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Notation

C non-singular, projective curve over K,

K algebraic closed field, char(K) = 0.

Impose genus(C) ≥ 2, and denote it by g.

WP (C) the set of all Weierstrass points of C

Remember

2g +2 ≤ #W (C) ≤ (g − 1)g(g +1),

and #W (C) = 2g+2 if and only if C is hyper-

elliptic.

WP denotes a single Weierstrass point of C.

Aut(C) group of K-automorphism of the curve

C.

v(φ) the number of fixed points of φ.



Consider a separable covering:

π : C → C′

with g′ is genus C′, Remember Hurwicz for-

mula:

2g − 2 = deg(π)(2g′ − 2) +
∑
P∈C

(eP − 1) =

deg(π)(2g′ − 2) +
r∑

i=1

deg(π)

vj
(vj − 1)

= deg(π)(2g′ − 2) + deg(π)
r∑

i=1

(1− v−1
j ),

where r are the points on C′ over which the

ramification occurs P̃1, . . . , P̃r, and for each P̃j

there are deg(π)/vj branch points in C.

P1
j , . . . , P

deg(π)/vj
j each with ramification vj =

e
P l
j
.



1.General facts on the group Aut(C)

Lemma 1. Let φ be an element of Aut(C) dif-

ferent from the identity. Then φ fixes at most

2g+2 points (i.e. v(φ) ≤ 2g +2).

Proof. S set of fixed points of φ.

P ∈ C non-fixed by φ.

exist f with (f)∞ = rP (the poles of f) for

some r with 1 ≤ r ≤ g +1 (take r = g +1 if P

is not a WP).

h := f − fφ, then (h)∞ = rP + r(φ−1P ), thus

h has 2r(≤ 2g+2) zeroes. Observe that every

fixed point of φ is a zero for h.

Lemma 2. Let be φ ∈ Aut(C). If P is a WP

of C then φ(P ) is a WP of C.

SWP (C) the permutation group on the set of

Weierstrass points. We have:

λ : Aut(C) → SWP (C).



Lemma 3. λ is injective unless C is hyperellip-

tic. If C is hyperelliptic, then ker(λ) = {id, w}
where w denotes the hyperelliptic involution on

C.

Proof. Let be ϕ ∈ ker(λ). If C is non-hyperelliptic,

we have strictly more than 2g +2 WP points,

thus by lemma 1 ϕ = id.

If C is non-hyperelliptic we have a canonical

immersion

ϕ : C → Pg−1,

and a canonical model of C in the projective

ϕ(C).

Proposition 4. If C is a non-hyperelliptic curve,

then we can think any Aut(C) as a projective

transformation on Pg−1 leaving ϕ(C) invariant.



Hurwicz formula consequences:

Lemma 5. Let be φ ∈ Aut(C) of prime order

p. Then p ≤ g or p = g +1 or p = 2g +1.

Proof. Let us apply the Hurwicz formula in the

Galois covering π : C → C/ < φ >. Denote by g̃

the genus of C/ < φ >, Hurwicz formula reads:

2g − 2 = p(2g̃ − 2) + v(φ)(p− 1).

Assume once and for all in this proof p ≥ g+1.

If g̃ ≥ 2 then we have 2g−2 ≥ p(2g̃−2) ≥ 2p ≥
2g +2, this can not happen.

If g̃ = 1 then we have 2g − 2 = v(φ)(p − 1) ≥
v(φ)g if v(φ) ≥ 2 this can not happen. It can

not happen also that v(φ) = 1 (any automor-

phism of prime order of Aut(C) which has one

fixed point, it must have at least two).

If g̃ = 0 then if v(φ) ≥ 5 we have 2g − 2 =

−2p + v(φ)(p − 1) ≥ 3p − 5 ≥ 3g − 2, this

can not happen. If v(φ) = 4 then by Hur-

wicz 2g− 2 = −2p+4(p− 1) = 2p− 4 this can



only happen for g = p + 1. If v(φ) = 3 then

2g−2 = −2p+3(p−1) = p−3 which can only

happen with p = 2g +1.

Similar arguments from the Hurwicz formula

as above lemma prove the following results;

Theorem 6 (Hurwicz, 1893). For any C with

genus g ≥ 2 we have that

#Aut(C) ≤ 84(g − 1).

Here we use the cover C → C/Aut(C) and apply

Hurwicz formula.



Proposition 7 (Hurwicz, 1893). Let be H a

cyclic subgroup of Aut(C) and denote by g̃ the

genus of C/H and m = #H. Then:

1. if g̃ ≥ 2 then m ≤ g − 1.

2. if g̃ = 1 then m ≤ 2(g − 1).

