4,5,6,7 (mod 8), the previous embedding problem is not solva-
ble for any value of k.

Corollary. Any central extension of An occurs infinitely often as Galois
group over Q if
n ≡ 0,1 (mod 8),
n ≡ 2 (mod 8), and n is a sum of two squares,
n ≡ 3 (mod 8), and n satisfies (N).



Remarks

• Vila presented her results at the 1983 Journées Arithmétiques, held

at Noordwijkerhout.

• The above articles caught the attention of [Conner; Perlis, 1984],

[Serre, 1984; 1988; 1989; 1992], [Schacher; Sonn, 1986], [Feit, 1986;

1989], [Matzat, 1987; 1988; 1991], [Sonn, 1988; 1989; 1991], [Con-

ner; Yui, 1988], [Karpilovski, 1989], [Mestre, 1990; 1994], [Turull,

1992], [Volklein, 1992], [E. Bayer, 1994], [Swallow, 1994], and [Epken-

hans, 1994; 1997].

• Mestre [1990] succeeded in proving that Ãn occurs as Galois group

over Q(T ) for any value of n. For that, Mestre combined some of the

above techniques with ideas due to Henniart, Oesterlé, and Serre.



A question of Serre

If G = Gal(L|K) ⊆ An, w(QE) = 0, and G̃ = Gal(L̃|K) ⊆ Ãn, how can

L̃ = L(
√
u) be effectively constructed?
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CHAPTER II

1991: UB

From May 1983 to July 1985



The property (N)

Definition. A positive integer n, n 6≡ 0 (mod 4) or n 6≡ 7 (mod 8),
satisfies the property (N) if there exists a decomposition of n into a
sum of three squares n = x2 + y2 + z2 such that gcd(x, n) = 1 and
x2 ≤ (n+ 1)/3.

• Is this property always satisfied?

il se peut que ce soit très difficile Serre, 1983

• P. Llorente checked that any positive integer n ≤ 600 000, n ≡ 3
(mod 8), satisfies the property (N).
• Gauss, 1800: n admits a primitive representation as a sum of three
squares if and only if n 6≡ 0,4,7 (mod 8).
• Catalan. If n = 3u, the three summands can be chosen to be coprime
to 3.

• Arenas: Constructed special families of integers fulfilling the property
(N).



The level of an integer: first results

Definition. Given a positive integer n 6= 4a(8b + 7), the level `(n) is

the maximum value ` such that n can be written as a sum of three

squares, n = x2
1 + x2

2 + x2
3, with ` summands coprime to n.

Corollary. If n ≡ 3 (mod 8) is a positive integer such that `(n) = 3,

then any central extension of the alternating group An is Galois over Q.

Theorem. [Arenas] Let n = mt > 1 be an integer, with m =

2α0p
α1
1 . . . pαrr , αi ≥ 0, pi ≡ 1 (mod 4), t = q

β1
1 . . . q

βs
s , qj ≡ 3 (mod 4),

βj ≥ 0.

(a) If n ≡ 0 (mod 2) or n ≡ 0 (mod 5), then `(n) ≤ 2.

(b) If n = m, α0 = 0, then `(n) ≥ 2.

(c) If n = 2α05α1p
α2
1 . . . pαrr , α0 + α1 > 0, α0 ≤ 1, then `(n) = 2.

(d) If n = m, α0 = 0, and n is an Euler numerus idoneus, then `(n) = 2.

(e) If n = t and n 6≡ 7 (mod 8), then `(n) = 3.



A strategy for determining the level

From all the representations of n discard those that are not good!

Schinzel/Erdös, 1983

1. Compare numbers of representations of an integer n by different ad

hoc ternary quadratic forms.

2. Since the number of representations r(n, f) cannot be determined

in general, approximate this number by an average value r(n,genf).

