On the automorphisms groups of genus 3 curves

Francesc Bars *

*Work partially supported by BFM2003-06092

Notation

C non-singular, projective curve over K, K algebraic closed field, char(K)=0. Impose $genus(C)\geq 2$, and denote it by g. WP(C) the set of all Weierstrass points of C Remember

$$2g + 2 \le \#W(C) \le (g - 1)g(g + 1),$$

and #W(C) = 2g + 2 if and only if C is hyperelliptic.

WP denotes a single Weierstrass point of C.

Aut(C) group of K-automorphism of the curve C.

 $v(\varphi)$ the number of fixed points of φ .

Consider a separable covering:

$$\pi:C\to C'$$

with g' is genus C', Remember Hurwicz formula:

$$2g - 2 = deg(\pi)(2g' - 2) + \sum_{P \in C} (e_P - 1) =$$

$$deg(\pi)(2g'-2) + \sum_{i=1}^{r} \frac{deg(\pi)}{v_j}(v_j-1)$$

$$= deg(\pi)(2g'-2) + deg(\pi) \sum_{i=1}^{r} (1 - v_j^{-1}),$$

where r are the points on C' over which the ramification occurs $\tilde{P}_1, \ldots, \tilde{P}_r$, and for each \tilde{P}_j there are $deg(\pi)/v_j$ branch points in C.

 $P_j^1, \dots, P_j^{deg(\pi)/v_j}$ each with ramification $v_j = e_{P_j^l}$.

1.General facts on the group Aut(C)

Lemma 1. Let φ be an element of Aut(C) different from the identity. Then φ fixes at most 2g+2 points (i.e. $v(\varphi) \leq 2g+2$).

Proof. S set of fixed points of φ .

 $P \in C$ non-fixed by φ .

exist f with $(f)_{\infty} = rP$ (the poles of f) for some r with $1 \le r \le g+1$ (take r=g+1 if P is not a WP).

 $h:=f-f\varphi$, then $(h)_{\infty}=rP+r(\varphi^{-1}P)$, thus h has $2r(\leq 2g+2)$ zeroes. Observe that every fixed point of φ is a zero for h.

Lemma 2. Let be $\varphi \in Aut(C)$. If P is a WP of C then $\varphi(P)$ is a WP of C.

 $S_{WP(C)}$ the permutation group on the set of Weierstrass points. We have:

$$\lambda: Aut(C) \to S_{WP(C)}.$$

Lemma 3. λ is injective unless C is hyperelliptic. If C is hyperelliptic, then $ker(\lambda) = \{id, w\}$ where w denotes the hyperelliptic involution on C.

Proof. Let be $\phi \in ker(\lambda)$. If C is non-hyperelliptic, we have strictly more than 2g+2 WP points, thus by lemma 1 $\phi = id$.

If C is non-hyperelliptic we have a canonical immersion

$$\phi: C \to \mathbb{P}^{g-1},$$

and a canonical model of C in the projective $\phi(C)$.

Proposition 4. If C is a non-hyperelliptic curve, then we can think any Aut(C) as a projective transformation on \mathbb{P}^{g-1} leaving $\phi(C)$ invariant.

Hurwicz formula consequences:

Lemma 5. Let be $\varphi \in Aut(C)$ of prime order p. Then $p \leq g$ or p = g + 1 or p = 2g + 1.

Proof. Let us apply the Hurwicz formula in the Galois covering $\pi: C \to C/<\varphi>$. Denote by \tilde{g} the genus of $C/<\varphi>$, Hurwicz formula reads:

$$2g - 2 = p(2\tilde{g} - 2) + v(\varphi)(p - 1).$$

Assume once and for all in this proof $p \ge g+1$. If $\tilde{g} \ge 2$ then we have $2g-2 \ge p(2\tilde{g}-2) \ge 2p \ge 2g+2$, this can not happen.

If $\tilde{g}=1$ then we have $2g-2=v(\varphi)(p-1)\geq v(\varphi)g$ if $v(\varphi)\geq 2$ this can not happen. It can not happen also that $v(\varphi)=1$ (any automorphism of prime order of Aut(C) which has one fixed point, it must have at least two).

If $\tilde{g}=0$ then if $v(\varphi)\geq 5$ we have $2g-2=-2p+v(\varphi)(p-1)\geq 3p-5\geq 3g-2$, this can not happen. If $v(\varphi)=4$ then by Hurwicz 2g-2=-2p+4(p-1)=2p-4 this can

only happen for g=p+1. If $v(\varphi)=3$ then 2g-2=-2p+3(p-1)=p-3 which can only happen with p=2g+1.

Similar arguments from the Hurwicz formula as above lemma prove the following results; **Theorem 6** (Hurwicz, 1893). For any C with genus $g \ge 2$ we have that

$$\#Aut(C) \le 84(g-1).$$

Here we use the cover $C \to C/Aut(C)$ and apply Hurwicz formula.