3. if g̃ = 0 and


r ≥ 4 ⇒ m ≤ 2(g − 1).
r = 4 ⇒ m ≤ 6(g − 1).
r = 3 ⇒ m ≤ 10(g − 1).

The proof is similar to Hurwicz theorem with

the cover π : C → C/H.

Let us finally list some other properties which

follows from Hurwicz formula :



Proposition 8 (Accola). Let be H and Hj 1 ≤
j ≤ k subgroups of Aut(C) such that H =∪k
j=1Hj and Hi ∩Hl = {id} with i ̸= l. Denote

by mj = #Hj and m = #H and g̃ the genus

of C/H and g̃j the genus of C/Hj. Then,

(k − 1)g +mg̃ =
k∑

j=1

mjg̃j.

Corollary 9. Let C be a genus 3 curve which

is non-hyperelliptic. Then any involution σ on

C is a 2-hyperelliptic that means a bielliptic

involution (i.e. the genus of C/ < σ > is 1).

Corollary 10. If C has genus 3 and suppose

that exist a subgroup H of Aut(C) isomorphic

to Z/2 × Z/2 such that the genus of C/H is

zero. If one element of H fix no point of C

then C is an hyperelliptic curve.

Lemma 11. Let be φ ∈ Aut(C) not the iden-

tity. Let be v(φ) the number of fixed points.

Then v(φ) ≤ 2 + 2g
ord(φ)−1 where ord(φ) is the

order of this element in the group.



Proposition 12. Let be φ ∈ Aut(C) not the

identity. If v(φ) > 4 then every fixed point of

φ is a WP.

Let us make explicit general facts on Aut(C)

when the genus C is three:

C, with genus(C) = 3, then :

#Aut(C) ≤ 168

Only the primes 2,3,7 can divide the order of

Aut(C)

Aut(C) is a finite group in PGL3(K)



Automorphism groups appearing on genus

3 curves

C once and for all a non-hyperelliptic genus 3
curve.
Think C embedded in P2, its equation is a non-
singular plane quartic in P2(with at least degree
3 in every variable).

This talk follows two approaches to list the full
list of groups appearing:

-Komiya-Kubayashi (Section 2.2)
-Dolgachev (Section 2.1)

Both approaches study first a cyclic subgroup
of Aut(C) in order to obtain a model equation,
and latter from this equation obtain the fuller
automorphism group.



2.1. The determination of the finite groups

inside PGL3

Take every finite group inside PGL3 with less

than 168 elements and only has prime orders

2,3 or 7.

Study which has as fixed set of (X : Y : Z) a

non-singular plane quartic.



Proposition 13. Let g be an automorphism of

order m > 1 of a non-singular quartic plane

curve C = V (F (X,Y, Z)). Let us choose coor-

dinates in such a way such that generator of

the cyclic group H =< g > is represented by a

diagonal matrix

 1 0 0
0 ξam 0
0 0 ξbm

 ,

where ξm is a primitive m−th root of unity.

Then F (X,Y, Z) is in the following list:

Cyclic automorphism of order m.

g = diag[1, ξam, ξbm] we denote its Type by:

m, (a, b)

C = V (F ) where C denotes the quartic.

Li denotes homogenous polynomial of degree

i



Type F (X,Y, Z)

(i) 2, (0,1) Z4 + Z2L2(X,Y ) + L4(X,Y )
(ii) 3, (0,1) Z3L1(X,Y ) + L4(X,Y )
(iii) 3, (1,2) X4 + αX2Y Z +XY 3 +XZ3 + βY 2Z2

(iv) 4, (0,1) Z4 + L4(X,Y )
(v) 4, (1,2) X4 + Y 4 + Z4 + δX2Z2 + γXY 2Z

(vi) 6, (3,2) X4 + Y 4 + αX2Y 2 +XZ3

(vii) 7, (3,1) X3Y + Y 3Z + Z3X

(viii) 8, (3,7) X4 + Y 3Z + Y Z3

(ix) 9, (3,2) X4 +XY 3 + Z3Y

(x) 12, (3,4) X4 + Y 4 +XZ3



Proof. (sketch)

g acts by (X : Y : Z) 7→ (X : ξamY : ξbmZ).

First situation: Suppose or a or b is zero.

Assume a = 0, write

F = βZ4 + Z3L1(X,Y ) + Z2L2(X,Y )+

ZL3(X,Y ) + L4(X,Y ),

if β ̸= 0

then 4b ≡ 0 modm, thus m = 2 or m = 4.

If m = 2 then L1 = L3 = 0 we obtain Type

2, (0,1).