3. Estimate the error r(n, f)− r(n,genf).



Some notation

f positive definite ternary quadratic form with integer coefficients

n positive integer

r(n, f) = #{(xi) ∈ Z3 : f(x1, x2, x3) = n}

r∗(n, f) = #{(xi) ∈ Z3 : f(x1, x2, x3) = n,gcd (xi) = 1}

rm(n, f) = #{(xi) ∈ Z3 : f(x1, x2, x3) ≡ n (mod m)}

Möbius function:

µ(n) =


1, if n = 1,

0, if n is not square-free,

(−1)r, if n = p1 . . . pr is a product of distinct primes.



Sums of three squares

I3 = X2
1 +X2

2 +X2
3

di(n) number of representations of n by I3 with exactly i components
not coprime to n

g1(n) :=
d3(n)

r(n, I3)

g2(n) :=
d2(n) + d3(n)

r(n, I3)

g3(n) :=
d1(n) + d2(n) + d3(n)

r(n, I3)

Lemma. [Arenas] Let n be an odd positive integer, n 6≡ 7 (mod 8),
or an even positive integer, n 6≡ 0,4 (mod 8). Then, for any 1 ≤ i ≤ 3,

gi(n) < 1⇐⇒ `(n,3) ≥ i.



Auxiliary alternating sums

Theorem. [Arenas] For 1 ≤ i ≤ 3, define

si(n) = ρi
∑

(−1)iµ(a1)µ(a2)µ(a3)r(n, 〈a2
1, a

2
2, a

2
3〉),

where ρi = 3− 2[i/3] and the sum runs over those square-free positive
integers aj such that 1 < aj|n, for j ≤ i, and aj = 1, for j > i. Then
(a) s3(n) = d3(n),
(b) s2(n) = d2(n) + 3d3(n),
(c) s3(n) = d1(n) + 2d2(n) + 3d3(n).

• si(n) counts the number of representations of n of level ≤ (3− i).

Corollary. Let n 6≡ 0,4,7 (mod 8). Then

(a) g1(n) =
s3(n)

r(n, I3)
,

(b) g2(n) =
s2(n)− 2s3(n)

r(n, I3)
,

(c) g3(n) =
s1(n)− s2(n) + s3(n)

r(n, I3)
.



Genus theory

f definite integral quadratic integral form, gen(f) = {[f1], . . . , [fh]}

genf = geng ⇐⇒ f
Zp
' g, for all p ∈ P ∪ {∞}

r(n,gen(f)) :=

 h∑
i=1

1

o(fi)

−1 h∑
i=1

r(n, fi)

o(fi)


Theorem. [Siegel]

r(n,gen(f)) = ∂∞(n, f)
∏
p
∂p(n, f),

where

∂p(n, f) =



2πn1/2

(det f)1/2
, if p =∞,

rp2α(n, f)

p2α
, for all α ≥ 2β + 1, pβ‖2n, if p is prime.



The average alternating sums attached to n

f = 〈a2
1, a

2
2, a

2
3〉, ai|n, ai square-free

di,j := gcd(ai, aj), d123 := gcd(a1, a2, a3), d := d−2
123d12d13d23

r(n, 〈a1, a2, a3〉) = r(nd−2, 〈b1, b2, b3〉), where bi = d−1
ij d

−1
ik d123ai

Si(n) := ρi
∑

(−1)iµ(a1)µ(a2)µ(a3)r(nd−2,gen〈b21, b
2
2, b

2
3〉),

S′i(n) :=
Si(n)

r(n, I3)
, for 1 ≤ i ≤ 3

The main term in the determination of the level of n

G1(n) := S′3(n)

G2(n) := S′2(n)− 2S′3(n)

G3(n) := S′1(n)− S′2(n) + S′3(n)



Computation of the main term Gi(n), square-free case

n = mt square-free positive integer
m = 2ap1 . . . pr, pi ≡ 1 (mod 4), 0 ≤ a ≤ 1
t = q1 . . . qs, qj ≡ 3 (mod 4)

Theorem. [Arenas] Let n = mt be square-free, n 6≡ 7 (mod 8).
Then

(a) If n is odd,
G1(n) = 1− 3P1(m) + 3P2(m)− P3(m),
G2(n) = 1− 3P2(m) + 2P3(m),
G3(n) = 1− P3(m).

