On the automorphisms groups of genus 3 curves

Francesc Bars *

*Work partially supported by BFM2003-06092

Notation

C non-singular, projective curve over K, K algebraic closed field, $\operatorname{char}(K)=0$. Impose genus $(C) \geq 2$, and denote it by g. $W P(C)$ the set of all Weierstrass points of C Remember

$$
2 g+2 \leq \# W(C) \leq(g-1) g(g+1)
$$

and $\# W(C)=2 g+2$ if and only if C is hyperelliptic.
WP denotes a single Weierstrass point of C.
$A u t(C)$ group of K-automorphism of the curve C.
$v(\varphi)$ the number of fixed points of φ.

Consider a separable covering:

$$
\pi: C \rightarrow C^{\prime}
$$

with g^{\prime} is genus C^{\prime}, Remember Hurwicz formula:

$$
\begin{gathered}
2 g-2=\operatorname{deg}(\pi)\left(2 g^{\prime}-2\right)+\sum_{P \in C}\left(e_{P}-1\right)= \\
\operatorname{deg}(\pi)\left(2 g^{\prime}-2\right)+\sum_{i=1}^{r} \frac{\operatorname{deg}(\pi)}{v_{j}}\left(v_{j}-1\right) \\
=\operatorname{deg}(\pi)\left(2 g^{\prime}-2\right)+\operatorname{deg}(\pi) \sum_{i=1}^{r}\left(1-v_{j}^{-1}\right),
\end{gathered}
$$

where r are the points on C^{\prime} over which the ramification occurs $\tilde{P}_{1}, \ldots, \tilde{P}_{r}$, and for each \tilde{P}_{j} there are $\operatorname{deg}(\pi) / v_{j}$ branch points in C.
$P_{j}^{1}, \ldots, P_{j}^{\operatorname{deg}(\pi) / v_{j}}$ each with ramification $v_{j}=$ ${ }^{e} P_{j}^{l}$.

1.General facts on the group $\operatorname{Aut}(C)$

Lemma 1. Let φ be an element of $\operatorname{Aut}(C)$ different from the identity. Then φ fixes at most $2 g+2$ points (i.e. $v(\varphi) \leq 2 g+2$).

Proof. S set of fixed points of φ.
$P \in C$ non-fixed by φ.
exist f with $(f)_{\infty}=r P$ (the poles of f) for some r with $1 \leq r \leq g+1$ (take $r=g+1$ if P is not a WP).
$h:=f-f \varphi$, then $(h)_{\infty}=r P+r\left(\varphi^{-1} P\right)$, thus h has $2 r(\leq 2 g+2)$ zeroes. Observe that every fixed point of φ is a zero for h.

Lemma 2. Let be $\varphi \in \operatorname{Aut}(C)$. If P is a WP of C then $\varphi(P)$ is a WP of C.
$S_{W P(C)}$ the permutation group on the set of Weierstrass points. We have:

$$
\lambda: \operatorname{Aut}(C) \rightarrow S_{W P(C)} .
$$

Lemma 3. λ is injective unless C is hyperelliptic. If C is hyperelliptic, then $\operatorname{ker}(\lambda)=\{i d, w\}$ where w denotes the hyperelliptic involution on C.

Proof. Let be $\phi \in \operatorname{ker}(\lambda)$. If C is non-hyperelliptic, we have strictly more than $2 g+2$ WP points, thus by lemma $1 \phi=i d$.

If C is non-hyperelliptic we have a canonical immersion

$$
\phi: C \rightarrow \mathbb{P}^{g-1},
$$

and a canonical model of C in the projective $\phi(C)$.
Proposition 4. If C is a non-hyperelliptic curve, then we can think any $\operatorname{Aut}(C)$ as a projective transformation on \mathbb{P}^{g-1} leaving $\phi(C)$ invariant.

Hurwicz formula consequences:
Lemma 5. Let be $\varphi \in \operatorname{Aut}(C)$ of prime order p. Then $p \leq g$ or $p=g+1$ or $p=2 g+1$.

Proof. Let us apply the Hurwicz formula in the Galois covering $\pi: C \rightarrow C /\langle\varphi\rangle$. Denote by \tilde{g} the genus of $C /\langle\varphi\rangle$, Hurwicz formula reads:

$$
2 g-2=p(2 \tilde{g}-2)+v(\varphi)(p-1) .
$$

Assume once and for all in this proof $p \geq g+1$. If $\tilde{g} \geq 2$ then we have $2 g-2 \geq p(2 \tilde{g}-2) \geq 2 p \geq$ $2 g+2$, this can not happen.
If $\tilde{g}=1$ then we have $2 g-2=v(\varphi)(p-1) \geq$ $v(\varphi) g$ if $v(\varphi) \geq 2$ this can not happen. It can not happen also that $v(\varphi)=1$ (any automorphism of prime order of $\operatorname{Aut}(C)$ which has one fixed point, it must have at least two). If $\tilde{g}=0$ then if $v(\varphi) \geq 5$ we have $2 g-2=$ $-2 p+v(\varphi)(p-1) \geq 3 p-5 \geq 3 g-2$, this can not happen. If $v(\varphi)=4$ then by Hurwicz $2 g-2=-2 p+4(p-1)=2 p-4$ this can
only happen for $g=p+1$. If $v(\varphi)=3$ then $2 g-2=-2 p+3(p-1)=p-3$ which can only happen with $p=2 g+1$.

Similar arguments from the Hurwicz formula as above lemma prove the following results; Theorem 6 (Hurwicz, 1893). For any C with genus $g \geq 2$ we have that

$$
\# \operatorname{Aut}(C) \leq 84(g-1) .
$$

Here we use the cover $C \rightarrow C / \operatorname{Aut}(C)$ and apply Hurwicz formula.

