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1801: Gauss’ Disquisitiones

Let D ≡ 0, 1 (mod 4) be negative.

Theorem (Reduction algorithm)

Every positive definite primitive binary quadratic form is SL2(Z)-equivalent
to a unique form ax2 + bxy + cy 2 with

|b| ≤ a ≤ c , and b ≥ 0 whenever b = a or a = c .

This gives a fundamental domain for the action of SL2(Z) on the space of
(integral) binary quadratic forms (cf. fundamental domain for the action
of the modular group on the upper half plane).

Corollary

The number of SL2(Z)-classes of positive definite primitive binary
quadratic forms of discriminant D is finite.
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Question: if n and m are two integers represented by binary quadratic
forms f and g , is the product nm represented by a binary quadratic form?

This leads naturally to Gauss composition: if the answer is yes and nm is
represented by h, then there are two integral bilinear forms α, β such that

f (x , y)g(z ,w) = h (α (x , y , z ,w) , β (x , y , z ,w)) ;

h is said to be composed of f and g .

Theorem (Gauss)

Composition induces a group law on the set of SL2(Z)-equivalence classes
of primitive positive definite binary quadratic forms of discriminant D.

(Note: the notion of group and group action were introduced later on)

Alberto Cámara Origins and applications STNB, January 29th, 2015 3 / 35



Later the same century: Dedekind (?)

Let O be the (imaginary) quadratic order of discriminant D.

Theorem

There is an isomorphism between the group of classes of primitive positive
definite binary quadratic forms and the ideal class group of O.

One can define such an isomorphism by:

ax2 + bxy + cy 2 7−→

[
a,
−b +

√
D

2

]
Z

⊂ O.

This proves the finiteness of class numbers of quadratic orders.

Gauss composition can be used to make computations with ideal classes of
quadratic orders very explicit (cf. NUCOMP algorithm).
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2001: Bhargava’s Odissey

Where would one go and look for generalizations of Gauss
composition?
We have: G

�

V .
G = SL2, V the space of forms.
First idea: look for pairs (G ,V ), defined over Z and parametrizing
interesting objects.

Notice:

The action of GL2(C) on the space of binary quadratic forms over C
essentially has one orbit: any two forms with nonzero discriminant can be
mapped to one another by a transformation in GL2(C).

In other words, over C there is only one pair (S , I ) with S a nondegenerate
quadratic ring and I an oriented ideal class of S : S = I = C⊕ C.
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Prehomogeneous vector spaces

Definition

A prehomogeneous vector space is a pair (G ,V ) where G is an algebraic
group and V a rational vector space representation of F such that
G (C)

�

V (C) has a Zariski-dense orbit.

Composition laws describing orders and ideals in number fields must come
from G (Z)

�

V (Z), for prehomogeneous spaces defined over Z.

Sato–Kimura, 1977: classification of complex reduced, irreducible
prehomogeneous spaces in 36 types.

Wright–Yukie, 1992: over a field K , K -orbits of prehomogeneous spaces
often correspond to field extensions of K .
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V G Parametrizes
D ≡ 0, 1 (mod 4) SL1(Z) Quadratic rings
(Sym2Z2)∗ SL2(Z) Ideal classes in quadratic rings
Sym3Z2 SL2(Z) Order three ideal classes in quad. rgs.
Z2 ⊗ Sym2Z2 SL2(Z)2 Ideal classes in quadratic rings
Z2 ⊗ Z2 ⊗ Z2 SL2(Z)3 Pairs of ideal classes in quadratic rgs.
Z2 ⊗ ∧2Z4 SL2(Z)× SL4(Z) Ideal classes in quadratic rings
∧3Z6 SL6(Z) Quadratic rings

(Sym3Z2)∗ GL2(Z) Cubic rings
Z2 ⊗ Sym2Z3 GL2(Z)× SL3(Z) Order two ideal classes in cubic rings
Z2 ⊗ Z3 ⊗ Z3 GL2(Z)× SL3(Z)2 Ideal classes in cubic rings
Z2 ⊗ ∧2Z6 GL2(Z)× SL6(Z) Cubic rings

(Z2 ⊗ Sym2Z3)∗ GL2(Z)× SL3(Z) Quartic rings
Z4 ⊗ ∧2Z5 GL4(Z)× SL5(Z) Quintic rings
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Composition laws and exceptional Lie groups

Let G be a Lie group, P a maximal parabolic subgroup of G . We write
P = LU where L is the Levi factor and U is the unipotent radical at P.