Proposition 7 (Hurwicz, 1893). Let be H a cyclic subgroup of Aut(C) and denote by \tilde{g} the genus of C/H and m = #H. Then:

1. if
$$\tilde{g} \geq 2$$
 then $m \leq g - 1$.

2. if
$$\tilde{g} = 1$$
 then $m \leq 2(g - 1)$.

3. if
$$\tilde{g}=0$$
 and
$$\begin{cases} r \geq 4 \Rightarrow m \leq 2(g-1). \\ r=4 \Rightarrow m \leq 6(g-1). \\ r=3 \Rightarrow m \leq 10(g-1). \end{cases}$$

The proof is similar to Hurwicz theorem with the cover $\pi:C\to C/H$.

Let us finally list some other properties which follows from Hurwicz formula :

Proposition 8 (Accola). Let be H and H_j $1 \le j \le k$ subgroups of Aut(C) such that $H = \bigcup_{j=1}^k H_j$ and $H_i \cap H_l = \{id\}$ with $i \ne l$. Denote by $m_j = \#H_j$ and m = #H and \tilde{g} the genus of C/H and \tilde{g}_j the genus of C/H_j . Then,

$$(k-1)g + m\tilde{g} = \sum_{j=1}^{k} m_j \tilde{g}_j.$$

Corollary 9. Let C be a genus 3 curve which is non-hyperelliptic. Then any involution σ on C is a 2-hyperelliptic that means a bielliptic involution (i.e. the genus of $C/<\sigma>$ is 1).

Corollary 10. If C has genus 3 and suppose that exist a subgroup H of Aut(C) isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$ such that the genus of C/H is zero. If one element of H fix no point of C then C is an hyperelliptic curve.

Lemma 11. Let be $\varphi \in Aut(C)$ not the identity. Let be $v(\varphi)$ the number of fixed points. Then $v(\varphi) \leq 2 + \frac{2g}{ord(\varphi)-1}$ where $ord(\varphi)$ is the order of this element in the group.

Proposition 12. Let be $\varphi \in Aut(C)$ not the identity. If $v(\varphi) > 4$ then every fixed point of φ is a WP.

Let us make explicit general facts on Aut(C) when the genus C is three:

$$C, with genus(C) = 3, then$$
:

$$\#Aut(C) \leq 168$$

Only the primes 2,3,7 can divide the order of Aut(C)

Aut(C) is a finite group in $PGL_3(K)$

Automorphism groups appearing on genus 3 curves

 ${\cal C}$ once and for all a non-hyperelliptic genus 3 curve.

Think C embedded in \mathbb{P}^2 , its equation is a non-singular plane quartic in \mathbb{P}^2 (with at least degree 3 in every variable).

This talk follows two approaches to list the full list of groups appearing:

- -Komiya-Kubayashi (Section 2.2)
- -Dolgachev (Section 2.1)

Both approaches study first a cyclic subgroup of Aut(C) in order to obtain a model equation, and latter from this equation obtain the fuller automorphism group.

2.1. The determination of the finite groups inside PGL_3

Take every finite group inside PGL_3 with less than 168 elements and only has prime orders 2,3 or 7.

Study which has as fixed set of (X:Y:Z) a non-singular plane quartic.

Proposition 13. Let g be an automorphism of order m > 1 of a non-singular quartic plane curve C = V(F(X,Y,Z)). Let us choose coordinates in such a way such that generator of the cyclic group $H = \langle g \rangle$ is represented by a diagonal matrix

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \xi_m^a & 0 \\ 0 & 0 & \xi_m^b \end{array}\right),$$

where ξ_m is a primitive m-th root of unity. Then F(X,Y,Z) is in the following list:

Cyclic automorphism of order m.

 $g=diag[1,\xi_m^a,\xi_m^b]$ we denote its Type by: m,(a,b)

C = V(F) where C denotes the quartic. L_i denotes homogenous polynomial of degree

	Typo	F(X, Y)
	Туре	
(i)	2, (0, 1)	$Z^4 + Z^2L_2(X,Y) + L_4(X)$
(ii)	3, (0, 1)	$Z^3L_1(X,Y) + L_4(X)$
(iii)	3, (1, 2)	$X^4 + \alpha X^2 YZ + XY^3 + XZ^3 + \beta Y$
(iv)	4, (0, 1)	$Z^4 + L_4(X)$
(v)	4, (1, 2)	$X^4 + Y^4 + Z^4 + \delta X^2 Z^2 + \gamma X$
(vi)	6, (3, 2)	$X^4 + Y^4 + \alpha X^2 Y^2 + 1$
(vii)	7, (3, 1)	$X^3Y + Y^3Z + Z$
(viii)	8, (3, 7)	$X^4 + Y^3Z + 1$
(ix)	9, (3, 2)	$X^4 + XY^3 + .$
(x)	12, (3, 4)	$X^4 + Y^4 + Z$

Proof. (sketch)

g acts by $(X:Y:Z)\mapsto (X:\xi_m^aY:\xi_m^bZ)$.

First situation: Suppose or a or b is zero.