Proposition 7 (Hurwicz, 1893). Let be H a cyclic subgroup of $\operatorname{Aut}(C)$ and denote by \tilde{g} the genus of C / H and $m=\# H$. Then:

1. if $\tilde{g} \geq 2$ then $m \leq g-1$.
2. if $\tilde{g}=1$ then $m \leq 2(g-1)$.
3. if $\tilde{g}=0$ and $\left\{\begin{array}{c}r \geq 4 \Rightarrow m \leq 2(g-1) . \\ r=4 \Rightarrow m \leq 6(g-1) . \\ r=3 \Rightarrow m \leq 10(g-1) .\end{array}\right.$

The proof is similar to Hurwicz theorem with the cover $\pi: C \rightarrow C / H$.

Let us finally list some other properties which follows from Hurwicz formula :

Proposition 8 (Accola). Let be H and $H_{j} 1 \leq$ $j \leq k$ subgroups of $\operatorname{Aut}(C)$ such that $H=$ $\cup_{j=1}^{k} H_{j}$ and $H_{i} \cap H_{l}=\{i d\}$ with $i \neq l$. Denote by $m_{j}=\# H_{j}$ and $m=\# H$ and \tilde{g} the genus of C / H and \tilde{g}_{j} the genus of C / H_{j}. Then,

$$
(k-1) g+m \tilde{g}=\sum_{j=1}^{k} m_{j} \tilde{g}_{j}
$$

Corollary 9. Let C be a genus 3 curve which is non-hyperelliptic. Then any involution σ on C is a 2-hyperelliptic that means a bielliptic involution (i.e. the genus of $C /<\sigma>$ is 1). Corollary 10. If C has genus 3 and suppose that exist a subgroup H of $A u t(C)$ isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ such that the genus of C / H is zero. If one element of H fix no point of C then C is an hyperelliptic curve.
Lemma 11. Let be $\varphi \in \operatorname{Aut}(C)$ not the identity. Let be $v(\varphi)$ the number of fixed points. Then $v(\varphi) \leq 2+\frac{2 g}{\operatorname{ord}(\varphi)-1}$ where $\operatorname{ord}(\varphi)$ is the order of this element in the group.

Proposition 12. Let be $\varphi \in \operatorname{Aut}(C)$ not the identity. If $v(\varphi)>4$ then every fixed point of φ is a WP.

Let us make explicit general facts on $\operatorname{Aut}(C)$ when the genus C is three:

$$
C \text {, with } \operatorname{genus}(C)=3, \text { then } \text { : }
$$

$$
\# \operatorname{Aut}(C) \leq 168
$$

Only the primes $2,3,7$ can divide the order of Aut (C)
$\operatorname{Aut}(C)$ is a finite group in $P G L_{3}(K)$

Automorphism groups appearing on genus 3 curves

C once and for all a non-hyperelliptic genus 3 curve.
Think C embedded in \mathbb{P}^{2}, its equation is a nonsingular plane quartic in \mathbb{P}^{2} (with at least degree 3 in every variable).

This talk follows two approaches to list the full list of groups appearing:
-Komiya-Kubayashi (Section 2.2)
-Dolgachev (Section 2.1)

Both approaches study first a cyclic subgroup of $\operatorname{Aut}(C)$ in order to obtain a model equation, and latter from this equation obtain the fuller automorphism group.

2.1. The determination of the finite groups inside $P G L_{3}$

Take every finite group inside $P G L_{3}$ with less than 168 elements and only has prime orders 2,3 or 7 .
Study which has as fixed set of $(X: Y: Z)$ a non-singular plane quartic.

Proposition 13. Let g be an automorphism of order $m>1$ of a non-singular quartic plane curve $C=V(F(X, Y, Z))$. Let us choose coordinates in such a way such that generator of the cyclic group $H=<g>$ is represented by a diagonal matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \xi_{m}^{a} & 0 \\
0 & 0 & \xi_{m}^{b}
\end{array}\right),
$$

where ξ_{m} is a primitive m-th root of unity. Then $F(X, Y, Z)$ is in the following list:

Cyclic automorphism of order m.

$g=\operatorname{diag}\left[1, \xi_{m}^{a}, \xi_{m}^{b}\right]$ we denote its Type by:

$$
m,(a, b)
$$

$C=V(F)$ where C denotes the quartic.
L_{i} denotes homogenous polynomial of degree

	Type	$F(X, 1$
(i)	$2,(0,1)$	$Z^{4}+Z^{2} L_{2}(X, Y)+L_{4}(X$
(ii)	$3,(0,1)$	$Z^{3} L_{1}(X, Y)+L_{4}(X$
(iii)	$3,(1,2)$	$X^{4}+\alpha X^{2} Y Z+X Y^{3}+X Z^{3}+\beta Y$
(iv)	$4,(0,1)$	$Z^{4}+L_{4}(X$
(v)	$4,(1,2)$	$X^{4}+Y^{4}+Z^{4}+\delta X^{2} Z^{2}+\gamma X$
(vi)	$6,(3,2)$	$X^{4}+Y^{4}+\alpha X^{2} Y^{2}+$
(vii)	$7,(3,1)$	$X^{3} Y+Y^{3} Z+$
(viii)	$8,(3,7)$	$X^{4}+Y^{3} Z+$
(ix)	$9,(3,2)$	$X^{4}+X Y^{3}+$
(x)	$12,(3,4)$	$X^{4}+Y^{4}+$