Fact: L acts on W = U/ [U,U] by conjugation.
Rubenthaler, Vinberg: pairs (L,W ) can be completely classified as
prehomogeneous spaces.

For certain choices of G and P, the group L and space W correspond to
the pairs considered in the table.

Example

If G is the exceptional Lie group of type D4 and P corresponds to the
central vertex of the associated Dynkin diagram, then
L = SL2 × SL2 × SL2 and W is the space of cubes.
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L = SL2 × SL2 × SL2

Acts on: (S , I1, I2, I3), S quadratic.
Type: D4.
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Identify I2 = I3.
L = SL2 × SL2 × SL2

Acts on: (S , I1, I2), S quadratic.
Type: B3
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Now instead we fuse I2 and I3 by direct sum.
G = SL2 × SL4

V = Z2 ⊗ ∧2Z4

Type: D5.
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Now identify I1 = I2 = I3, so that I 3
1 ∼ S .

G = SL2

V = Sym3Z2

Type: G2.
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Fuse all three ideals by direct sum.
G = SL6

V = ∧3Z6

Type: E6.
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What about the cubic case? Why is there no relevant composition law for
3x3x3 cubes of integers? Because it would take a Dynkin diagram of the
form:
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Instead, let’s cut one of the legs short and consider 2x3x3 cubes of
integers:

R a cubic ring, I , I ′ a couple of (balanced ideals).
Γ = GL2 ×GL3 ×GL3.
V = Z2 ⊗ Z3 ⊗ Z3.
Type: E6.
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Now identify I = I ′, which implies in particular I 2 ∼ R.

R a cubic ring, I , I ′ a couple of (balanced ideals).
Γ = GL2 ×GL3.
V = Z2 ⊗ Sym2Z3.
Type: F4.
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V G Type
D ≡ 0, 1 (mod 4) SL1(Z) A1

(Sym2Z2)∗ SL2(Z) B2

Sym3Z2 SL2(Z) G2

Z2 ⊗ Sym2Z2 SL2(Z)2 B3

Z2 ⊗ Z2 ⊗ Z2 SL2(Z)3 D4

Z2 ⊗ ∧2Z4 SL2(Z)× SL4(Z) D5

∧3Z6 SL6(Z) E6

(Sym3Z2)∗ GL2(Z) G2

Z2 ⊗ Sym2Z3 GL2(Z)× SL3(Z) F4

Z2 ⊗ Z3 ⊗ Z3 GL2(Z)× SL3(Z)2 E6

Z2 ⊗ ∧2Z6 GL2(Z)× SL6(Z) E7

(Z2 ⊗ Sym2Z3)∗ GL2(Z)× SL3(Z) F4

Z4 ⊗ ∧2Z5 GL4(Z)× SL5(Z) E8

Alberto Cámara Origins and applications STNB, January 29th, 2015 17 / 35



Density of discriminants

Let R be a ring admitting a Z-basis {α1, . . . , αn}.

Definition

Disc(R) = det (Tr(αiαj))1≤i ,j≤n.

For a number field K , Disc(K ) = Disc(OK ).

Theorem (Minkowski)

For number fields, up to isomorphism, # {K ; Disc(K ) = D} <∞.

We set Nn(x) = # {K ; Gal(K g |Q) = Sn, Disc(K ) ≤ x}.

Conjecture

The limit

cn = lim
x→+∞

Nn(x)

x

exists and is positive for all n ≥ 2.
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Example

c1 = 0, c2 = 6/π2 = 1/ζ(2).