Assume a = 0, write

$$F = \beta Z^4 + Z^3 L_1(X, Y) + Z^2 L_2(X, Y) +$$
$$ZL_3(X, Y) + L_4(X, Y),$$

if $\beta \neq 0$

then $4b \equiv 0 \mod m$, thus m = 2 or m = 4.

If m=2 then $L_1=L_3=0$ we obtain Type 2,(0,1).

If m = 4 ($b \neq 2$), then $L_1 = L_2 = L_3 = 0$ and we get Type 4, (0, 1).

If $\beta = 0$, then $3b = 0 \mod m$, then m = 3 and thus $L_2 = L_3 = 0$ and we get Type 3, (0, 1).

Second situation: 0, a, b are all distint. We can suppose that $a \neq b$, (a, b) = 1.Let be $P_1 = (1 : 0 : 0)$, $P_2 = (0 : 1 : 0)$ and $P_3 = (0 : 0 : 1)$ the reference points.

1. All reference points lie in the non-singular plane quartic.

The equation possibilities are now:

$$F = X^{3}L_{1,X}(Y,Z) + Y^{3}L_{1,Y}(X,Z) + Z^{3}L_{1,Z}(X,Y)$$
$$+X^{2}L_{2,X}(Y,Z) + Y^{2}L_{2,Y}(X,Z) + Z^{2}L_{2,Z}(X,Y)$$

By change on the variables X,Y,Z, reduces to:

$$F = X^{3}Y + Y^{3}Z + Z^{3}X + X^{2}L_{2,X}(Y,Z) +$$
$$Y^{2}L_{2,Y}(X,Z) + Z^{2}L_{2,Z}(X,Y).$$

We have that $a = 3a + b = 3b \mod m$, therefore m = 7 and take a generator of H such that (a,b) = (3,1). We obtain that no other monomial enters in F then Type 7, (3,1).

2. Two reference points lie in the plane quartic.

By rescalaring the matrix g joint with permuting the coordinates we can assume that (1:0:0) does not lie in C. The equation is like:

$$F = X^4 + X^2L_2(Y, Z) + XL_3(Y, Z) + L_4(Y, Z)$$

because as $a, b \neq 0$ L_1 does not appear (is not invariant by g), moreover Y^4 and Z^4 are not in L_4 (only (1:0:0) does not lie in C).

First: Y^3Z appears in L_4 . We have $3a+b=0 \mod m$.

Suppose Z^3Y is also in L_4 then a+3b=0 therefore $8b=0 \mod m$ and then m=8, we can take g generator with (a,b)=(3,7) and we obtain Type 8,(3,7).

If Z^3Y is not in L_4 then Z^3 is in L_3 (because non-singularity) therefore $3b=0 \mod m$, this condition joint with $3a+b=0 \mod m$

we have two situations: m=3 and take g with (a,b)=(1,2) or m=9 and (a,b)=(3,2), but the first can not happen under the condition that Y^3Z appears in L_4 and the second type is equal to 9,(3,2) of the table.

Second: If Y^3Z is not but is Z^3Y in L_4 a permutation of $Y \leftrightarrow Z$ we reduce above situation. If Y^3Z and Z^3Y are not in L_4 for non-singularity we have that Y^3 and Z^3 should appear in L_3 , then 3b = 0 and 3a = 0 mod m, therefore m = 3 and (a,b) = (1,2) is the Type 3,(1,2) in the table.

3. One reference point lie in the plane quartic. We assume that $P_1 = (1:0:0)$ and $P_2 = (0:1:0)$ do not lie on C.

$$F = X^4 + Y^4 + X^2 L_2(Y, Z) + X L_3(Y, Z) + L_4(Y, Z).$$

4. None of the reference points lies in the plane quartic.

In this situation

$$F = X^{4} + Y^{4} + Z^{4} + X^{2}L_{2}(Y, Z) + XL_{3}(Y, Z) +$$

$$\alpha Y^{3}Z + \beta YZ^{3} + \iota Y^{2}Z^{2},$$

5. One reference point lie in the plane quartic. We assume that $P_1 = (1:0:0)$ and $P_2 = (0:1:0)$ do not lie on C.

$$F = X^4 + Y^4 + X^2L_2(Y, Z) + XL_3(Y, Z) + L_4(Y, Z),$$

where Z^4 does not enter in L_4 for the hypotheses on which references points lie or not lie in the quartic, L_1 does not appear because $ab \neq 0$. We have then $4a = 0 \mod m$. By non-singularity Z^3 appears in L_3 , therefore $3b = 0 \mod m$, hence m = 6 or m = 12. Imposing the invariance by g we obtain

$$(*)F = X^4 + Y^4 + \alpha X^2 Y^2 + XZ^3,$$

if m=6 then (a,b)=(3,2) (and α may be different from 0), this is Type 6, (3,2). If m=12 then (a,b)=(3,4) from the above equation (*) and $\alpha=0$, this is Type (3,4).