Proof. (sketch)
g acts by $(X: Y: Z) \mapsto\left(X: \xi_{m}^{a} Y: \xi_{m}^{b} Z\right)$.
First situation: Suppose or a or b is zero.
Assume $a=0$, write

$$
\begin{gathered}
F=\beta Z^{4}+Z^{3} L_{1}(X, Y)+Z^{2} L_{2}(X, Y)+ \\
Z L_{3}(X, Y)+L_{4}(X, Y)
\end{gathered}
$$

if $\beta \neq 0$
then $4 b \equiv 0 \bmod m$, thus $m=2$ or $m=4$.
If $m=2$ then $L_{1}=L_{3}=0$ we obtain Type $2,(0,1)$.
If $m=4(b \neq 2)$, then $L_{1}=L_{2}=L_{3}=0$ and we get Type $4,(0,1)$.
If $\beta=0$, then $3 b=0 \bmod m$, then $m=3$ and thus $L_{2}=L_{3}=0$ and we get Type $3,(0,1)$.
Second situation: $0, a, b$ are all distint. We can suppose that $a \neq b,(a, b)=1$. Let be $P_{1}=(1$: $0: 0), P_{2}=(0: 1: 0)$ and $P_{3}=(0: 0: 1)$ the reference points.

1. All reference points lie in the non-singular plane quartic.
The equation possibilities are now:
$F=X^{3} L_{1, X}(Y, Z)+Y^{3} L_{1, Y}(X, Z)+Z^{3} L_{1, Z}(X, Y)$
$+X^{2} L_{2, X}(Y, Z)+Y^{2} L_{2, Y}(X, Z)+Z^{2} L_{2, Z}(X, Y)$
By change on the variables X, Y, Z, reduces to:

$$
\begin{gathered}
F=X^{3} Y+Y^{3} Z+Z^{3} X+X^{2} L_{2, X}(Y, Z)+ \\
Y^{2} L_{2, Y}(X, Z)+Z^{2} L_{2, Z}(X, Y)
\end{gathered}
$$

We have that $a=3 a+b=3 b \bmod m$, therefore $m=7$ and take a generator of H such that $(a, b)=(3,1)$. We obtain that no other monomial enters in F then Type $7,(3,1)$.
2. Two reference points lie in the plane quartic.
By rescalaring the matrix g joint with permuting the coordinates we can assume that ($1: 0: 0$) does not lie in C. The equation is like:
$F=X^{4}+X^{2} L_{2}(Y, Z)+X L_{3}(Y, Z)+L_{4}(Y, Z)$ because as $a, b \neq 0 L_{1}$ does not appear (is not invariant by g), moreover Y^{4} and Z^{4} are not in L_{4} (only (1:0:0) does not lie in C).
First: $Y^{3} Z$ appears in L_{4}. We have $3 a+b=$ $0 \bmod m$.
Suppose $Z^{3} Y$ is also in L_{4} then $a+3 b=0$ therefore $8 b=0 \bmod m$ and then $m=8$, we can take g generator with $(a, b)=(3,7)$ and we obtain Type 8, $(3,7)$.
If $Z^{3} Y$ is not in L_{4} then Z^{3} is in L_{3} (because non-singularity) therefore $3 b=0 \bmod m$, this condition joint with $3 \mathrm{a}+\mathrm{b}=0$ modm
we have two situations: $m=3$ and take g with $(a, b)=(1,2)$ or $m=9$ and $(a, b)=$ $(3,2)$, but the first can not happen under the condition that $Y^{3} Z$ appears in L_{4} and the second type is equal to $9,(3,2)$ of the table.
Second: If $Y^{3} Z$ is not but is $Z^{3} Y$ in L_{4} a permutation of $Y \leftrightarrow Z$ we reduce above situation. If $Y^{3} Z$ and $Z^{3} Y$ are not in L_{4} for non-singularity we have that Y^{3} and Z^{3} should appear in L_{3}, then $3 b=0$ and $3 a=$ $0 \mathrm{mod} m$, therefore $m=3$ and $(a, b)=$ $(1,2)$ is the Type $3,(1,2)$ in the table.
3. One reference point lie in the plane quartic. We assume that $P_{1}=(1: 0: 0)$ and $P_{2}=$ (0:1:0) do not lie on C.
$F=X^{4}+Y^{4}+X^{2} L_{2}(Y, Z)+X L_{3}(Y, Z)+L_{4}(Y, Z)$.
4. None of the reference points lies in the plane quartic.
In this situation

$$
\begin{gathered}
F=X^{4}+Y^{4}+Z^{4}+X^{2} L_{2}(Y, Z)+X L_{3}(Y, Z)+ \\
\alpha Y^{3} Z+\beta Y Z^{3}+\iota Y^{2} Z^{2}
\end{gathered}
$$

5. One reference point lie in the plane quartic. We assume that $P_{1}=(1: 0: 0)$ and $P_{2}=$ (0:1:0) do not lie on C. $F=X^{4}+Y^{4}+X^{2} L_{2}(Y, Z)+X L_{3}(Y, Z)+L_{4}(Y, Z)$, where Z^{4} does not enter in L_{4} for the hypotheses on which references points lie or not lie in the quartic, L_{1} does not appear because $a b \neq 0$. We have then $4 a=0$ mod m. By non-singularity Z^{3} appears in L_{3}, therefore $3 b=0 \bmod m$, hence $m=6$ or $m=12$. Imposing the invariance by g we obtain

$$
(*) F=X^{4}+Y^{4}+\alpha X^{2} Y^{2}+X Z^{3}
$$

if $m=6$ then $(a, b)=(3,2)$ (and α may be diferent from 0), this is Type $6,(3,2)$. If $m=12$ then $(a, b)=(3,4)$ from the above equation ($*$) and $\alpha=0$, this is Type 12, (3, 4).
6. None of the reference points lies in the plane quartic.
In this situation

$$
\begin{gathered}
F=X^{4}+Y^{4}+Z^{4}+X^{2} L_{2}(Y, Z)+X L_{3}(Y, Z)+ \\
\alpha Y^{3} Z+\beta Y Z^{3}+\iota Y^{2} Z^{2},
\end{gathered}
$$

where L_{1} does not appears because $a b \neq 0$. Clearly $4 a=4 b=0 \bmod m$, therefore $m=4$ and we can take $(a, b)=(1,2)$ or $(1,3)$ both situation define isomorphic curves (only by a renaming which is X, Y, Z in the equations), this is type $4,(1,2)$.