If m = 4 (b ̸= 2), then L1 = L2 = L3 = 0 and

we get Type 4, (0,1).

If β = 0, then 3b = 0 mod m, then m = 3 and

thus L2 = L3 = 0 and we get Type 3, (0,1).

Second situation: 0, a, b are all distint. We can

suppose that a ̸= b, (a, b) = 1.Let be P1 = (1 :

0 : 0), P2 = (0 : 1 : 0) and P3 = (0 : 0 : 1) the

reference points.



1. All reference points lie in the non-singular

plane quartic.

The equation possibilities are now:

F = X3L1,X(Y, Z)+Y 3L1,Y (X,Z)+Z3L1,Z(X,Y )

+X2L2,X(Y, Z)+Y 2L2,Y (X,Z)+Z2L2,Z(X,Y )

By change on the variables X,Y,Z, reduces

to:

F = X3Y + Y 3Z + Z3X +X2L2,X(Y, Z)+

Y 2L2,Y (X,Z) + Z2L2,Z(X,Y ).

We have that a = 3a + b = 3b mod m,

therefore m = 7 and take a generator of H

such that (a, b) = (3,1). We obtain that

no other monomial enters in F then Type

7, (3,1).



2. Two reference points lie in the plane quar-

tic.

By rescalaring the matrix g joint with per-

muting the coordinates we can assume that

(1 : 0 : 0) does not lie in C. The equation

is like:

F = X4+X2L2(Y, Z)+XL3(Y, Z)+L4(Y, Z)

because as a, b ̸= 0 L1 does not appear (is

not invariant by g), moreover Y 4 and Z4

are not in L4 (only (1 : 0 : 0) does not lie

in C).

First: Y 3Z appears in L4. We have 3a+b =

0 mod m.

Suppose Z3Y is also in L4 then a+3b = 0

therefore 8b = 0 mod m and then m = 8,

we can take g generator with (a, b) = (3,7)

and we obtain Type 8, (3,7).

If Z3Y is not in L4 then Z3 is in L3 (because

non-singularity) therefore 3b = 0 mod m,

this condition joint with 3a+b=0 modm



we have two situations: m = 3 and take g

with (a, b) = (1,2) or m = 9 and (a, b) =

(3,2), but the first can not happen under

the condition that Y 3Z appears in L4 and

the second type is equal to 9, (3,2) of the

table.

Second: If Y 3Z is not but is Z3Y in L4

a permutation of Y ↔ Z we reduce above

situation. If Y 3Z and Z3Y are not in L4

for non-singularity we have that Y 3 and Z3

should appear in L3, then 3b = 0 and 3a =

0 mod m, therefore m = 3 and (a, b) =

(1,2) is the Type 3, (1,2) in the table.

3. One reference point lie in the plane quartic.

We assume that P1 = (1 : 0 : 0) and P2 =

(0 : 1 : 0) do not lie on C.

F = X4+Y 4+X2L2(Y, Z)+XL3(Y, Z)+L4(Y, Z).



4. None of the reference points lies in the

plane quartic.

In this situation

F = X4+Y 4+Z4+X2L2(Y, Z)+XL3(Y, Z)+

αY 3Z + βY Z3 + ιY 2Z2,



5. One reference point lie in the plane quartic.

We assume that P1 = (1 : 0 : 0) and P2 =

(0 : 1 : 0) do not lie on C.

F = X4+Y 4+X2L2(Y, Z)+XL3(Y, Z)+L4(Y, Z),

where Z4 does not enter in L4 for the hy-

potheses on which references points lie or

not lie in the quartic, L1 does not appear

because ab ̸= 0. We have then 4a = 0

mod m. By non-singularity Z3 appears in

L3, therefore 3b = 0 mod m, hence m = 6

or m = 12. Imposing the invariance by g

we obtain

(∗)F = X4 + Y 4 + αX2Y 2 +XZ3,

if m = 6 then (a, b) = (3,2) (and α may

be diferent from 0), this is Type 6, (3,2).

If m = 12 then (a, b) = (3,4) from the

above equation (∗) and α = 0, this is Type

12, (3,4).



6. None of the reference points lies in the

plane quartic.

In this situation

F = X4+Y 4+Z4+X2L2(Y, Z)+XL3(Y, Z)+

αY 3Z + βY Z3 + ιY 2Z2,

where L1 does not appears because ab ̸= 0.

Clearly 4a = 4b = 0 mod m, therefore

m = 4 and we can take (a, b) = (1,2)

or (1,3) both situation define isomorphic

curves (only by a renaming which is X,Y, Z

in the equations), this is type 4, (1,2).