6. None of the reference points lies in the plane quartic.

In this situation

$$F = X^{4} + Y^{4} + Z^{4} + X^{2}L_{2}(Y, Z) + XL_{3}(Y, Z) +$$

$$\alpha Y^{3}Z + \beta YZ^{3} + \iota Y^{2}Z^{2},$$

where L_1 does not appears because $ab \neq 0$. Clearly $4a = 4b = 0 \mod m$, therefore m = 4 and we can take (a,b) = (1,2) or (1,3) both situation define isomorphic curves (only by a renaming which is X,Y,Z in the equations), this is type 4,(1,2).

Group theory notation

 $G \leq GL(V)$. G intransitive if the representation of G in GL(V) is reducible. Otherwise we say transitive.

G is imprimitive if G contains an intransitive normal subgroup G',

in this situation V decomposes into direct sum of G'-invariant proper subspaces and the set of representants of G of G/G' permutates them.

 C_m the cyclic group of order m,

 S_i the simetric group of *i*-elements,

 A_i the alternate group of *i*-elements,

 D_i the dihedral group, order 2i.

 Q_8 the quaternion group

 $A \odot B$ denotes a group G defined as an $Ext^1(B,A)$, from

$$1 \to A \to G \to B \to 1$$
,

and $A \times B$ the semi-product.

Theorem 14. In the following table we list all the groups that appear as a group of automorphism of a non-singular plane quartic and moreover group by group we list equations which has exactly as automorphism group this group. These equations covers up to isomorphism all the plane non-singular quartics which has some automorphism.

Full automorphism group G.

n denotes order of the group G

n	G	
168	$PSL_2(\mathbb{F}_7) \cong PSL_3(\mathbb{F}_2)$	
96	$(C_4 \times C_4) \rtimes S_3$	
48	$C_{4} \odot A_{4}$	
24	S_{4}	$Z^4 + Y^4 + X^4 + 3a(2)$
16	$C_4 \odot (C_2 \times C_2)$	$Z^4 - X^3Y -$
9	C_9	
8	Q_8	$Z^4 + \alpha Z^2 (Y^2 + X^2)$
6	C_6	Z^4
6	S_3	$Z^4 + \alpha Z^2 Y X +$
4	$C_2 \times C_2$	$Z^4 + Z^2(\alpha Y^2 + \beta X^2)$
3	C_3	
2	C_2	Z^4 +

where P.M. means parameter restriction.

Remark 15. the Dolgachev table is:

n	G	
168	$PSL_2(\mathbb{F}_7) \cong PSL_3(\mathbb{F}_2)$	
96	$(C_4 \times C_4) \rtimes S_3$	
48	$C_{4} \odot A_{4}$	
24	S_4	$Z^4 + Y^4 + X^4 + a(Z^2)$
16	$C_4 imes C_4$	Z^4 +
9	C_9	
8	Q_8	$Z^4 + \alpha Z^2 (Y^2 + X^2)$
7	C_7	$Z^3Y + Y$
6	C_6	Z^4 -
6	S_3	$Z^4 + \alpha Z^2 Y X + Z$
4	$C_2 \times C_2$	$Z^4 + Z^2(\alpha Y^2 + \beta X^2)$
3	C_3	$Z^4 + \alpha Z^2 Y X + Z$
2	C_2	$Z^4 + Z$

Proof. (sketch)

Case 1: G an intransitive group realized as a group of automorphism.

Case 1.a.: $V = V_1 \oplus V_2 \oplus V_3$.

Choose (X, Y, Z) such that V_1 spanned by (1, 0, 0) and so on.

 $g \in G$ of order m, after scaling g = diag(1, a, b), we know models of equations and restrictions for m, a, b above proposition.

Suppose $h \in G$ but $h \notin \langle g \rangle$, (choose m maximal with the property that has an element of order m).

Study now situation by situation the equations on cyclic subgroups (i)-(x):

Take m=12, (x); we think $h=diag(1,\xi_{m'}^c,\xi_{m'}^d)$ then $4c=3d=0 \mod m'$, then 12|m' and $h \in <g>$.

Nevertheless situation (x) has bigger automorphisms group which appears in case 1.b.

Similar arguments in the cases (v)-(x) to conclude: there are no other automorphism appearing as an intransitive group with $V=V_1\oplus$

 $V_2 \oplus V_3$.

Case (iv) and suppose $h \notin \langle g \rangle$, let

$$L_4 = aX^4 + bY^4 + cX^3Y + dXY^3 + eX^2Y^2$$

assume $ab \neq 0$, $h = diag(\xi_{m'}^p, \xi_{m'}^q, 1)$, then m' = 2 or 4. If m' = 2 the only possibility is (p,q) = (0,1) or $(1,0)(h \notin g)$ where g = d = 0, but in this possibility we obtain a bigger group of automorphism.

If m'=4, only possibilities (p,q)=(1,0),(0,1), (1,3), (3,1), (1,2),(2,1). If (p,q)=(1,3) or (3,1) we have c=d=0, we obtain that this equation that has bigger group appearing in the following process (interchanging X and Y). If (p,q)=(1,2) or (2,1) similar as the case (1,3). The situation(1,0) implies c=d=e=0, this is the Fermat quartic and has bigger group of automorphism.