Group theory notation

$G \leq G L(V) . \quad G$ intransitive if the representation of G in $G L(V)$ is reducible. Otherwise we say transitive.
G is imprimitive if G contains an intransitive normal subgroup G^{\prime}, in this situation V decomposes into direct sum of G^{\prime}-invariant proper subspaces and the set of representants of G of G / G^{\prime} permutates them.
C_{m} the cyclic group of order m, S_{i} the simetric group of i-elements, A_{i} the alternate group of i-elements,
D_{i} the dihedral group, order $2 i$.
Q_{8} the quaternion group
$A \odot B$ denotes a group G defined as an $E x t^{1}(B, A)$, from

$$
1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1
$$

and $A \rtimes B$ the semi-product.

Theorem 14. In the following table we list all the groups that appear as a group of automorphism of a non-singular plane quartic and moreover group by group we list equations which has exactly as automorphism group this group. These equations covers up to isomorphism all the plane non-singular quartics which has some automorphism.

Full automorphism group G.

n denotes order of the group G

n	G	
168	$P S L_{2}\left(\mathbb{F}_{7}\right) \cong P S L_{3}\left(\mathbb{F}_{2}\right)$	
96	$\left(C_{4} \times C_{4}\right) \rtimes S_{3}$	
48	$C_{4} \odot A_{4}$	
24	S_{4}	$Z^{4}+Y^{4}+X^{4}+3 a(2$
16	$C_{4} \odot\left(C_{2} \times C_{2}\right)$	$Z^{4}-X^{3} Y-$
9	C_{9}	
8	Q_{8}	$Z^{4}+\alpha Z^{2}\left(Y^{2}+X^{2}\right.$
6	C_{6}	Z^{4}
6	S_{3}	$Z^{4}+\alpha Z^{2} Y X+$
4	$C_{2} \times C_{2}$	$Z^{4}+Z^{2}\left(\alpha Y^{2}+\beta X^{2}\right.$
3	C_{3}	
2	C_{2}	

where P.M. means parameter restriction.

Remark 15. the Dolgachev table is:

n	G	
168	$P S L_{2}\left(\mathbb{F}_{7}\right) \cong P S L_{3}\left(\mathbb{F}_{2}\right)$	
96	$\left(C_{4} \times C_{4}\right) \rtimes S_{3}$	
48	$C_{4} \odot A_{4}$	
24	S_{4}	$Z^{4}+Y^{4}+X^{4}+a(Z$
16	$C_{4} \times C_{4}$	$Z^{4}+$
9	C_{9}	
8	Q_{8}	$Z^{4}+\alpha Z^{2}\left(Y^{2}+X^{2}\right)$
7	C_{7}	$\left.Z^{3} Y+\right)$
6	C_{6}	Z^{4}
6	S_{3}	$Z^{4}+\alpha Z^{2} Y X+$
4	$C_{2} \times C_{2}$	$Z^{4}+Z^{2}\left(\alpha Y^{2}+\beta X^{2}\right)$
3	C_{3}	$Z^{4}+\alpha Z^{2} Y X+$
2	C_{2}	$Z^{4}+Z$

Proof. (sketch)
Case 1: G an intransitive group realized as a group of automorphism.
Case 1.a. $: V=V_{1} \oplus V_{2} \oplus V_{3}$.
Choose (X, Y, Z) such that V_{1} spanned by ($1,0,0$) and so on.
$g \in G$ of order m, after scaling $g=\operatorname{diag}(1, a, b)$, we know models of equations and restrictions for m, a, b above proposition.
Suppose $h \in G$ but $h \notin<g\rangle$, (choose m maximal with the property that has an element of order m).
Study now situation by situation the equations on cyclic subgroups (i)-(x):
Take $m=12$, (x); we think $h=\operatorname{diag}\left(1, \xi_{m^{\prime}}^{c}, \xi_{m^{\prime}}^{d}\right)$ then $4 c=3 d=0 \bmod m^{\prime}$, then $12 \mid m^{\prime}$ and $h \in\langle g\rangle$.
Nevertheless situation (x) has bigger automorphisms group which appears in case 1.b.
Similar arguments in the cases (v)-(x) to conclude: there are no other automorphism appearing as an intransitive group with $V=V_{1} \oplus$

$V_{2} \oplus V_{3}$.