Group theory notation

G ≤ GL(V ). G intransitive if the representa-

tion of G in GL(V ) is reducible. Otherwise we

say transitive.

G is imprimitive if G contains an intransitive

normal subgroup G′,
in this situation V decomposes into direct sum

of G′-invariant proper subspaces and the set of

representants of G of G/G′ permutates them.

Cm the cyclic group of order m,

Si the simetric group of i-elements,

Ai the alternate group of i-elements,

Di the dihedral group, order 2i.

Q8 the quaternion group

A}B denotes a group G defined as an Ext1(B,A),

from

1 → A → G → B → 1,

and A oB the semi-product.



Theorem 14. In the following table we list all

the groups that appear as a group of auto-

morphism of a non-singular plane quartic and

moreover group by group we list equations which

has exactly as automorphism group this group.

These equations covers up to isomorphism all

the plane non-singular quartics which has some

automorphism.

Full automorphism group G.

n denotes order of the group G



n G F (X,Y, Z) P.M.

168 PSL2(F7) ∼= PSL3(F2) Z3Y + Y 3X +X3Z

96 (C4 × C4) o S3 Z4 + Y 4 +X4

48 C4 }A4 X4 + Y 4 + Z3X

24 S4 Z4 + Y 4 +X4 +3a(Z2Y 2 + Z2X2 + Y 2X2) a ̸= 0, −1±
√
−7

2
16 C4 } (C2 × C2) Z4 −X3Y + (α− 1)X2Y 2 − αXY 3 α ̸= 1
9 C9 Z4 + ZY 3 + Y X3

8 Q8 Z4 + αZ2(Y 2 +X2) + Y 4 +X4 + βY 2X2 α ̸= β

6 C6 Z4 + aZ2Y 2 + Y 4 + ZX3 a ̸= 0
6 S3 Z4 + αZ2Y X + Z(Y 3 +X3) + βY 2X2 α ̸= β,αβ ̸= 0
4 C2 × C2 Z4 + Z2(αY 2 + βX2) + Y 4 +X4 + γY 2X2 α ̸= β

3 C3 Z3L1(Y,X) + L4(Y,X) not above
2 C2 Z4 + Z2L2(Y,X) + L4(Y,X) not above
where P.M. means parameter restriction.



Remark 15. the Dolgachev table is:

n G F (X,Y, Z) P.M.

168 PSL2(F7) ∼= PSL3(F2) Z3Y + Y 3X +X3Z

96 (C4 × C4) o S3 Z4 + Y 4 +X4

48 C4 }A4 Z4 + Y X3 + Y X3

24 S4 Z4 + Y 4 +X4 + a(Z2Y 2 + Z2X2 + Y 2X2) a ̸= −1±
√
−7

2
16 C4 × C4 Z4 + α(Y 4 +X4) + βZ2X2 α, β ̸= 0
9 C9 Z4 + ZY 3 + Y X3

8 Q8 Z4 + αZ2(Y 2 +X2) + Y 4 +X4 + βY 2X2 α ̸= β

7 C7 Z3Y + Y 3X +X3Z + aZY 2X a ̸= 0
6 C6 Z4 + aZ2Y 2 + Y 4 + Y X3 a ̸= 0
6 S3 Z4 + αZ2Y X + Z(Y 3 +X3) + βY 2X2 a ̸= 0
4 C2 × C2 Z4 + Z2(αY 2 + βX2) + Y 4 +X4 + γY 2X2 α ̸= β

3 C3 Z4 + αZ2Y X + Z(Y 3 +X3) + βY 2X2 α, β ̸= 0
2 C2 Z4 + Z2L2(Y,X) + L4(Y,X) not above



Proof. (sketch)
Case 1: G an intransitive group realized as a
group of automorphism.
Case 1.a.:V = V1 ⊕ V2 ⊕ V3.
Choose (X,Y, Z) such that V1 spanned by (1,0,0)
and so on.
g ∈ G of order m, after scaling g = diag(1, a, b),
we know models of equations and restrictions
for m,a, b above proposition.
Suppose h ∈ G but h /∈< g >, (choose m max-
imal with the property that has an element of
order m).
Study now situation by situation the equations
on cyclic subgroups (i)-(x):
Take m = 12, (x); we think h = diag(1, ξcm′, ξ

d
m′)

then 4c = 3d = 0 modm′, then 12|m′ and
h ∈< g >.
Nevertheless situation (x) has bigger automor-
phisms group which appears in case 1.b.
Similar arguments in the cases (v)-(x) to con-
clude: there are no other automorphism ap-
pearing as an intransitive group with V = V1⊕



V2 ⊕ V3.