Assume now $a \neq 0$ and b = 0. $d \neq 0$ (non-singularity). One has $4p = 3p + q = 0 \mod m'$, then c = e = 0. But then we obtain $\mathbb{Z}/12$ as

group, situation (x) considered before.

Assume now a = b = 0. $cd \neq 0$ (non-singularity). 3p+q=p+3q=0 mod (m'), but then m'=8 (studied above).

Similar argument applied:

Case (iii) One checks that no other element appears except when $1)\alpha = \beta = 0$ that is situation (ix) already studied; $2)\alpha = \beta$ appears C_6 in the group an is already studied (vi), $3)\beta = 0$, $\alpha \neq 0$ no-reduced, $4)\alpha = 0$, $\beta \neq 0$ appears C_6 .

Case (ii): Since $L_1 \neq 0$ no h can appear.

Case (i): Only need to study when diag(1, -1, 1) appears (i.e. we have $C_2 \times C_2$). We have that L_4 does not contain Y^3X and X^3Y and L_2 does not contain XY. In this situation could has a bigger group of automorphism when $\alpha = \beta$ (see table).

Case 1.b. $V = V_1 \oplus V_2$ with dim V_2 =2, where V_2 irreducible representation of G (G non-abelian).

Choose coordinates s.t. $(1,0,0) \in V_1$, V_2 spanned by (0,1,0),(0,0,1). \overline{g} restriction of g to $W=V(Z)=\mathbb{P}(V_2)$, choose in SL_2 . Write:

$$F = \alpha Z^4 + Z^3 L_1(Y, X) + Z^2 L_2(Y, X) + Z L_3(Y, X)$$

$$+L_4(Y,X),$$

 $L_1 = 0$ (irreducibility of V_2) and $\alpha \neq 0$ (non-singularity).

If $L_2 \neq 0$, G leaves $V(L_2)$ invariant, \overline{G} the restriction of G in W, the

$$G \leq D_2$$

then by a change of variables on V_2 that the action of \overline{G} is $(x,y) \mapsto (-y,x)$ and $(x,y) \mapsto (ix,-iy)$, then G can be only an extension of the $C_2 \times C_2$ situation above, therefore we have that G is isomorphic to Q_8 with the values on the table of the theorem.

If $L_2 = 0$ but $L_3 \neq 0$, here $\overline{G} \leq D_3$ obtains that with the invariants of this elements one obtains a singular curve.

If $L_2=L_3=0$ but $L_4\neq 0$, \overline{G} leave $V(L_4)$ invariant. One knows

$$\overline{G} \leq A_4$$

of order 12. One should study all these subgroups, the ones with has $\mathbb{Z}/2 \times \mathbb{Z}/2$ we can restrict on the equation given by step 1a and one obtains the group of 16 elements and the group of 48 elements.

Case 2: G has normal transitive imprimitive subgroup H.

 ${\cal H}$ is a subgroup given above and permutates cyclically coordinates, therefore the only situations possible are:

$$Z^{4} + \alpha Z^{2}YX + Z(Y^{3} + X^{3}) + \beta Y^{2}X^{2}$$
$$Z^{3}Y + Y^{3}X + X^{3}Z$$

$$Z^{4} + Y^{3}X + X^{3}Y$$

$$Z^{4} + Y^{4} + Z^{4} + 3a(Z^{2}Y^{2} + Z^{2}X^{2} + Y^{2}X^{2})$$

the first one obtains S_3 the group with the restrictions appearing above in the argument.

The second curve is the Klein quartic, one can obtain that the automorphism group is $PSL_2(\mathbb{F}_7)$.

Easily has as a subgroup of automorphism $C_4^2 \times S_3$ of order 96, therefore can not be bigger for Hurwicz bound.

The fourth one, if a=0 is the Fermat's curve, or $a=\frac{1}{2}(-1\pm\sqrt{-7})$ is isomorphic to Klein curve. If a does not take this values, easily a subgroup of the Aut(C) is sign of changes of the variables and permutations of variables, this is a group of order 24 isomorphic to S_4 . To obtain that this is the full group of automorphism, we need a more careful study on Weierstrass points and the automorphism in

 $PGL_3(K)$.

Case 3: G is a simple group.

There are only two transitive primitive groups of PGL_3 , one is $PGL_3(\mathbb{F}_2)$ given the Klein quartic (see next talk), already considered.

The other has order bigger than 168, therefore can not be Aut(C) of any genus 3 curve.

2.2. The determination of Aut(C) by cyclic covers

Suppose that C is a non-hyperelliptic non-singular projective genus 3 curve, and suppose that C has an automorphism σ . C/σ has genus 0, or 1, (2 can not appear).

If Aut(C) has an element of order \geq 4 then $genus(C/\sigma) = 0$.

