The Fermat-type equations $x^{5}+y^{5}=2 z^{p}$ or $3 z^{p}$ solved through \mathbb{Q}-curves

Nuno Freitas
Universitat de Barcelona
January 2012

The equation $x^{5}+y^{5}=d z^{p}$

Theorem (Billerey and Billerey, Dieulefait)

Let $d=2^{\alpha} 3^{\beta} 5^{\gamma}$ where $\alpha \geq 2, \beta, \gamma, \geq 0$, or $d=7,13$. Then, for $p>19$ the equation $x^{5}+y^{5}=d z^{p}$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $/ \not \equiv 1(\bmod 5)$

\squareFor any $p>13$ such that $p \equiv 1 \bmod 4$ or $p \equiv \pm 1 \bmod 5$, theequation $x^{5}+y^{5}=2 \gamma z^{p}$ has no non-trivial primitive solutions.
Theorem (Dieulefait, F)
For any $n>73$ such that $p \equiv 1 \bmod 4$ or $p \equiv \pm 1 \bmod 5$, the
equation $x^{5}+y^{5}=3 \gamma z^{D}$ has no non-trivial primitive solutions.

The equation $x^{5}+y^{5}=d z^{p}$

Theorem (Billerey and Billerey, Dieulefait)

Let $d=2^{\alpha} 3^{\beta} 5^{\gamma}$ where $\alpha \geq 2, \beta, \gamma, \geq 0$, or $d=7,13$. Then, for $p>19$ the equation $x^{5}+y^{5}=d z^{p}$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $/ \not \equiv 1(\bmod 5)$.

Theorem (Dieulefait, F)

For any $p>13$ such that $p \equiv 1 \bmod 4$ or $p \equiv \pm 1 \bmod 5$, the equation $x^{5}+y^{5}=2 \gamma z^{p}$ has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any $p>73$ such that $p \equiv 1 \bmod 4$ or $p \equiv \pm 1 \bmod 5$, the equation $x^{5}+y^{5}=3 \gamma z^{p}$ has no non-trivial primitive solutions.

Relating two equations

Key factorization:
$x^{5}+y^{5}=(x+y)\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right)$
Let $\phi(x, y)=\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right)$

Proposition

If $(a, b)=1$ then the integers $a+b$ and $\phi(a, b)$ are coprime
outside 5. Moreover, $5 \mid a+b \Longleftrightarrow v_{5}(\phi(a, b))=1$

Proposition

I et $I \neq 1(\bmod 5)$ be a prime number dividing $a^{5}+b^{5}$. If
$(a, b)=1$ then $/$ divides $a+b$.

Relating two equations

Key factorization:

$x^{5}+y^{5}=(x+y)\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right)$
Let $\phi(x, y)=\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right)$

Proposition

If $(a, b)=1$ then the integers $a+b$ and $\phi(a, b)$ are coprime outside 5. Moreover, $5 \mid a+b \Longleftrightarrow v_{5}(\phi(a, b))=1$

Proposition

Let $I \not \equiv 1(\bmod 5)$ be a prime number dividing $a^{5}+b^{5}$. If
$(a, b)=1$ then $/$ divides $a+b$.

Relating two equations

Let (a, b, c) be a primitive solution to $x^{5}+y^{5}=d \gamma z^{p}$.

- $a^{5}+b^{5}=(a+b) \phi(a, b)=d \gamma c^{p}(d=2,3)$
- Since $d \gamma$ is divisible only by primes $I \not \equiv 1(\bmod 5)$ we have $d \gamma \mid a+b$
- If $5 \nmid a+b$ then $\phi(a, b)=c_{0}^{p}$
- If $5 \mid a+b$ then $\phi(a, b)=5 c_{0}^{p}$
- $c_{0} \mid c$ is only divisible by primes $I \equiv 1(\bmod 5)$.

Hence we need to prove that $\phi(x, y)=r z^{p}$ where $r=1,5$ has no non-trivial primitive solutions if $d \gamma \mid a+b$. Actually, we can suppose that $\gamma=1$.

The Frey \mathbb{Q}-curve

Observe that over $\mathbb{Q}(\sqrt{5})$

- $\phi(x, y)=\phi_{1}(x, y) \phi_{2}(x, y)$, where
- $\phi_{1}(x, y)=x^{2}+\omega x y+y^{2}$ and $\phi_{2}(x, y)=x^{2}+\bar{\omega} x y+y^{2}$, with
- $\omega=\frac{-1+\sqrt{5}}{2}, \bar{\omega}=\frac{-1-\sqrt{5}}{2}$
- Moreover, if $(a, b)=1$ then $\phi_{1}(a, b), \phi_{2}(a, b)$ are coprime outside the prime above 5 .