Case (iv) and suppose h /∈< g >, let

L4 = aX4 + bY 4 + cX3Y + dXY 3 + eX2Y 2

assume ab ̸= 0, h = diag(ξp
m′, ξ

q
m′,1), then m′ =

2 or 4. If m′ = 2 the only possibility is (p, q) =

(0,1) or (1,0)(h /∈< g >) where c = d = 0, but

in this possibility we obtain a bigger group of

automorphism.

If m′ = 4, only possibilities (p, q) = (1,0),(0,1),

(1,3), (3,1), (1,2),(2,1). If (p, q) = (1,3)

or (3,1) we have c = d = 0, we obtain that

this equation that has bigger group appearing

in the following process (interchanging X and

Y ). If (p, q)= (1,2) or (2,1) similar as the case

(1,3). The situation(1,0) implies c = d = e =

0, this is the Fermat quartic and has bigger

group of automorphism.

Assume now a ̸= 0 and b = 0. d ̸= 0 (non-

singularity). One has 4p = 3p+ q = 0 mod m′,
then c = e = 0. But then we obtain Z/12 as



group, situation (x) considered before.
Assume now a = b = 0. cd ̸= 0(non-singularity).
3p+q = p+3q = 0 mod (m’), but then m′ = 8
(studied above).
Similar argument applied:
Case (iii) One checks that no other element
appears except when 1)α = β = 0 that is situ-
ation (ix) already studied;2)α = β appears C6

in the group an is already studied (vi),3)β =
0,α ̸= 0 no-reduced,4)α = 0, β ̸= 0 appears
C6.
Case (ii): Since L1 ̸= 0 no h can appear.
Case (i): Only need to study when diag(1,−1,1)
appears (i.e. we have C2 ×C2). We have that
L4 does not contain Y 3X and X3Y and L2 does
not contain XY . In this situation could has
a bigger group of automorphism when α = β

(see table).

Case 1.b. V = V1⊕V2 with dimV2=2, where V2
irreducible representation of G (G non-abelian).



Choose coordinates s.t. (1,0,0) ∈ V1, V2 spanned

by (0,1,0), (0,0,1). g restriction of g to W =

V (Z) = P(V2), choose in SL2. Write:

F = αZ4+Z3L1(Y,X)+Z2L2(Y,X)+ZL3(Y,X)

+L4(Y,X),

L1 = 0 (irreducibility of V2) and α ̸= 0(non-

singularity).

If L2 ̸= 0, G leaves V (L2) invariant, G the

restriction of G in W , the

G ≤ D2

then by a change of variables on V2 that the

action of G is (x, y) 7→ (−y, x) and (x, y) 7→
(ix,−iy), then G can be only an extension of

the C2×C2 situation above, therefore we have

that G is isomorphic to Q8 with the values on

the table of the theorem.

If L2 = 0 but L3 ̸= 0, here G ≤ D3 obtains

that with the invariants of this elements one

obtains a singular curve.



If L2 = L3 = 0 but L4 ̸= 0, G leave V (L4)

invariant. One knows

G ≤ A4

of order 12. One should study all these sub-

groups, the ones with has Z/2 × Z/2 we can

restrict on the equation given by step 1a and

one obtains the group of 16 elements and the

group of 48 elements.

Case 2: G has normal transitive imprimitive

subgroup H.

H is a subgroup given above and permutates

cyclically coordinates, therefore the only situ-

ations possible are:

Z4 + αZ2Y X + Z(Y 3 +X3) + βY 2X2

Z3Y + Y 3X +X3Z



Z4 + Y 3X +X3Y

Z4 + Y 4 + Z4 +3a(Z2Y 2 + Z2X2 + Y 2X2)

the first one obtains S3 the group with the re-

strictions appearing above in the argument.

The second curve is the Klein quartic, one

can obtain that the automorphism group is

PSL2(F7).
Easily has as a subgroup of automorphism C2

4o
S3 of order 96, therefore can not be bigger for

Hurwicz bound.

The fourth one, if a = 0 is the Fermat’s curve,

or a = 1
2(−1 ±

√
−7) is isomorphic to Klein

curve. If a does not take this values, easily

a subgroup of the Aut(C) is sign of changes

of the variables and permutations of variables,

this is a group of order 24 isomorphic to S4.

To obtain that this is the full group of auto-

morphism, we need a more careful study on

Weierstrass points and the automorphism in



PGL3(K).

Case 3: G is a simple group.

There are only two transitive primitive groups

of PGL3, one is PGL3(F2) given the Klein quar-

tic (see next talk), already considered.

The other has order bigger than 168, therefore

can not be Aut(C) of any genus 3 curve.