Case (iv) and suppose $h \notin<g>$, let

$$
L_{4}=a X^{4}+b Y^{4}+c X^{3} Y+d X Y^{3}+e X^{2} Y^{2}
$$

assume $a b \neq 0, h=\operatorname{diag}\left(\xi_{m^{\prime}}^{p}, \xi_{m^{\prime}}^{q}, 1\right)$, then $m^{\prime}=$ 2 or 4 . If $m^{\prime}=2$ the only possibility is $(p, q)=$ $(0,1)$ or $(1,0)(h \notin<g>)$ where $c=d=0$, but in this possibility we obtain a bigger group of automorphism. If $m^{\prime}=4$, only possibilities $(p, q)=(1,0),(0,1)$, $(1,3),(3,1),(1,2),(2,1)$. If $(p, q)=(1,3)$ or $(3,1)$ we have $c=d=0$, we obtain that this equation that has bigger group appearing in the following process (interchanging X and $Y)$. If $(p, q)=(1,2)$ or $(2,1)$ similar as the case $(1,3)$. The situation $(1,0)$ implies $c=d=e=$ 0 , this is the Fermat quartic and has bigger group of automorphism.
Assume now $a \neq 0$ and $b=0 . d \neq 0$ (nonsingularity). One has $4 p=3 p+q=0 \bmod m^{\prime}$, then $c=e=0$. But then we obtain $\mathbb{Z} / 12$ as
group, situation (x) considered before.
Assume now $a=b=0$. $c d \neq 0$ (non-singularity).
$3 p+q=p+3 q=0 \bmod \left(\mathrm{~m}^{\prime}\right)$, but then $m^{\prime}=8$ (studied above).
Similar argument applied:
Case (iii) One checks that no other element appears except when 1) $\alpha=\beta=0$ that is situation (ix) already studied;2) $\alpha=\beta$ appears C_{6} in the group an is already studied (vi),3) $\beta=$ $0, \alpha \neq 0$ no-reduced,4) $\alpha=0, \beta \neq 0$ appears C_{6}.
Case (ii): Since $L_{1} \neq 0$ no h can appear.
Case (i): Only need to study when $\operatorname{diag}(1,-1,1)$ appears (i.e. we have $C_{2} \times C_{2}$). We have that L_{4} does not contain $Y^{3} X$ and $X^{3} Y$ and L_{2} does not contain $X Y$. In this situation could has a bigger group of automorphism when $\alpha=\beta$ (see table).

Case 1.b. $V=V_{1} \oplus V_{2}$ with $\operatorname{dim} V_{2}=2$, where V_{2} irreducible representation of G (G non-abelian).

Choose coordinates s.t. $(1,0,0) \in V_{1}, V_{2}$ spanned by $(0,1,0),(0,0,1) . \bar{g}$ restriction of g to $W=$ $V(Z)=\mathbb{P}\left(V_{2}\right)$, choose in $S L_{2}$. Write:
$F=\alpha Z^{4}+Z^{3} L_{1}(Y, X)+Z^{2} L_{2}(Y, X)+Z L_{3}(Y, X)$

$$
+L_{4}(Y, X)
$$

$L_{1}=0$ (irreducibility of V_{2}) and $\alpha \neq 0$ (nonsingularity).
If $L_{2} \neq 0, G$ leaves $V\left(L_{2}\right)$ invariant, \bar{G} the restriction of G in W, the

$$
G \leq D_{2}
$$

then by a change of variables on V_{2} that the action of \bar{G} is $(x, y) \mapsto(-y, x)$ and $(x, y) \mapsto$ (ix, -iy), then G can be only an extension of the $C_{2} \times C_{2}$ situation above, therefore we have that G is isomorphic to Q_{8} with the values on the table of the theorem.
If $L_{2}=0$ but $L_{3} \neq 0$, here $\bar{G} \leq D_{3}$ obtains that with the invariants of this elements one obtains a singular curve.

If $L_{2}=L_{3}=0$ but $L_{4} \neq 0, \bar{G}$ leave $V\left(L_{4}\right)$ invariant. One knows

$$
\bar{G} \leq A_{4}
$$

of order 12. One should study all these subgroups, the ones with has $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ we can restrict on the equation given by step 1 a and one obtains the group of 16 elements and the group of 48 elements.

Case 2: G has normal transitive imprimitive subgroup H.
H is a subgroup given above and permutates cyclically coordinates, therefore the only situations possible are:

$$
\begin{gathered}
Z^{4}+\alpha Z^{2} Y X+Z\left(Y^{3}+X^{3}\right)+\beta Y^{2} X^{2} \\
Z^{3} Y+Y^{3} X+X^{3} Z
\end{gathered}
$$

$$
\begin{gathered}
Z^{4}+Y^{3} X+X^{3} Y \\
Z^{4}+Y^{4}+Z^{4}+3 a\left(Z^{2} Y^{2}+Z^{2} X^{2}+Y^{2} X^{2}\right)
\end{gathered}
$$

the first one obtains S_{3} the group with the restrictions appearing above in the argument. The second curve is the Klein quartic, one can obtain that the automorphism group is $P S L_{2}\left(\mathbb{F}_{7}\right)$.
Easily has as a subgroup of automorphism $C_{4}^{2} \rtimes$ S_{3} of order 96, therefore can not be bigger for Hurwicz bound.
The fourth one, if $a=0$ is the Fermat's curve, or $a=\frac{1}{2}(-1 \pm \sqrt{-7})$ is isomorphic to Klein curve. If a does not take this values, easily a subgroup of the $\operatorname{Aut}(C)$ is sign of changes of the variables and permutations of variables, this is a group of order 24 isomorphic to S_{4}. To obtain that this is the full group of automorphism, we need a more careful study on Weierstrass points and the automorphism in
$P G L_{3}(K)$.

Case 3: G is a simple group.
There are only two transitive primitive groups of $P G L_{3}$, one is $P G L_{3}\left(\mathbb{F}_{2}\right)$ given the Klein quartic (see next talk), already considered.
The other has order bigger than 168, therefore can not be $A u t(C)$ of any genus 3 curve.

2.2. The determination of $\operatorname{Aut}(C)$ by cyclic covers

Suppose that C is a non-hyperelliptic non-singular projective genus 3 curve, and suppose that C has an automorphism $\sigma . C / \sigma$ has genus 0 , or 1, (2 can not appear).

If $\operatorname{Aut}(C)$ has an element of order ≥ 4 then genus $(C / \sigma)=0$.

Two situations:

1. C curves which are a Galois cyclic cover of a projective line.
2. C curves which are a Galois cyclic cover of an elliptic curve but not of a projective line.

Let m denote the order of a cyclic group.