Definition

Given a triple (a, b, c) define the Frey-curve over $\mathbb{Q}(\sqrt{5})$

$$
E_{(a, b)}: y^{2}=x^{3}+2(a+b) x^{2}-\bar{\omega} \phi_{1}(a, b) x
$$

with discriminant $\Delta(E)=2^{6} \bar{\omega} \phi \phi_{1}$.
There are representations $\rho_{E, l}: G_{\mathbb{Q}(\sqrt{5})} \rightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{l}\right)$ with residual representations $\bar{\rho}_{E, l}: G_{\mathbb{Q}(\sqrt{5})} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{l}\right)$

The Frey \mathbb{Q}-curve

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{\rho}\right)$ be odd and irreducible. Then $\bar{\rho}$ is modular of type ($N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

We need to extend $\bar{\rho}_{E, p}!!!$
Definition
Let C be an elliptic curve over $\overline{\mathbb{Q}}$. We say that C is a \mathbb{Q}-curve if it is isogenous to all its Galois conjugates ${ }^{\sigma} C$ for $\sigma \in G$

Proposition
Then $E_{(a, b)}$ is a Q-curve

Proof: The curve $E_{(a, b)}$ has the non-trivial Galois

The Frey \mathbb{Q}-curve

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{\rho}\right)$ be odd and irreducible. Then $\bar{\rho}$ is modular of type ($N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

We need to extend $\bar{\rho}_{E, p}!!!$

Definition

Let C be an elliptic curve over $\overline{\mathbb{Q}}$. We say that C is a \mathbb{Q}-curve if it is isogenous to all its Galois conjugates ${ }^{\sigma} C$ for $\sigma \in G_{\mathbb{Q}}$

Proposition

Then $E_{(a, b)}$ is a \mathbb{Q}-curve
Proof: The curve $E_{(a, b)}$ has the non-trivial Galois

The Frey \mathbb{Q}-curve

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{\rho}\right)$ be odd and irreducible. Then $\bar{\rho}$ is modular of type ($N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

We need to extend $\bar{\rho}_{E, p}!!!$

Definition

Let C be an elliptic curve over $\overline{\mathbb{Q}}$. We say that C is a \mathbb{Q}-curve if it is isogenous to all its Galois conjugates ${ }^{\sigma} C$ for $\sigma \in G_{\mathbb{Q}}$

Proposition

Then $E_{(a, b)}$ is a \mathbb{Q}-curve
Proof: The curve $E_{(a, b)}$ has the non-trivial Galois

$$
{ }^{\sigma} E_{(a, b)}: y^{2}=x^{3}+2(a+b) x^{2}-\omega \phi_{2}(a, b) x,
$$

The Frey \mathbb{Q}-curve

and there exists a 2-isogeny $\mu:{ }^{\sigma} E \rightarrow E$ given by

$$
(x, y) \mapsto\left(-\frac{y^{2}}{2 x^{2}}, \frac{\sqrt{-2}}{4} \frac{y}{x^{2}}\left(\omega \phi_{2}+x^{2}\right)\right) .
$$

Theorem

Let $K=\mathbb{Q}(\theta)$ where $\theta=\sqrt{\frac{1}{2}}(5+\sqrt{5})$. Put $\gamma=2 \theta^{2}-\theta-5$ and consider the twist of $E_{(a, b)}$ by γ defined over K by

$$
E_{\gamma}: y^{2}=x^{3}+2 \gamma(a+b) x^{2}-\gamma^{2} \bar{\omega} \phi_{1}(a, b) x .
$$

The Weil restriction $B=\operatorname{Res}_{K / \mathbb{Q}}\left(E_{\gamma} / K\right) \sim S_{1} \times S_{2}$ where S_{i} are two non-isogenous abelian surfaces of $G L_{2}$-type defined over \mathbb{Q}. Each S_{i} has its \mathbb{Q}-endomorphism algebra iso to $\mathbb{Q}(i)$

The Frey \mathbb{Q}-curve

and there exists a 2-isogeny $\mu:{ }^{\sigma} E \rightarrow E$ given by

$$
(x, y) \mapsto\left(-\frac{y^{2}}{2 x^{2}}, \frac{\sqrt{-2}}{4} \frac{y}{x^{2}}\left(\omega \phi_{2}+x^{2}\right)\right)
$$

Theorem

Let $K=\mathbb{Q}(\theta)$ where $\theta=\sqrt{\frac{1}{2}(5+\sqrt{5})}$. Put $\gamma=2 \theta^{2}-\theta-5$ and consider the twist of $E_{(a, b)}$ by γ defined over K by

$$
E_{\gamma}: y^{2}=x^{3}+2 \gamma(a+b) x^{2}-\gamma^{2} \bar{\omega} \phi_{1}(a, b) x
$$

The Weil restriction $B=\operatorname{Res}_{K / \mathbb{Q}}\left(E_{\gamma} / K\right) \sim S_{1} \times S_{2}$ where S_{i} are two non-isogenous abelian surfaces of $G L_{2}$-type defined over \mathbb{Q}. Each S_{i} has its \mathbb{Q}-endomorphism algebra iso to $\mathbb{Q}(i)$.