For c2: we need to count integers up to x which are 0 or 1 (mod 4) and
squarefree.

Davenport–Heilbronn, 1971: c3 = 1/3ζ(3)
(via Delone–Faddeev, 1964).

Bhargava, 2005 and 2010: values of c4 and c5.
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n = 3. Davenport–Heilbronn

Cubic orders are parametrized by GL2(Z)\(Sym3Z2)∗, that is:
GL2(Z)-equivalence classes of binary cubic forms.
They form a lattice in the 4-dimensional R-vector space

V = (Sym3R2)∗ =
{

ax3 + bx2y + cxy 2 + dy 3; a, b, c, d ∈ R
}
.

Davenport–Heilbronn: explicitly construct a fundamental domain F for
GL2(Z)

�

V .

The number of cubic orders having discriminant at most x is the number
of integer points in the region

Fx = F ∩ {v ∈ V ; |Disc(v)| ≤ x}
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Toy example

For counting SL2-classes of positive definite primitive binary quadratic
forms of discriminant at most x , we would take
V =

{
ax2 + bxy + cy 2; a, b, c ∈ R

}
, Γ = SL2(Z),

F = {|b| < a < c} ∪ {0 < b < a = c} ∪ {0 < b = a < c}

Fx = F ∩
{
|b2 − 4ac| ≤ x

}
The number of integral points in a region R in Euclidean space can be
approximated correctly by its volume provided:

1 R is compact.

2 R is round-looking (smooth boundaries and no serious spikes or
tentacles).
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Fact: vol(Fx) = π2/18.

Problem: Fx has a tentacle going to infinity, arising from
non-compactness of SL2(Z)\SL2(R).

Davenport–Heilbronn: most points in the tentacle correspond to
reducible binary cubic forms (ie: a binary quadratic form times a linear
form). The number of integral points in the tentacle corresponding to
irreducible forms is O(x).
Similarly, the contrary happens in the smooth part of Fx .
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Theorem

# { cubic orders R; Disc(R) ≤ x} ∼ π2

18
x , (x →∞).

Are we done?
NO: passing from cubic orders to maximal cubic orders requires a rather
delicate sieve.

Theorem

# {K ; [K : Q] = 3,Disc(K ) ≤ x} ∼ 1

3ζ(3)
x , (x →∞).
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n = 4. Bhargava

Same ideas with much more difficult computations and subtler obstacles.
We have V , G , F , Fx as above, but now:

V = (R2 ⊗ Sym3R2)∗, G = GL2(Z)× SL3(Z).

Now dimRV = 12. Bhargava constructs F and computes:

vol(Fx) =
5

24
ζ(2)2ζ(3)x .

Problem: Fx has three big cusps.

1st cusp: reducible points corresponding to Q = S1 ⊕ S2, Si quadratic.
2nd cusp: Q = R ⊕ L, R cubic and L linear.
3rd cusp: irreducible points corresponding to D4-quartic fields.
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Theorem

Let Ξ(x) be the set of isomorphism classes of pairs (Q,R), where Q is an
S4-quartic order of discriminant at most x and R is a cubic resolvent of
Q. Then:

#Ξ(x) ∼ 5

24
ζ(2)2ζ(3)x , (x →∞)

We need to drop the R in order to count only isomorphism classes of Q.

Theorem

Let Θ(x) be the set of isomorphism classes of S4-quartic orders with
discriminant at most x.

#Θ(x) ∼ 5

24

ζ(2)2ζ(3)

ζ(5)
x , (x →∞).
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Going from orders to maximal orders requires again a sieve (hard!).

Theorem

c4 =
5

24

∏
p

(1 + p−2 − p−3 − p−4).

Corollary

When ordered by size of discriminant, quartic fields are:

90.644%: of S4-type.

The rest: of D4-type.

0%: other Galois groups.

(By Hilbert irreducibility, if we order degree n polynomials by size of
coefficients, 100% are of S4-type).
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n = 5. Bhargava

V = R4 ⊗ ∧2R5, G = GL4(Z)× SL5(Z).