(b) If n is even,
G1(n) = 1− 2P1(m) + P2(m),
G2(n) = 1− P2(m),
G3(n) = 1,

where Pj(m) =
∏r
i=1(1− 2j(1 + pi)

−1), for 1 ≤ j ≤ 3.



Computation of the main term Gi(n), non square-free case

Definition. Let n 6≡ 0,4 (mod p) be a positive integer and let p ba a

prime such that vp(n) = α > 0. Writing n = mpα, let

∂p(mpαd−2, 〈b21, b
2
2, b

2
3〉)

p∂p(mpα, I3)
=:

∂
′
p(m,α), if p|bi for exactly one i,

∂′
p2(m,α), if p|d.

Theorem. [Arenas] Let n = mpα, α = vp(n) > 0. We assume that α

is even if not all the exponents in the factorization of n are odd. n 6≡ 0

(mod 4). Then

G1(n) = G1(m) + ∂′p(m,α)(G2(m)−G1(m)) + ∂′
p2(m,α)(1−G2(m)),

G2(n) = G2(m) + 2∂′p(m,α)(G3(m)−G2(m))+

+∂′
p2(m,α)(1 +G2(m)− 2G3(m)),

G3(n) = G3(m) + (3∂′p(m,α)− ∂′
p2(m,α))(1−G3(m)).



Bound of the main term Gi(n)

Lemma. [Arenas] Let n = mpα 6≡ 0,4 (mod 8) be a positive integer.

If α > 0 and p 6= 2, then

(a) 0 ≤ ∂′p(m,α) < 1/2,

(b) 0 ≤ ∂′
p2(m,α) < p−1,

(c) 0 ≤ 3∂′p(m,α)− 2∂′
p2(m,α) < 7/13, if p 6= 5.

(d) 3∂′5(m,α)− 2∂′
52(m,α) = 1.

(e) 0 ≤ 2∂′p(m,α)− ∂′
p2(m,α) < 4/5.

Theorem. [Arenas] Let n = p
α1
1 . . . p

αk
k be a positive integer with

4 - n. Then there exist constants ci = ci(p1 · · · pk) such that

Gi(n) < ci(p1 . . . pk) < 1,

for i = 1,2,3 if gcd(n,10) = 1; and i = 1,2 if gcd(n,10) 6= 1. In the

latter case, we have G3(n) = 1.



The average level

Definition.

`a(n,3) =


−1, if n = 4a(8b+ 7),

0, if 4|n and n 6= 4a(8b+ 7),

2, if gcd(n,10) 6= 1,

3, if gcd(n,10) = 1.

Remark.

For any n ≤ 105 is

`(n,3) = `a(n,3),

except for 24 cases in which is `(n,3) = 1 and `a(n,3) = 2

and for

n = 13,37,403,793 for which is `(n,3) = 2 and `a(n,3) = 3.

• To bound the error term  use modular forms!



Theorem. [Siegel, Shimura] Let (V,B, f) be a quadratic space of
dimension k ≥ 3. Let

L = 〈e1, . . . , ek〉 be a Z-lattice in V ,

L# := {x ∈ V : B(x, L) ⊆ Z} its dual lattice,

e(z) := exp(2πiz).

Define θ(L, z) = θ(f, z) =
∑
x∈L e(f(x)z), z ∈ H, detL = det(B(ei, ej)),

χ(m) =



(
2 detL
m

)
, if k is odd,

(
(−1)d/2 detL

m

)
, if k is even.

Suppose that f(L)Z = Z and that f(L#)Z = N−1Z. Then

(a) θ(L, z) ∈M(Γ0(N), k/2, χ).

(b) θ(L, z)− θ(genL, z) ∈ S(Γ0(N), k/2, χ).