Two situations:

- 1. C curves which are a Galois cyclic cover of a projective line.
- 2. C curves which are a Galois cyclic cover of an elliptic curve but not of a projective line.

Let m denote the order of a cyclic group.

1. cyclic covers over a projective line.

C Galois cyclic cover of order then K(C) = K(x,y) with $y^m \in K(x)$, therefore:

$$y^m = (x - a_1)^{n_1} \cdot \ldots \cdot (x - a_r)^{n_r}$$

with $1 \le n_i < m$ and $\sum_{i=1}^r n_i$ is divided by $m \ a_1, \ldots, a_r$ are the points over which the ramification occurs.

Apply now proposition Hurwicz (1893) with g=3 and $\tilde{g}=0$, we now already that

$$m \le 20$$

Theorem 16 (Kubayashi-Komiya). The genus 3 curves C which are projective and nonsingular which are also a Galois cyclic cover of order m (can have also a cyclic cover of order a multiple of m) of a projective line and with C non-hyperelliptic are listed as follow (with the equation model up to isomorphism):

\boxed{m}	Equation
3	$y^3 = x(x-1)(x-\alpha)(x-\beta)$
4	$y^4 = x(x-1)(x-\alpha)$
6	$y^3 = x(x-1)(x-\alpha)(x-(1-\alpha))$
7	$y^3 + yx^3 + x = 0$
8	$y^4 = x(x^2 - 1)$
9	$y^3 = x(x^3 - 1)$
12	$y^4 = x^3 - 1$

Observe that each equation above in \mathbb{P}^2 becomes a non-singular quartic.

Make a concrete situation, how proofs goes:

We now that $m \le 20$. From Hurwicz formula from the cover $C \to C/C_m$ we can not consider m = 5, 11, 13, 17, 19.

From the conditions of the equation, from the ramification r and the conditions on n_i we can discard m=15,16,18,20.

Take m = 8 (for example here).

The values of v_i can be only divisors of 8, then 2,4,8, therefore all the possibilities are

Case (i), (ii) reducible equation.

Case (iii) three situations:

(1)
$$y^8 = (x - a_1)^2 (x - a_2)^3 (x - a_3)^3$$

(2)
$$y^8 = (x - a_1)(x - a_2)(x - a_3)^6$$

(3)
$$y^8 = (x - a_1)^2 (x - a_2)(x - a_3)^5$$

by a birational transformation x = X and $y = (X - a_1)^{-2}(X - a_2)^{-1}(X - a_3)^{-1}Y$, (2) is birational equivalent to (1) and (2) is an hyperelliptic curve.

Let us normalize the equation (3) as $y^8 = x^2(x-1)$. One computes a basis of differentials of the first kind $w_1 = y^{-3}dx$, $w_2 = y^{-6}xdx$, $w_3 = y^{-7}xdx$, and writing $x = -X^{-1}Y^4$, y = Y one obtains a canonical model:

$$X^3Z + XZ^3 + Y^4 = 0$$

(and one observes that this quartic is isomorphic to Fermat's quartic $X^4 + Y^4 + Z^4 = 0$).

How obtain from theorem 16 above the full automorphism group?

We use the equations in the projective model and case by case we study the group of elements of $PGL_3(K)$ that fix the quartic.

Basically is study two situations (Klein quartic knows):

- 1)one with the affine model: $y^3 = x(x y^3)$
- 1)(x-t)(x-s)
- 2)second with the affine model: $y^4 = x(x 1)(x t)$.

Let us mention briefly 2)

Theorem 17 (Kuribayashi-Komiya). The non-hyperelliptic genus 3 curves non-smooth and projective which are a Galois cyclic cover of a projective line of order m are isomorphic to one of the following equations and has the automorphism group associated to it:

$Equation = \{F(X, Y, Z) = 0\}$	Aut(C = V)
$Y^3Z + XZ^3 + X^3Y = 0$	$PGL_2(\mathbb{I}$
$Y^4 - X^3Z - XZ^3 = 0$	$(C_4 \times C_4)$
$Y^3Z - X^4 + XZ^3 = 0$	C_9
$Y^4 - X^3Z + Z^4 = 0$	$C_4 \odot A$
$Y^4 - X^3Z + (\alpha - 1)X^2Z^2 - \alpha XZ^3 = 0$	$C_4 \odot (C_2)$
$Y^{3}Z - X(X - Z)(X - \alpha Z)(X - (1 - \alpha)Z) = 0$	C_6
$Y^{3}Z - X(X - Z)(X - \alpha Z)(X - \beta Z) = 0$	C_3

2. Cyclic cover of a torus.

We remember that the automorphism group has a cyclic element σ of order m>4 then the genus of $C/<\sigma> is zero and therefore a cyclic cover of a projective line, as we are done.$

Let us impose that m=2,3 or 4. n=|Aut(C)| Impose that n>4 in this talk. Because n>4 $C/Aut(C)=\mathbb{P}^1$ (Hurwicz).