Now dimR(V ) = 40.
Bhargava constructs F and computes the volume of Fx .

Problem: Fx is highly non-compact.

There are 160 cusps. They contain points that can be discarded
(reducible, other Galois types).

100% of integral points corresponding to orders in S5-quintic fields
are away from the cusps.

Theorem

c5 =
13

120

∏
p

(
1 + p−2 − p−4 − p−5

)
.
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Getting started

Carl Friedrich Gauss.
Disquisicions aritmètiques.
Institut d’Estudis Catalans, Barcelona, 1996.
Traducció i pròleg de Griselda Pascual Xufré.

Manjul Bhargava.
Higher composition laws and applications.
In International Congress of Mathematicians. Vol. II, pages 271–294.
Eur. Math. Soc., Zürich, 2006.

Manjul Bhargava.
Gauss composition and generalizations.
In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture
Notes in Comput. Sci., pages 1–8. Springer, Berlin, 2002.
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The corpus of Bhargava’s thesis

Manjul Bhargava.
Higher composition laws. I. A new view on Gauss composition, and
quadratic generalizations.
Ann. of Math. (2), 159(1):217–250, 2004.

Manjul Bhargava.
Higher composition laws. II. On cubic analogues of Gauss
composition.
Ann. of Math. (2), 159(2):865–886, 2004.

Manjul Bhargava.
Higher composition laws. III. The parametrization of quartic rings.
Ann. of Math. (2), 159(3):1329–1360, 2004.

Manjul Bhargava.
Higher composition laws. IV. The parametrization of quintic rings.
Ann. of Math. (2), 167(1):53–94, 2008.
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Curiosities

In the ICM 2006 survey, Bhargava announces an upcoming paper, of which
I have not found a trace:

Manjul Bhargava.
Higher composition laws. V. The parametrization of quaternionic and
octonionic rings and modules.

On parametrizing orders:

Manjul Bhargava.
On the classification of rings of ”small” rank.
Notes for Arizona Winter School. Available at http:
//swc.math.arizona.edu/aws/2009/09BhargavaNotes.pdf,
2009.
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On prehomogeneous vector spaces

M. Sato and T. Kimura.
A classification of irreducible prehomogeneous vector spaces and their
relative invariants.
Nagoya Math. J., 65:1–155, 1977.

Mikio Sato and Takuro Shintani.
On zeta functions associated with prehomogeneous vector spaces.
Ann. of Math. (2), 100:131–170, 1974.

David J. Wright and Akihiko Yukie.
Prehomogeneous vector spaces and field extensions.
Invent. Math., 110(2):283–314, 1992.
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On cubic fields

B. N. Delone and D. K. Faddeev.
The theory of irrationalities of the third degree.
Translations of Mathematical Monographs, Vol. 10. American
Mathematical Society, Providence, R.I., 1964.

H. Davenport and H. Heilbronn.
On the density of discriminants of cubic fields.
Bull. London Math. Soc., 1:345–348, 1969.

H. Davenport and H. Heilbronn.
On the density of discriminants of cubic fields. II.
Proc. Roy. Soc. London Ser. A, 322(1551):405–420, 1971.
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Quartic and quintic densities

Manjul Bhargava.
The density of discriminants of quartic rings and fields.
Ann. of Math. (2), 162(2):1031–1063, 2005.

Manjul Bhargava.
The density of discriminants of quintic rings and fields.
Ann. of Math. (2), 172(3):1559–1591, 2010.
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Computing in quadratic and cubic fields
via composition laws

Daniel Shanks.
On Gauss and composition. I, II.
In Number theory and applications (Banff, AB, 1988), volume 265 of
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 163–178,
179–204. Kluwer Acad. Publ., Dordrecht, 1989.

K. Belabas.
A fast algorithm to compute cubic fields.
Math. Comp., 66(219):1213–1237, 1997.
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Thanks
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