The error term gi(n)−Gi(n) in the determination of the level

θ(f, z) :=
∞∑
n=0

r(n, f)e(nz) z ∈ H

θ(genf, z) :=
∞∑
n=0

r(n,genf)e(nz)

θ(z) = θ(I1, z) = 1 + 2
∞∑
n=0

e(n2z) Jacobi theta function

M(Γ, k) = E(Γ, k)⊕ S(Γ, k)

θ(I3, z) = θ3(z) ∈M(Γ0(4),3/2)

θ(〈b21, b
2
2, b

2
3〉, z) ∈M(Γ0(N),3/2) N = 4b21b

2
2b

2
3

θ(gen〈b21, b
2
2, b

2
3〉, z) ∈ E(Γ0(N),3/2)

θ(〈b21, b
2
2, b

2
3〉, z)− θ(gen〈b21, b

2
2, b

2
3〉, z) ∈ S(Γ0(N),3/2)



Spinor genus of a quadratic space

(V,B) = (V, f) K-quadratic space, char(K) 6= 2

sv : x 7→ x− 2v
B(v, x)

B(v, v)
reflection orthogonal to v

Spn : O(V ) −→ K∗/(K∗)2

u = sv1 . . . svt −→ f(v1) . . . f(vt)
spinor norm

1→ SO1(V )→ SO(V )
Spn→ K∗/(K∗)2

1→ C2 → Spn(V )→ SO1(V )→ 1

Definition. [Eichler] Two Z-lattices L and M in a Q-quadratic space
V are said to be spinor equivalent if there exists a transformation
u ∈ SO(V ) and, for each p, a transformation vp ∈ SO1(V ) such that

Mp = uvpLp.

• Properly equivalent lattices are in the same spinor genus, and lattices
in the same spinor genus are in the same genus.



Theta series of ternary quadratic forms

S(Γ0(N),3/2, χ) = U ⊕ U⊥, U = ⊕U(a), 4s2a|N, a square-free

U subspace spanned by certain Shimura thetaseries

Theorem. [Schulze-Pillot, 1984] Let L be a lattice of dimension 3,

and level N . Let n0|N be a square-free integer. Then

(a) θ(L, z)− θ(spnL) ∈ U⊥.

(b) If g(z) =
∑∞
n=1 a(n)e(nz) ∈ U(n0)⊥, then

a(n0s
2) = O(s1/2+ε),

the O-constant depending on ε, n0 and g.

Proof. (sketch) Shimura’s lifting from modular forms of weight 3/2 to

modular forms of weight 2 maps U(n0)⊥ to S(Γ0(N/2),2, χ2). Then

apply Eichler proof of the Ramanujan-Petersson conjecture.



Bound of the error term gi(n)−Gi(n), n square-free

n = mt square-free positive integer

m = 2ap1 . . . pr, pi ≡ 1 (mod 4), 0 ≤ a ≤ 1

t = q1 . . . qs, qj ≡ 3 (mod 4)

Theorem. [Arenas] Let n = mt be a square-free positive integer and
f = 〈a2

1, a
2
2, a

2
3〉, ai|m, gcd(ai, aj) = 1 for i 6= j. Then

(a) genf = spnf .

(b) r(n, f)− r(n,genf) = Oε,m,f(s1/4+ε), for any ε > 0.

(c) If n 6≡ 7 (mod 8), then, for any ε > 0 is

gi(n)−Gi(n) = Oε,m(s−1/4+ε),

for 1 ≤ i ≤ 3.



The determination of the level, square-free case

Theorem. [Arenas] Let Let n = mt be a square-free positive, n 6≡ 7
(mod 8). There exists a constant c(m) such that

`(n) =

2, if gcd(n,10) 6= 1,

3, if gcd(n,10) = 1.

for any t > c(m).

The constants are non-trivial in general:

m c(m) ≥
13 403
10 27190
37 37

13 · 61 793

Application to the Galois embedding problem

Corollary. Let n = mt be a square-free positive integer, n ≡ 3 (mod 8),
n 6≡ 0 (mod 5). Then there exists a constant c(m) such that any cen-
tral extension of the alternating group An occurs infinitely often as
Galois group over Q, for any n > c(m).



Bound of the error term gi(n)−Gi(n), general case

n = n0s
2 be a positive integer, n 6≡ 0,4,7 (mod 8),

n0 its square-free part

m0 = rad(n)

Theorem. [Arenas] Let f = 〈b21, b
2
2, b

2
3〉 be a quadratic form such that

bi|n, gcd(bi, bj) = 1, for i 6= j, bi square-free. Then

(a) genf = spnf .