1. cyclic covers over a projective line.
C Galois cyclic cover of order then $K(C)=$ $K(x, y)$ with $y^{m} \in K(x)$, therefore:

$$
y^{m}=\left(x-a_{1}\right)^{n_{1}} \cdot \ldots \cdot\left(x-a_{r}\right)^{n_{r}}
$$

with $1 \leq n_{i}<m$ and $\sum_{i=1}^{r} n_{i}$ is divided by $m a_{1}, \ldots, a_{r}$ are the points over which the ramification occurs.
Apply now proposition Hurwicz (1893) with $g=3$ and $\tilde{g}=0$, we now already that

$$
m \leq 20
$$

Theorem 16 (Kubayashi-Komiya). The genus 3 curves C which are projective and nonsingular which are also a Galois cyclic cover of order m (can have also a cyclic cover of order a multiple of m) of a projective line and with C non-hyperelliptic are listed as follow (with the equation model up to isomorphism):

m	Equation
3	$y^{3}=x(x-1)(x-\alpha)(x-\beta)$
4	$y^{4}=x(x-1)(x-\alpha)$
6	$y^{3}=x(x-1)(x-\alpha)(x-(1-\alpha))$
7	$y^{3}+y x^{3}+x=0$
8	$y^{4}=x\left(x^{2}-1\right)$
9	$y^{3}=x\left(x^{3}-1\right)$
12	$y^{4}=x^{3}-1$

Observe that each equation above in \mathbb{P}^{2} becomes a non-singular quartic.

Make a concrete situation, how proofs goes:
We now that $m \leq 20$. From Hurwicz formula from the cover $C \rightarrow C / C_{m}$ we can not consider $m=5,11,13,17,19$.

From the conditions of the equation, from the ramification r and the conditions on n_{i} we can discard $m=15,16,18,20$.

Take $m=8$ (for example here).
The values of v_{i} can be only divisors of 8 , then $2,4,8$, therefore all the possibilities are

$$
\begin{array}{lccccc}
& v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\
\text { (i) } & 2 & 2 & 2 & 2 & 2 \\
\text { (ii) } & 2 & 2 & 4 & 4 & \\
\text { (iii) } & 4 & 8 & 8 & &
\end{array}
$$

Case (i), (ii) reducible equation.
Case (iii) three situations:
(1) $y^{8}=\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)^{3}\left(x-a_{3}\right)^{3}$
(2) $y^{8}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)^{6}$
(3) $y^{8}=\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)\left(x-a_{3}\right)^{5}$
by a birational transformation $x=X$ and $y=\left(X-a_{1}\right)^{-2}\left(X-a_{2}\right)^{-1}\left(X-a_{3}\right)^{-1} Y$, (2) is birational equivalent to (1) and (2) is an hyperelliptic curve.
Let us normalize the equation (3) as $y^{8}=$ $x^{2}(x-1)$. One computes a basis of differentials of the first kind $w_{1}=y^{-3} d x$, $w_{2}=y^{-6} x d x, w_{3}=y^{-7} x d x$, and writing $x=-X^{-1} Y^{4}, y=Y$ one obtains a canonical model:

$$
X^{3} Z+X Z^{3}+Y^{4}=0
$$

(and one observes that this quartic is isomorphic to Fermat's quartic $X^{4}+Y^{4}+$ $Z^{4}=0$) .

How obtain from theorem 16 above the full automorphism group?

We use the equations in the projective model and case by case we study the group of elements of $P G L_{3}(K)$ that fix the quartic.

Basically is study two situations(Klein quartic knows):
1)one with the affine model: $y^{3}=x(x-$ 1) $(x-t)(x-s)$
2)second with the affine model: $y^{4}=x(x-$ 1) $(x-t)$.

Let us mention briefly 2)

Theorem 17 (Kuribayashi-Komiya). The

 non-hyperelliptic genus 3 curves non-smooth and projective which are a Galois cyclic cover of a projective line of order m are isomorphic to one of the following equations and has the automorphism group associated to it:| Equation $=\{F(X, Y, Z)=0\}$ | $\operatorname{Aut}(C=1$ |
| :--- | ---: |
| $Y^{3} Z+X Z^{3}+X^{3} Y=0$ | $P G L_{2}(\bar{I}$ |
| $Y^{4}-X^{3} Z-X Z^{3}=0$ | $\left(C_{4} \times C_{4}\right)$ |
| $Y^{3} Z-X^{4}+X Z^{3}=0$ | C_{9} |
| $Y^{4}-X^{3} Z+Z^{4}=0$ | $C_{4} \odot$ |
| $Y^{4}-X^{3} Z+(\alpha-1) X^{2} Z^{2}-\alpha X Z^{3}=0$ | $C_{4} \odot\left(C_{2}\right.$ |
| $Y^{3} Z-X(X-Z)(X-\alpha Z)(X-(1-\alpha) Z)=0$ | C_{6} |
| $Y^{3} Z-X(X-Z)(X-\alpha Z)(X-\beta Z)=0$ | C_{3} |
| | |

2. Cyclic cover of a torus.

We remember that the automorphism group has a cyclic element σ of order $m>4$ then the genus of $C /<\sigma\rangle$ is zero and therefore a cyclic cover of a projective line, as we are done.