(Hurwicz) Galois cover $\pi:C\to C/Aut(C)$ verifies:

- (a) If $r \geq 5$, then $n \leq 8$ and:
 - (1) n = 8, $v_1 = v_2 = v_3 = v_4 = v_5 = 2$;
 - (2) n = 6, $v_1 = v_2 = v_3 = v_4 = 2$, $v_5 = 3$.
- (b) If r = 4 then $n \le 24$ and:
 - (1) n = 24, $v_1 = v_2 = v_3 = 2$, $v_4 = 3$
 - (2) n = 16, $v_1 = v_2 = v_3 = 2$, $v_4 = 4$
 - (3) n = 12, $v_1 = v_2 = 2$, $v_3 = v_4 = 3$
 - (4) n = 8, $v_1 = v_2 = 2$, $v_3 = v_4 = 4$
 - (5) n = 6, $v_1 = v_2 = v_3 = v_4 = 3$.
- (c) If r = 3, then $n \le 48$ and:
 - (1) n = 48, $v_1 = v_2 = 3$, $v_3 = 4$
 - (2) n = 24, $v_1 = 3$, $v_2 = v_3 = 4$
 - (3) n = 16, $v_1 = v_2 = v_3 = 4$.

We need a study case by case of every situation. To show the ideas that appears in this study let us take the situation with $r \ge 5$ and n = 6.

n=6 ramification 2,2,2,2,3 non-hyperelliptic.

We have an involution σ (bielliptic)

 P_1 and P_2 branch points with multiplicity 3 τ the automorphism of order 3 by which P_1 and P_2 are fixed.

 $\tau \sigma = \sigma \tau^2$ (cyclic already studied) and $gen(C/<\tau>) = 1$ is an elliptic curve (=0,studied,=2(No,Hurwicz)).

We use some facts on divisors.

Lemma 18. Let C be a projective non-singular curve of genus g (\geq 3) and let ι an automorphism of C such that $C/<\iota>$ is an elliptic curve. Denote by v_P the ramification multiplicity of a branch point of the covering $\pi:C\to C/<\iota>$. Then the divisor $\sum (v_P-1)P$ is canonical.

This is not useful for our concrete situation n=6 but yes in others and let here to write it.

Lemma 19. Let C be a non-hyperelliptic genus 3 curve, projective and non-singular. Assume that C has an automorphism ι of order 4 and ι has fixed points on C. Then the $v(\iota) = 4$, denote by P_1, P_2, P_3 and P_4 this four fixed points. Moreover we have that $\sum_{i=1}^4 P_i$ and $4P_i$ $1 \le i \le 4$ are canonical divisors.

Go back to n = 6.

 $2(P_1 + P_2)$ is canonical divisor.

$$G=\{1,\tau,\tau^2,\sigma=\sigma_1,\sigma_2=\tau\sigma_1,\sigma_3=\tau^2\sigma_1\},$$
 where σ_i are involutions (all bielliptic).

 $\{Q_i^{(1)}\}, \{Q_i^{(2)}\}, \{Q_i^{(3)}\}\$ set of 4 fixed points by $\sigma_1, \sigma_2, \sigma_3$ respectively. $\sum_{i=1}^4 \{Q_i^{(1)}\}, \sum_{i=1}^4 \{Q_i^{(2)}\}\$ and $\sum_{i=1}^4 \{Q_i^{(3)}\}\$ are canonical divisors.

From $\sigma_1 \sigma_2 \sigma_1 = \sigma_3$:

$$\sigma_1(\sum_{i=1}^4 \{Q_i^{(2)}\}) = \sum_{i=1}^4 \{Q_i^{(3)}\}$$

and $\sigma_1 P_1 = P_2$.

Define meromorphic functions:

$$div(x) = \sum_{i=1}^{4} \{Q_i^{(2)}\} - 2(P_1 + P_2)$$

$$div(y) = \sum_{i=1}^{4} \{Q_i^{(3)}\} - 2(P_1 + P_2)$$

they verify $\sigma_1(x) = \alpha y$ and $\sigma_1(y) = \beta x$, $\alpha \beta = 1$.(involution)

Rewrite y instead of αy .

Check that 1, x, y are a basis for $L(2P_1 + 2P_2)$ with $\tau(x) = -y$ and $\tau(y) = x - y$. Make change

$$x_1 = \frac{x - 2y + 1}{x + y + 1}, \ y_1 = \frac{-2x + y + 1}{x + y + 1},$$

the action of σ_1 and τ is:

$$\sigma_1: (x_1, y_1) \mapsto (y_1, x_1),$$

$$\tau:(x_1,y_1)\mapsto (y_1/x_1,1/x_1),$$

 $1, x_1, y_1$ basis for L(K) (K canonical divisor) with homogenous coordinates the group acts by

$$\sigma_1 \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

$$\tau \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix},$$

then the equation is invariant for the group S_3

therefore the equation are

$$A(X^{4}+Y^{4}+Z^{4})+B(X^{3}Y+Y^{3}X+Z^{3}X+X^{3}Z+Z^{2}+Y^{3}Z)+C(X^{2}Y^{2}+Y^{2}Z^{2}+X^{2}Z^{2})=0$$

for some A, B, C.