(b) r(n, f)− r(n,genf) = Oε,n0,f(s1/2+ε), for any ε > 0.

(c) For any ε > 0 and 1 ≤ i ≤ 3, is

gi(n)−Gi(n) = Oε,m0(s−1/2+ε).



The determination of the level, square-free case

Theorem. [Arenas] Let n 6≡ 0,4,7 (mod 8) and m0 = rad(n). There
exists a constant c(m0) such that if n > c(m0), then

`(n) =

2, if gcd(n,10) 6= 1,

3, if gcd(n,10) = 1.

The constants are trivial for n ≤ 105, except for:

m0 c(m0) ≥
30 90

390 1170
570 1710

1230 3690
6630 19890

Application to the Galois embedding problem

Corollary. Let n ≡ 3 (mod 8), n 6≡ 0 (mod 5), be a positive integer.
Let m0 = rad(n). Then there exists a constant c(m0) such that any
central extension of the alternating group An occurs infinitely often as
Galois group over Q, for any n > c(m0).
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First explicit solutions to some Galois embedding problems

1→ C2 → H8 → C2 × C2 → 1 the quaternion group

Theorem. [Dedekind] Let L = Q(
√

2,
√

3). The embedding problem
H8 → C2 × C2 ' Gal(L|Q) is solvable by the field

L̃ = Q
(√

(2 +
√

2)(3 +
√

6)
)
.

Theorem. [Witt, 1936] Let K be a field of characteristic 6= 2. A
biquadratic extension L = K(

√
a,
√
b,
√
c), abc = 1, can be embedded in

a Galois extension L̃|K with Galois group H8 if and only if the quadratic
forms

aX2
1 + bX2

2 + cX2
3 , Y 2

1 + Y 2
2 + Y 2

3

are K-equivalent.
If the matrix P = (pij) ∈ SL(2,K) yields the required isomorphism,
then all the fields L̃ solving the embedding problem are given by

L̃ = Q
(√

r(1 + p11
√
a+ p22

√
b+ p33

√
c

)
,

where r runs through K∗.



Clifford algebras

V ' Kn, Q a quadratic form, T (V ) tensor algebra

I(Q) = 〈v ⊗ v −Q(v)1〉v∈V ⊆ T (V ) two sided ideal

Cl(Q) := T (V )/I(Q)

α : Cl(Q) 	, α(v) := −v, v ∈ V , principal automorphism

Cl(Q) = Cl0(Q)⊕Cl1(Q)

β : Cl(Q) 	, β(v1 . . . vk) = vk . . . v1 principal antiautomorphism

N(x) := β(x)x, x ∈ Cl(V,Q) spinor norm

Γ+(Q) = {x ∈ Cl0(Q)∗ : xV x−1 = V } special Clifford group

1→ Γ+
0 (Q)→ Γ+(Q)

N→ K∗ reduced Clifford group

1→ C2 → Γ+
0 (Q)

ϕ→ SO(Q) where ϕ(x)(v) := xvx−1



Spinor construction of central extensions

V = 〈e1, . . . .en〉K, In standard form
Cl(n,K) : e2

i = 1, eiej = −ejei, i 6= j

n ≥ 4, An ⊆ SO(n,K), s 7→ ps , ps(ei) = es(i)

s = (i, k)(j, `) ∈ An, #{i, j, k, l} = 4, xs =
1

2
(ei − ej)(ek − e`) ∈ Cl(n,K)

N(xs) = 1, x2
s = −1

xs ∈ ϕ−1(An) ⊆ Γ+
0 (n,K), are elements of order 4.

Ãn := ϕ−1(An) is the unique non-trivial double cover of An.