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

- For $\lambda \in \mathbb{Q}(i)$ then $G_{\mathbb{Q}}$ acts on $T_{I} S_{i}$ and induces

$$
\rho_{l}=\rho_{S_{i}, \lambda} \oplus \rho_{S_{i}, \lambda}^{\sigma} .
$$

- To compute $N\left(\bar{\rho}_{S_{i}, \lambda}\right)$ we need the level of $\rho_{S_{i, \lambda}}$ first.

From Tate's Algorithm we compute $N_{E_{\gamma}}$ and with

Milne's Formula: $N_{B}=\operatorname{Nm}_{K / \mathbb{Q}}\left(N_{E_{\gamma}}\right) \operatorname{Disc}(K / \mathbb{Q})^{2}$

we obtain the conductor of B

Proposition

- $N_{B}=2^{t 5^{6+s}} \mathrm{rad}(c)^{4}$
- $s=0$ or 2 if $5 \mid a+b$ or $5 \nmid a+b$, respectively
- if $2 \mid a+b \Rightarrow t=24,8,16$ if $2||a+b, 4|| a+b, 8 \mid a+b$
- if $2 \nmid a+b$ then $t=24$ or 20 if $4 \nmid$ a or $4 \mid a$, respectively.

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

- For $\lambda \in \mathbb{Q}(i)$ then $G_{\mathbb{Q}}$ acts on $T_{I} S_{i}$ and induces

$$
\rho_{l}=\rho_{S_{i, \lambda}} \oplus \rho_{S_{i}, \lambda}^{\sigma}
$$

- To compute $N\left(\bar{\rho}_{S_{i}, \lambda}\right)$ we need the level of $\rho_{S_{i}, \lambda}$ first.

From Tate's Algorithm we compute $N_{E_{\gamma}}$ and with
Milne's Formula: $N_{B}=\operatorname{Nm}_{K / \mathbb{Q}}\left(N_{E_{\gamma}}\right) \operatorname{Disc}(K / \mathbb{Q})^{2}$
we obtain the conductor of B
Proposition

- $N_{B}=2^{t 5^{6+s}} \mathrm{rad}(c)^{4}$
- $s=0$ or 2 if $5 \mid a+b$ or $5 \nmid a+b$, respectively
- if $2 \mid a+b \Rightarrow t=24,8,16$ if $2||a+b, 4 \| a+b, 8| a+b$
- if $2 \nmid a+b$ then $t=24$ or 20 if $4 \nmid a$ or $4 \mid a$, respectively.

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let ϵ be the character of K then ϵ^{2} is the character of $\mathbb{Q}(\sqrt{5})$.

- E_{γ} has no $\mathrm{CM} \Rightarrow \rho_{E_{\gamma}, l}$ absolutely irreducible
- Extensions of abs. irr. rep. are unique up to twists
- There are four 2-dimensional rep. of $G_{\mathbb{Q}}$ extending $\rho_{E_{2}}$
- $B \simeq S_{1} \times S_{2} \Rightarrow N_{B}=N_{S_{1}} N_{S_{2}}$
- $N_{S_{i}}=\operatorname{cond}\left(\rho_{S_{i}, \lambda}\right) \operatorname{cond}\left(\rho_{S_{i}, \lambda}^{\sigma}\right)=\operatorname{cond}\left(\rho_{S_{i}, \lambda}\right)^{2}$
- The difference between cond $\left(\rho_{\mathcal{S}_{1}, \lambda}\right)$ and cond $\left(\rho_{\mathcal{S}_{2}, \lambda}\right)$ is at 5
- $\operatorname{cond}_{5}\left(\rho_{S_{1}, \lambda} \otimes \epsilon^{2}\right) \leq \operatorname{Icm}\left(\operatorname{cond}_{5}\left(\rho_{S_{1}, \lambda}\right), \operatorname{cond}\left(\epsilon^{2}\right)^{2}=5^{2}\right)$

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let ϵ be the character of K then ϵ^{2} is the character of $\mathbb{Q}(\sqrt{5})$.