2.2. The determination of Aut(C) by cyclic
covers

Suppose that C is a non-hyperelliptic non-singular
projective genus 3 curve, and suppose that C

has an automorphism σ. C/σ has genus 0, or
1, (2 can not appear).

If Aut(C) has an element of order ≥ 4 then
genus(C/σ) = 0.

Two situations:

1. C curves which are a Galois cyclic cover of
a projective line.

2. C curves which are a Galois cyclic cover
of an elliptic curve but not of a projective
line.

Let m denote the order of a cyclic group.



1. cyclic covers over a projective line.

C Galois cyclic cover of order then K(C) =

K(x, y) with ym ∈ K(x), therefore:

ym = (x− a1)
n1 · . . . · (x− ar)

nr

with 1 ≤ ni < m and
∑r

i=1 ni is divided by

m a1, . . . , ar are the points over which the

ramification occurs.

Apply now proposition Hurwicz (1893) with

g = 3 and g̃ = 0, we now already that

m ≤ 20



Theorem 16 (Kubayashi-Komiya).The genus

3 curves C which are projective and non-

singular which are also a Galois cyclic cover

of order m (can have also a cyclic cover of

order a multiple of m) of a projective line

and with C non-hyperelliptic are listed as

follow (with the equation model up to iso-

morphism):

m Equation

3 y3 = x(x− 1)(x− α)(x− β)
4 y4 = x(x− 1)(x− α)
6 y3 = x(x− 1)(x− α)(x− (1− α))
7 y3 + yx3 + x = 0
8 y4 = x(x2 − 1)
9 y3 = x(x3 − 1)
12 y4 = x3 − 1

,

Observe that each equation above in P2

becomes a non-singular quartic.



Make a concrete situation, how proofs goes:

We now that m ≤ 20. From Hurwicz for-

mula from the cover C → C/Cm we can not

consider m = 5,11,13,17,19.

From the conditions of the equation, from

the ramification r and the conditions on ni
we can discard m = 15,16,18,20.

Take m = 8 (for example here).

The values of vi can be only divisors of 8,

then 2,4,8, therefore all the possibilities are

v1 v2 v3 v4 v5
(i) 2 2 2 2 2
(ii) 2 2 4 4
(iii) 4 8 8

Case (i), (ii) reducible equation.

Case (iii) three situations:

(1) y8 = (x− a1)
2(x− a2)

3(x− a3)
3

(2) y8 = (x− a1)(x− a2)(x− a3)
6

(3) y8 = (x− a1)
2(x− a2)(x− a3)

5



by a birational transformation x = X and

y = (X − a1)
−2(X − a2)

−1(X − a3)
−1Y , (2)

is birational equivalent to (1) and (2) is an

hyperelliptic curve.

Let us normalize the equation (3) as y8 =

x2(x − 1). One computes a basis of dif-

ferentials of the first kind w1 = y−3dx,

w2 = y−6xdx, w3 = y−7xdx, and writing

x = −X−1Y 4, y = Y one obtains a canoni-

cal model:

X3Z +XZ3 + Y 4 = 0

(and one observes that this quartic is iso-

morphic to Fermat’s quartic X4 + Y 4 +

Z4 = 0).



How obtain from theorem 16 above the full

automorphism group?

We use the equations in the projective model

and case by case we study the group of el-

ements of PGL3(K) that fix the quartic.

Basically is study two situations(Klein quar-

tic knows):

1)one with the affine model:y3 = x(x −
1)(x− t)(x− s)

2)second with the affine model:y4 = x(x−
1)(x− t).

Let us mention briefly 2)



Theorem 17 (Kuribayashi-Komiya). The

non-hyperelliptic genus 3 curves non-smooth

and projective which are a Galois cyclic

cover of a projective line of order m are iso-

morphic to one of the following equations

and has the automorphism group associ-

ated to it:

Equation = {F (X,Y, Z) = 0} Aut(C = V (F )) m P.R.
Y 3Z +XZ3 +X3Y = 0 PGL2(F7) 7
Y 4 −X3Z −XZ3 = 0 (C4 × C4) o S3 8
Y 3Z −X4 +XZ3 = 0 C9 9
Y 4 −X3Z + Z4 = 0 C4 }A4 12
Y 4 −X3Z + (α− 1)X2Z2 − αXZ3 = 0 C4 } (C2 × C2) 4 α ̸= 1
Y 3Z −X(X − Z)(X − αZ)(X − (1− α)Z) = 0 C6 6 α ̸= 0
Y 3Z −X(X − Z)(X − αZ)(X − βZ) = 0 C3 3 β ̸= 1− α,

(x− α)(x− β) ̸=
x2 + x+1



2. Cyclic cover of a torus.

We remember that the automorphism group

has a cyclic element σ of order m > 4 then

the genus of C/ < σ > is zero and therefore

a cyclic cover of a projective line, as we are

done.