Let us impose that $m=2,3$ or 4 .
$n=|A u t(C)|$
Impose that $n>4$ in this talk.
Because $n>4 C / \operatorname{Aut}(C)=\mathbb{P}^{1}$ (Hurwicz).
(Hurwicz) Galois cover $\pi: C \rightarrow C / \operatorname{Aut}(C)$ verifies:
(a) If $r \geq 5$, then $n \leq 8$ and:
(1) $n=8, v_{1}=v_{2}=v_{3}=v_{4}=v_{5}=2$;
(2) $n=6, v_{1}=v_{2}=v_{3}=v_{4}=2$, $v_{5}=3$.
(b) If $r=4$ then $n \leq 24$ and:
(1) $n=24, v_{1}=v_{2}=v_{3}=2, v_{4}=3$
(2) $n=16, v_{1}=v_{2}=v_{3}=2, v_{4}=4$
(3) $n=12, v_{1}=v_{2}=2, v_{3}=v_{4}=3$
(4) $n=8, v_{1}=v_{2}=2, v_{3}=v_{4}=4$
(5) $n=6, v_{1}=v_{2}=v_{3}=v_{4}=3$.
(c) If $r=3$, then $n \leq 48$ and:
(1) $n=48, v_{1}=v_{2}=3, v_{3}=4$
(2) $n=24, v_{1}=3, v_{2}=v_{3}=4$
(3) $n=16, v_{1}=v_{2}=v_{3}=4$.

We need a study case by case of every situation. To show the ideas that appears in this study let us take the situation with $r \geq 5$ and $n=6$.
$n=6$ ramification 2,2,2,2,3 non-hyperelliptic. We have an involution σ (bielliptic) P_{1} and P_{2} branch points with multiplicity 3 τ the automorphism of order 3 by which P_{1} and P_{2} are fixed.
$\tau \sigma=\sigma \tau^{2}$ (cyclic already studied) and $\operatorname{gen}(C /<$ $\tau>)=1$ is an elliptic curve ($=0$,studied, $=2($ No,Hurwicz) $)$.

We use some facts on divisors.

Lemma 18. Let C be a projective nonsingular curve of genus $g(\geq 3)$ and let ι an automorphism of C such that $C /<\iota\rangle$ is an elliptic curve. Denote by v_{P} the ramification multiplicity of a branch point of the covering $\pi: C \rightarrow C /<\iota>$. Then the divisor $\sum\left(v_{P}-1\right) P$ is canonical.

This is not useful for our concrete situation $n=6$ but yes in others and let here to write it.

Lemma 19. Let C be a non-hyperelliptic genus 3 curve, projective and non-singular. Assume that C has an automorphism ι of order 4 and ι has fixed points on C. Then the $v(\iota)=4$, denote by P_{1}, P_{2}, P_{3} and P_{4} this four fixed points. Moreover we have that $\sum_{i=1}^{4} P_{i}$ and $4 P_{i} 1 \leq i \leq 4$ are canonical divisors.

Go back to $n=6$.
$2\left(P_{1}+P_{2}\right)$ is canonical divisor.
$G=\left\{1, \tau, \tau^{2}, \sigma=\sigma_{1}, \sigma_{2}=\tau \sigma_{1}, \sigma_{3}=\tau^{2} \sigma_{1}\right\}$, where σ_{i} are involutions (all bielliptic).
$\left\{Q_{i}^{(1)}\right\},\left\{Q_{i}^{(2)}\right\},\left\{Q_{i}^{(3)}\right\}$ set of 4 fixed points by $\sigma_{1}, \sigma_{2,} \sigma_{3}$ respectively.
$\sum_{i=1}^{4}\left\{Q_{i}^{(1)}\right\}, \quad \sum_{i=1}^{4}\left\{Q_{i}^{(2)}\right\}$ and $\sum_{i=1}^{4}\left\{Q_{i}^{(3)}\right\}$ are canonical divisors.

From $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{3}$:

$$
\sigma_{1}\left(\sum_{i=1}^{4}\left\{Q_{i}^{(2)}\right\}\right)=\sum_{i=1}^{4}\left\{Q_{i}^{(3)}\right\}
$$

and $\sigma_{1} P_{1}=P_{2}$.
Define meromorphic functions:

$$
\begin{aligned}
& \operatorname{div}(x)=\sum_{i=1}^{4}\left\{Q_{i}^{(2)}\right\}-2\left(P_{1}+P_{2}\right) \\
& \operatorname{div}(y)=\sum_{i=1}^{4}\left\{Q_{i}^{(3)}\right\}-2\left(P_{1}+P_{2}\right)
\end{aligned}
$$

they verify $\sigma_{1}(x)=\alpha y$ and $\sigma_{1}(y)=\beta x$, $\alpha \beta=1$.(involution)

Rewrite y instead of αy.
Check that $1, x, y$ are a basis for $L\left(2 P_{1}+\right.$ $2 P_{2}$) with $\tau(x)=-y$ and $\tau(y)=x-y$. Make change

$$
x_{1}=\frac{x-2 y+1}{x+y+1}, y_{1}=\frac{-2 x+y+1}{x+y+1},
$$

the action of σ_{1} and τ is:

$$
\begin{gathered}
\sigma_{1}:\left(x_{1}, y_{1}\right) \mapsto\left(y_{1}, x_{1}\right), \\
\tau:\left(x_{1}, y_{1}\right) \mapsto\left(y_{1} / x_{1}, 1 / x_{1}\right),
\end{gathered}
$$

1, x_{1}, y_{1} basis for $L(K)$ (K canonical divisor) with homogenous coordinates the group acts by

$$
\begin{aligned}
\sigma_{1}\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \\
\tau\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right),
\end{aligned}
$$

then the equation is invariant for the group S_{3}
therefore the equation are
$A\left(X^{4}+Y^{4}+Z^{4}\right)+B\left(X^{3} Y+Y^{3} X+Z^{3} X+X^{3} Z+\right.$
$\left.Z^{3} Y+Y^{3} Z\right)+C\left(X^{2} Y^{2}+Y^{2} Z^{2}+X^{2} Z^{2}\right)=0$
for some A, B, C.
If $B=C=0$ and $A \neq 0$ is isomorphic to $y^{4}=x\left(x^{2}-1\right)$ which has cyclic cover of a projective line, this is already studied. If $B=0$ and $A C \neq 0$ has a group of order 24, except when $C / A=3 \mu$ with $\mu \in$ $\left\{\frac{-1 \pm \sqrt{-7}}{2}\right\}$ where for this concrete situation is isomorphic to the Klein quartic (studied above).
$A B C \neq 0$ obtain that full group of automorphism are G.