1 //C2
//

o
��

G̃� _

��

//G //
� _

��

1

1 //C2
//

o
��

Ãn

��

//An

��

//1

1 //C2
//Γ+

0 (n,K)
ϕ
//SO(n,K)



The Clifford algebra of the trace form

K ⊆ E ⊆ K, [E : K] = n, L|GK its splitting field

Q(E) := TrE|K(X2), d(E) := disc(TrE|K(X2)), w(E) := w(TrE|K(X2))

Φ = HomK(E,K), G acts on Φ; G ⊆ An ⇔ d(E) = 1 ∈ K∗/(K∗)2

Theorem. [Springer 1959, Serre 1982, Crespo]

(a) The L-quadratic spaces (Ln, In) and (L⊗KE,Q(E)) are isomorphic.
Thus, there exists an isomorphism of Clifford algebras

f : Cl(n,L)
∼−→ Cl(L⊗K E,Q(E))

such that f(Ln) = L⊗K E.

(b) If d(E) and w(E) are trivial, then there exists a K-algebra isomor-
phism g : Cl(n,K)

∼−→ Cl(Q(E)) such that

g(Cl0(n,K)) = Cl0(E), g(Cl1(n,K)) = Cl1(Q(E)).



The proof of the proposition (sketch)

(a) f : Cl(n,L)
∼−→ Cl(L⊗K E,Q(E))

E = 〈e1, . . . , en〉, M = (e
sj
i ) ∈ GL(n,L), sj ∈ Φ, 1 ≤ i, j ≤ n

MTM = (TrE|K(eiej))⇒ (Ln, In) ' (L⊗K E,Q(E)).

The vectors vi := f(ei) yield a basis of Cl(L⊗K E) and satisfy

v2
i = 1, vivj = −vjvi, for i 6= j; vsi = vs(i), for all s ∈ G.

(b) g : Cl(n,K)
∼−→ Cl(Q(E)), if d(E) and w(E) are trivial.

The proof goes back to Springer. He uses the description of w(E) in

terms of non-commutative cohomology classes in H1(GK,SO(n,K)).

The elements wi = g(ei) ∈ Cl1(Q(E)) are invariant under G. They

satisfy

w2
i = 1, wiwj = −wjwi, for i 6= j.



ε 1 //C2
//

o
��

G̃� _

��

//G //
� _

��

1

1 //C2
//Γ+

0 (n,K)
ϕ
//SO(n,K)

• Let (us) be a system of representatives in G̃ of the elements of G.
From the construction of G̃ they satisfy

useiu
−1
s = us(i), s ∈ G, 1 ≤ i ≤ n.

• The 2-cocycle ε ∈ H2(G,C2) corresponding to the extension G̃ is
defined by a factor set (as,t), as,t ∈ C2, such that

usut = as,tust.

• On the other hand, if the embedding problem is solvable, we need
to find an element γ ∈ L such that L̃ = L(

√
γ) and

γs = b2sγ, for all s ∈ G, and bs ∈ L∗ satisfying

bsb
s
tb
−1
st = as,t.



Main tool for the construction of γ: Clifford algebras

f : Cl(n,L)
∼−→ Cl(L⊗K E,Q(E))

g : Cl(n,K)
∼−→ Cl(Q(E)), if d(E) and w(E) are trivial.

Theorem. [Crespo] Let vi = f(ei), wi = g(ei).

(a) The isomorphisms f, g can be chosen so that the element

z :=
∑

εj∈{0,1}
v
ε1
1 v

ε2
2 · · · v

εn
n w

εn
n · · · v

ε2
2 v

ε1
1 ∈ CL(L⊗K E)

is nonzero. Accordingly, z and N(z) are invertible in CL0(L⊗K E) and

L, respectively.

(b) Let ms = f(us), bs = m−1
s zsz−1. Then, for all s, t ∈ G, is

(i) bs ∈ L∗.
(ii) N(z)s = b2sN(z).

(iii) bsbst = as,tbst.



Answering Serre’s question

Theorem. [Crespo] Let K be any fiel of characteristic 6= 2. Let
E|K be a separable extension of degree n whose Galois closure L|K
has a Galois group Gal(L|K) ' G ⊆ An, n ≥ 4, n 6= 6,7. The spinor
embedding problem G̃ → G ' Gal(L|K) is solvable if and only if w(E)
is trivial. If this is the case, the general solution to the embedding
problem is

L̃ = L(
√
rγ),

where γ is a nonzero component of N(z) in a G-invariant basis of
Cl(L⊗K E) and r runs through K∗.