If B=C=0 and $A\neq 0$ is isomorphic to $y^4=x(x^2-1)$ which has cyclic cover of a projective line, this is already studied.

If B=0 and $AC\neq 0$ has a group of order 24, except when $C/A=3\mu$ with $\mu\in\{\frac{-1\pm\sqrt{-7}}{2}\}$ where for this concrete situation is isomorphic to the Klein quartic (studied above).

 $ABC \neq 0$ obtain that full group of automorphism are G.

Working situation by situation Kuribayashi and Komiya obtain:

Theorem 20 (Kuribayashi-Komiya). The non-hyperelliptic genus 3 curves non-smooth and projective which are a Galois cyclic cover of an elliptic curve and not of a projective line are isomorphic to one of the following equations and has the automorphism group associated to it:

```
Equation = \{F(X,Y,Z) = 0\}
X^4 + Y^4 + Z^4 + 3a(X^2Y^2 + X^2Z^2 + Z^2Y^2) = 0
X^4 + Y^4 + aX^2Y^2 + b(X^2Z^2 + Y^2Z^2) + Z^4 = 0
(X^4 + Y^4 + Z^4) + c(X^2Y^2 + Y^2Z^2 + X^2Z^2) + D(X^3Y + Y^3X + Z^3X + X^3Z + Z^3Y + Y^3Z) = 0
X^4 + Y^4 + Z^4 + 2aX^2Y^2 + 2bX^2Z^2 + 2cY^2Z^2 = 0
a(X^4 + Y^4 + Z^4) + b(X^3Y - Y^3X) + cX^2Y^2 + d(X^2Z^2 + Y^2Z^2) = 0
a(X^4 + Y^4 + Z^4) + b(X^3Y + Y^3Z + XZ^3) + c(Y^3X + X^3Z + Y^3Z) + D(X^2Y^2 + X^2Z^2 + Y^2Z^2) = 0
(X^4 + Y^4 + Z^4) + Y^2(a_0X^2 + a_1XZ + bZ^2) + D(X^4 + Y^4 + Z^4) + Y^2(a_0X^2 + a_1XZ + bZ^2) + D(X^3Z + a_3X^2Z + a_4XZ^3) = 0
```

2.3. Final remarks

C be a curve of genus ≥ 2 . H subgroup of Aut(C) consider the cover $C \to C/H$, $g_0 = genus(C/H)$:

$$2(g-1)/|H| = 2(g_0-1) + \sum_{i=1}^{r} (1 - \frac{1}{m_i}),$$

the signature associate to this cover is

$$(g_0; m_1, \ldots, m_r)$$

where we have exactly r ramification points.

We can list all the possible signatures from Hurwicz, and try to obtain of all this list the ones with H = Aut(C). (above use an intermediate step with cyclic subgroup).

One can obtain:

Aut(C)	g_0 ;signature
$PSL_2(\mathbb{F}_7)$	(0;2,3,7)
S_3	(0; 2, 2, 2, 2, 3)
C_2	(1;2,2,2,2)
$C_2 \times C_2$	(0; 2, 2, 2, 2, 2, 2)
Q_8	(0; 2, 2, 2, 2, 2)
S_4	(0;2,2,2,3)
$C_4^2 \rtimes S_3$	(0;2,3,8)
$C_4 \odot (C_2)^2$	(0;2,2,2,4)
$C_{4} \odot A_{4}$	(0;2,3,12)
C_3	(0;3,3,3,3,3)
C_6	(0;2,3,3,6)
C_9	(0;3,9,9)

 M_g moduli space of genus g curves. $M_{g,r}$ moduli space of genus g curves with r distint marked points Is known that

$$dim(M_{g,r}) = 3g - 3 + r.$$

Is known that the dimension in M_g of the connected components of an appearing signature $(g_0; \alpha_1, \ldots, \alpha_r)$ is $dim(M_{g_0,r})$, therefore:

Remark 21. There a lot of non-hyperelliptic genus 3 curves that has no automorphism, in particular the generic curve for M_3 should has no automorphism.

C has a large automorphism group if its point in M_g has a neighborhood such that any other curve in this neighborhood has an automorphism group a group with less elements than the group that has the curve C.

Corollary 22. Let C be a curve defined over \mathbb{C} $(g \geq 2)$. Then: C has a large automorphism group if and only if exists a Bely $\hat{\iota}$ function defining a normal covering $\pi: C \to \mathbb{P}^1$.

If we center now in our tables for genus 3 curves:

C non-hyperelliptic genus 3 curves with large automorphism group:

C	Aut(C)
$Z^3Y + Y^3X + X^3Z$	$PSL_2(\mathbb{F}_7)$
$Z^4 + X^4 + Y^4$	$C_4^2 \rtimes S_3$
$Z^4 + YX^3 + Y^3X$	$C_{4} \odot A_{4}$
$Z^4 + ZY^3 + YX^3$	C_9