Let us impose that m = 2,3 or 4.

n = |Aut(C)|
Impose that n > 4 in this talk.

Because n > 4 C/Aut(C) = P1 (Hurwicz).



(Hurwicz) Galois cover π : C → C/Aut(C)

verifies:

(a) If r ≥ 5, then n ≤ 8 and:

(1) n = 8, v1 = v2 = v3 = v4 = v5 = 2;

(2) n = 6, v1 = v2 = v3 = v4 = 2,

v5 = 3.

(b) If r = 4 then n ≤ 24 and:

(1) n = 24, v1 = v2 = v3 = 2, v4 = 3

(2) n = 16, v1 = v2 = v3 = 2, v4 = 4

(3) n = 12, v1 = v2 = 2, v3 = v4 = 3

(4) n = 8, v1 = v2 = 2, v3 = v4 = 4

(5) n = 6, v1 = v2 = v3 = v4 = 3.

(c) If r = 3, then n ≤ 48 and:

(1) n = 48, v1 = v2 = 3,v3 = 4

(2) n = 24, v1 = 3, v2 = v3 = 4

(3) n = 16, v1 = v2 = v3 = 4.



We need a study case by case of every sit-

uation. To show the ideas that appears

in this study let us take the situation with

r ≥ 5 and n = 6.

n = 6 ramification 2,2,2,2,3 non-hyperelliptic.

We have an involution σ (bielliptic)

P1 and P2 branch points with multiplicity 3

τ the automorphism of order 3 by which P1

and P2 are fixed.

τσ = στ2 (cyclic already studied) and gen(C/ <

τ >) = 1 is an elliptic curve (=0,stud-

ied,=2(No,Hurwicz)).

We use some facts on divisors.



Lemma 18. Let C be a projective non-

singular curve of genus g (≥ 3) and let ι

an automorphism of C such that C/ < ι >

is an elliptic curve. Denote by vP the ram-

ification multiplicity of a branch point of

the covering π : C → C/ < ι >. Then the

divisor
∑
(vP − 1)P is canonical.

This is not useful for our concrete situation

n = 6 but yes in others and let here to write

it.

Lemma 19. Let C be a non-hyperelliptic

genus 3 curve, projective and non-singular.

Assume that C has an automorphism ι of

order 4 and ι has fixed points on C. Then

the v(ι) = 4, denote by P1, P2, P3 and P4

this four fixed points. Moreover we have

that
∑4

i=1 Pi and 4Pi 1 ≤ i ≤ 4 are canoni-

cal divisors.



Go back to n = 6.
2(P1 + P2) is canonical divisor.
G = {1, τ, τ2, σ = σ1, σ2 = τσ1, σ3 = τ2σ1},
where σi are involutions (all bielliptic).

{Q(1)
i }, {Q(2)

i }, {Q(3)
i } set of 4 fixed points

by σ1, σ2, σ3 respectively.∑4
i=1{Q

(1)
i },

∑4
i=1{Q

(2)
i } and

∑4
i=1{Q

(3)
i }

are canonical divisors.

From σ1σ2σ1 = σ3:

σ1(
4∑

i=1

{Q(2)
i }) =

4∑
i=1

{Q(3)
i }

and σ1P1 = P2.
Define meromorphic functions:

div(x) =
4∑

i=1

{Q(2)
i } − 2(P1 + P2)

div(y) =
4∑

i=1

{Q(3)
i } − 2(P1 + P2)

they verify σ1(x) = αy and σ1(y) = βx,
αβ = 1.(involution)



Rewrite y instead of αy.
Check that 1, x, y are a basis for L(2P1 +
2P2) with τ(x) = −y and τ(y) = x− y.
Make change

x1 =
x− 2y +1

x+ y +1
, y1 =

−2x+ y +1

x+ y +1
,

the action of σ1 and τ is:

σ1 : (x1, y1) 7→ (y1, x1),

τ : (x1, y1) 7→ (y1/x1,1/x1),

1, x1, y1 basis for L(K) (K canonical divi-
sor) with homogenous coordinates the group
acts by

σ1

 X
Y
Z

 =

 0 1 0
1 0 0
0 0 1


 X

Y
Z



τ

 X
Y
Z

 =

 0 1 0
0 0 1
1 0 0


 X

Y
Z

 ,

then the equation is invariant for the group
S3



therefore the equation are

A(X4+Y 4+Z4)+B(X3Y+Y 3X+Z3X+X3Z+

Z3Y +Y 3Z)+C(X2Y 2+Y 2Z2+X2Z2) = 0

for some A,B,C.