Remark. If Q(E) ' In over K, and P ∈ GL(n,K) is such that
PT (Tr(eiej))P = In, then

γ = N(z) = 2ndet(MP + I).

• In Witt’s example: det(MP + I) = 4(p11
√
a+ p22

√
b+ p33

√
c).
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EPILOGE: construction of modular forms of weight one

H2(S4, C2) ' C2 × C2, 1→ C2 → S̃4 → S4 → 1

f4(X) polynomial defining E, [E : Q] = 4, d = discriminant of E

S̃4 1Ã 2Ã 4Ã 3Ã 6Ã 2B̃ 8Ã 8B̃
order 1 1 12 6 8 8 6 6

χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 −1 −1
χ3 2 2 2 −1 −1 0 0 0
χ4 3 3 −1 0 0 1 −1 −1
χ5 3 3 −1 0 0 −1 1 1
χ6 2 −2 0 −1 1 0 i

√
2 −i

√
2

χ7 2 −2 0 −1 1 0 −i
√

2 i
√

2
χ8 4 −4 0 1 −1 0 0 0

S̃4 admits two faithful irreducible representations of dimension 2.



Modular forms of octahedral type

Let S̃4 → S4 ' Gal(L|Q) be a solvable embedding problem

• ρ : GQ → Gal(L̃|Q) ' S̃4 ↪→ GL(2,C) odd Galois representation

f(z) =
∑∞
n=1 anq

n, q = e2πiz modular form of weight one

ρ : GQ → Gal(L|Q) ' S4 ↪→ PGL(2,C)

` - d, a prime, Frobρ,` ⊂ S̃4, Frobρ,` ⊂ S4 conjugacy classes

• Frobρ,` determines only a2
`

• Frobρ,` determines a`, but the computation of Frobρ,` requires an

explicit solution of the embedding problem.



An explicit reciprocity law of octahedral type

f(X) = X4 − 2X − 1 ∈ Q[X], xi ∈ Q, f(xi) = 0, 1 ≤ i ≤ 4,

E = Q(x1), L = Q({xi}), d = −688 = −24 · 43, Gal(L|Q) ' S4

Φ(S4) = {1A, 2A, 2B, 3A, 4A}

λO1 Fr`(L|Q) ] δ ` ( 6= 2,43)

λ1λ
′
1λ
′′
1λ
′′′
1 1A 1 1/24 173, 487, 619, 719, 827, 857, . . .

λ2λ
′
2 2A 6 1/4 47, 59, 79, 107, 181, 197, . . .

λ1λ
′
1λ2 2B 3 1/8 c,19, 37, 71, 113, 131, 137, 149, . . .

λ1λ3 3A 8 1/3 11, 13, 17, 23, 31, 41, 53, 67, 83, . . .
λ4 4A 6 1/4 3, 5, 7, 29, 61, 73, 89, 151, 163, . . .



S̃4 1Ã,2Ã 4Ã 2B̃ 3Ã,6Ã 8Ã,8B̃
S4 1A 2A 2B 3A 4A

L̃ = L(
√
γ), γ = 3(x3

1x
2
2 − x

2
2 − x

2
1x2 + x1x2 + x2) + x3

1 − 2x2
1 + 4x1

Fr` ] Tr(Fr`) det(Fr`) ` ( 6= 2,43)
1Ã 1 2 1 487,619,719, · · ·
2Ã 1 −2 1 173,827,857, · · ·
2B̃ 6 0 −1 c,19,37,71,113,131,137, · · ·
3Ã 8 −1 1 11,17,53,67,97,101, · · ·
4Ã 12 0 1 47,59,79,107,181,197, · · ·
6Ã 8 1 1 13,23,31,41,83,109, · · ·
8Ã 6 i

√
2 −1 7,29,61,89,179, · · ·

8B̃ 6 −i
√

2 −1 3,5,73,151,163, · · ·
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