Working situation by situation Kuribayashi and Komiya obtain:

Theorem 20 (Kuribayashi-Komiya). The non-hyperelliptic genus 3 curves non-smooth and projective which are a Galois cyclic cover of an elliptic curve and not of a projective line are isomorphic to one of the following equations and has the automorphism group associated to it:

$$
\begin{aligned}
& \text { Equation }=\{F(X, Y, Z)=0\} \\
& X^{4}+Y^{4}+Z^{4}+3 a\left(X^{2} Y^{2}+X^{2} Z^{2}+Z^{2} Y^{2}\right)=0 \\
& X^{4}+Y^{4}+a X^{2} Y^{2}+b\left(X^{2} Z^{2}+Y^{2} Z^{2}\right)+Z^{4}=0 \\
& \left(X^{4}+Y^{4}+Z^{4}\right)+c\left(X^{2} Y^{2}+Y^{2} Z^{2}+X^{2} Z^{2}\right)+ \\
& b\left(X^{3} Y+Y^{3} X+Z^{3} X+X^{3} Z+Z^{3} Y+Y^{3} Z\right)=0 \\
& X^{4}+Y^{4}+Z^{4}+2 a X^{2} Y^{2}+2 b X^{2} Z^{2}+2 c Y^{2} Z^{2}=0 \\
& a\left(X^{4}+Y^{4}+Z^{4}\right)+b\left(X^{3} Y-Y^{3} X\right)+c X^{2} Y^{2}+d\left(X^{2} Z^{2}+Y^{2} Z^{2}\right)=0 \\
& a\left(X^{4}+Y^{4}+Z^{4}\right)+b\left(X^{3} Y+Y^{3} Z+X Z^{3}\right)+c\left(Y^{3} X+X^{3} Z+Y^{3} Z\right)+ \\
& d\left(X^{2} Y^{2}+X^{2} Z^{2}+Y^{2} Z^{2}\right)=0 \\
& \left(X^{4}+Y^{4}+Z^{4}\right)+Y^{2}\left(a_{0} X^{2}+a_{1} X Z+b Z^{2}\right)+ \\
& \left(a_{2} X^{3} Z+a_{3} X^{2} Z+a_{4} X Z^{3}\right)=0
\end{aligned}
$$

2.3. Final remarks

C be a curve of genus ≥ 2.
H subgroup of $\operatorname{Aut}(C)$ consider the cover $C \rightarrow C / H, g_{0}=\operatorname{genus}(C / H)$:

$$
2(g-1) /|H|=2\left(g_{0}-1\right)+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right),
$$

the signature associate to this cover is

$$
\left(g_{0} ; m_{1}, \ldots, m_{r}\right)
$$

where we have exactly r ramification points.

We can list all the possible signatures from Hurwicz, and try to obtain of all this list the ones with $H=\operatorname{Aut}(C)$. (above use an intermediate step with cyclic subgroup).

One can obtain:

$A u t(C)$	$g_{0} ;$ signature
$P S L_{2}\left(\mathbb{F}_{7}\right)$	$(0 ; 2,3,7)$
S_{3}	$(0 ; 2,2,2,2,3)$
C_{2}	$(1 ; 2,2,2,2)$
$C_{2} \times C_{2}$	$(0 ; 2,2,2,2,2,2)$
Q_{8}	$(0 ; 2,2,2,2,2)$
S_{4}	$(0 ; 2,2,2,3)$
$C_{4}^{2} \rtimes S_{3}$	$(0 ; 2,3,8)$
$C_{4} \odot\left(C_{2}\right)^{2}$	$(0 ; 2,2,2,4)$
$C_{4} \odot A_{4}$	$(0 ; 2,3,12)$
C_{3}	$(0 ; 3,3,3,3,3)$
C_{6}	$(0 ; 2,3,3,6)$
C_{9}	$(0 ; 3,9,9)$

M_{g} moduli space of genus g curves.
$M_{g, r}$ moduli space of genus g curves with r distint marked points
Is known that

$$
\operatorname{dim}\left(M_{g, r}\right)=3 g-3+r
$$

Is known that the dimension in M_{g} of the connected components of an appearing signature ($g_{0} ; \alpha_{1}, \ldots, \alpha_{r}$) is $\operatorname{dim}\left(M_{g_{0}, r}\right)$, therefore:
Remark 21. There a lot of non-hyperelliptic genus 3 curves that has no automorphism, in particular the generic curve for M_{3} should has no automorphism.
C has a large automorphism group if its point in M_{g} has a neighborhood such that any other curve in this neighborhood has an automorphism group a group with less elements than the group that has the curve C.
Corollary 22. Let C be a curve defined over $\mathbb{C}(g \geq 2)$. Then: C has a large automorphism group if and only if exists a Bely $\hat{\imath}$ function defining a normal covering $\pi: C \rightarrow \mathbb{P}^{1}$.

If we center now in our tables for genus 3 curves:
C non-hyperelliptic genus 3 curves with large automorphism group:

C	$\operatorname{Aut}(C)$
$Z^{3} Y+Y^{3} X+X^{3} Z$	$P S L_{2}\left(\mathbb{F}_{7}\right)$
$Z^{4}+X^{4}+Y^{4}$	$C_{4}^{2} \rtimes S_{3}$
$Z^{4}+Y X^{3}+Y^{3} X$	$C_{4} \odot A_{4}$
$Z^{4}+Z Y^{3}+Y X^{3}$	C_{9}