If B = C = 0 and A ̸= 0 is isomorphic to

y4 = x(x2 − 1) which has cyclic cover of a

projective line, this is already studied.

If B = 0 and AC ̸= 0 has a group of or-

der 24, except when C/A = 3µ with µ ∈
{−1±

√
−7

2 } where for this concrete situation

is isomorphic to the Klein quartic (studied

above).

ABC ̸= 0 obtain that full group of auto-

morphism are G.



Working situation by situation Kuribayashi

and Komiya obtain:

Theorem 20 (Kuribayashi-Komiya). The

non-hyperelliptic genus 3 curves non-smooth

and projective which are a Galois cyclic

cover of an elliptic curve and not of a pro-

jective line are isomorphic to one of the

following equations and has the automor-

phism group associated to it:

Equation = {F (X,Y, Z) = 0} Aut(C = V (F )) P.R.

X4 + Y 4 + Z4 +3a(X2Y 2 +X2Z2 + Z2Y 2) = 0 S4 a ̸= 0, −1±
√
−7

2
X4 + Y 4 + aX2Y 2 + b(X2Z2 + Y 2Z2) + Z4 = 0 Q8 a ̸= b
(X4 + Y 4 + Z4) + c(X2Y 2 + Y 2Z2 +X2Z2)+
b(X3Y + Y 3X + Z3X +X3Z + Z3Y + Y 3Z) = 0 S3 bc ̸= 0
X4 + Y 4 + Z4 +2aX2Y 2 +2bX2Z2 +2cY 2Z2 = 0 C2 × C2

a(X4 + Y 4 + Z4) + b(X3Y − Y 3X) + cX2Y 2 + d(X2Z2 + Y 2Z2) = 0 C2 × C2 ≤
a(X4 + Y 4 + Z4) + b(X3Y + Y 3Z +XZ3) + c(Y 3X +X3Z + Y 3Z)+
d(X2Y 2 +X2Z2 + Y 2Z2) = 0 C3 ≤
(X4 + Y 4 + Z4) + Y 2(a0X2 + a1XZ + bZ2)+
(a2X3Z + a3X2Z + a4XZ3) = 0 C2



2.3. Final remarks

C be a curve of genus ≥ 2.

H subgroup of Aut(C)

consider the cover C → C/H, g0 = genus(C/H):

2(g − 1)/|H| = 2(g0 − 1) +
r∑

i=1

(1−
1

mi
),

the signature associate to this cover is

(g0;m1, . . . ,mr)

where we have exactly r ramification points.

We can list all the possible signatures from

Hurwicz, and try to obtain of all this list the

ones with H = Aut(C). (above use an inter-

mediate step with cyclic subgroup).



One can obtain:

Aut(C) g0;signature
PSL2(F7) (0; 2,3,7)

S3 (0; 2,2,2,2,3)
C2 (1;2,2,2,2)

C2 × C2 (0; 2,2,2,2,2,2)
Q8 (0; 2,2,2,2,2)
S4 (0;2,2,2,3)

C2
4 o S3 (0;2,3,8)

C4 } (C2)
2 (0;2,2,2,4)

C4 }A4 (0;2,3,12)
C3 (0; 3,3,3,3,3)
C6 (0;2,3,3,6)
C9 (0;3,9,9)

Mg moduli space of genus g curves.

Mg,r moduli space of genus g curves with r

distint marked points

Is known that

dim(Mg,r) = 3g − 3+ r.



Is known that the dimension in Mg of the con-

nected components of an appearing signature

(g0;α1, . . . , αr) is dim(Mg0,r), therefore:

Remark 21. There a lot of non-hyperelliptic

genus 3 curves that has no automorphism, in

particular the generic curve for M3 should has

no automorphism.



C has a large automorphism group if its point

in Mg has a neighborhood such that any other

curve in this neighborhood has an automor-

phism group a group with less elements than

the group that has the curve C.

Corollary 22. Let C be a curve defined over

C (g ≥ 2). Then: C has a large automor-

phism group if and only if exists a Belyι̂ func-

tion defining a normal covering π : C → P1.

If we center now in our tables for genus 3

curves:

C non-hyperelliptic genus 3 curves with large

automorphism group:

C Aut(C)
Z3Y + Y 3X +X3Z PSL2(F7)

Z4 +X4 + Y 4 C2
4 o S3

Z4 + Y X3 + Y 3X C4 }A4
Z4 + ZY 3 + Y X3 C9