- E_{γ} has no $\mathrm{CM} \Rightarrow \rho_{E_{\gamma}, l}$ absolutely irreducible
- Extensions of abs. irr. rep. are unique up to twists
- There are four 2-dimensional rep. of $G_{\mathbb{Q}}$ extending $\rho_{E_{\gamma}, l}$

$$
\rho_{S_{1}, \lambda} \otimes \epsilon=\rho_{S_{1}, \lambda}^{\sigma}, \quad \rho_{S_{1}, \lambda} \otimes \epsilon^{2}=\rho_{S_{2}, \lambda}, \quad \rho_{S_{1}, \lambda} \otimes \epsilon^{3}=\rho_{S_{2}, \lambda}^{\sigma}
$$

- $B \simeq S_{1} \times S_{2} \Rightarrow N_{B}=N_{S_{1}} N_{S_{2}}$
- $N_{S_{i}}=\operatorname{cond}\left(\rho_{S_{i}, \lambda}\right) \operatorname{cond}\left(\rho_{S_{i}, \lambda}^{\sigma}\right)=\operatorname{cond}\left(\rho_{S_{i}, \lambda}\right)^{2}$
- The difference between cond $\left(\rho_{S_{1}, \lambda}\right)$ and $\operatorname{cond}\left(\rho_{S_{2}, \lambda}\right)$ is at 5 - $\operatorname{cond}_{5}\left(\rho s_{1}, \lambda \otimes \epsilon^{2}\right) \leq \operatorname{Icm}\left(\operatorname{cond}_{5}\left(\rho s_{1}, \lambda\right), \operatorname{cond}\left(\epsilon^{2}\right)^{2}=5^{2}\right)$

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let ϵ be the character of K then ϵ^{2} is the character of $\mathbb{Q}(\sqrt{5})$.

- E_{γ} has no $\mathrm{CM} \Rightarrow \rho_{E_{\gamma}, I}$ absolutely irreducible
- Extensions of abs. irr. rep. are unique up to twists
- There are four 2-dimensional rep. of $G_{\mathbb{Q}}$ extending $\rho_{E_{\gamma}, l}$

$$
\rho_{S_{1}, \lambda} \otimes \epsilon=\rho_{S_{1}, \lambda}^{\sigma}, \quad \rho_{S_{1}, \lambda} \otimes \epsilon^{2}=\rho_{S_{2}, \lambda}, \quad \rho_{S_{1}, \lambda} \otimes \epsilon^{3}=\rho_{S_{2}, \lambda}^{\sigma}
$$

- $B \simeq S_{1} \times S_{2} \Rightarrow N_{B}=N_{S_{1}} N_{S_{2}}$
- $N_{S_{i}}=\operatorname{cond}\left(\rho_{S_{i}, \lambda}\right) \operatorname{cond}\left(\rho_{S_{i}, \lambda}^{\sigma}\right)=\operatorname{cond}\left(\rho_{S_{i}, \lambda}\right)^{2}$
- The difference between cond $\left(\rho_{S_{1}, \lambda}\right)$ and $\operatorname{cond}\left(\rho_{S_{2}, \lambda}\right)$ is at 5
- $\operatorname{cond}_{5}\left(\rho_{S_{1}, \lambda} \otimes \epsilon^{2}\right) \leq \operatorname{lcm}\left(\operatorname{cond}_{5}\left(\rho_{S_{1}, \lambda}\right), \operatorname{cond}\left(\epsilon^{2}\right)^{2}=5^{2}\right)$

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Equation	$\nu_{2}(a+b)$	ρ_{1}, λ	$\rho_{S_{1}, \lambda}^{\sigma}$	$\rho_{S_{2}, \lambda}$	$\rho_{S_{0}, \lambda}$
$r=1$	0	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$
$r=1$	0	$2^{5} 5^{2} c_{0}$	$2^{5} 5^{2} c_{0}$	$2^{5} 5^{2} c_{0}$	$2^{5} 5^{2} c_{0}$
$r=1$	1	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$
$r=1$	2	$2^{2} 5^{2} c_{0}$	$2^{2} 5^{2} c_{0}$	$2^{2} 5^{2} c_{0}$	$2^{2} 5^{2} c_{0}$
$r=1$	≥ 3	$2^{4} 5^{2} c_{0}$	$2^{4} 5^{2} c_{0}$	$2^{4} 5^{2} c_{0}$	$2^{4} 5^{2} c_{0}$
$r=5$	0	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$	$2^{6} 5 c_{0}$	$2^{6} 5 c_{0}$
$r=5$	0	$2^{5} 5^{2} c_{0}$	$2^{5} 5^{2} c_{0}$	$2^{5} 5 c_{0}$	$2^{5} 5 c_{0}$
$r=5$	1	$2^{6} 5^{2} c_{0}$	$2^{6} 5^{2} c_{0}$	$2^{6} 5 c_{0}$	$2^{6} 5 c_{0}$
$r=5$	2	$2^{2} 5^{2} c_{0}$	$2^{2} 5^{2} c_{0}$	$2^{2} 5 c_{0}$	$2^{2} 5 c_{0}$
$r=5$	≥ 3	$2^{4} 5^{2} c_{0}$	$2^{4} 5^{2} c_{0}$	$2^{4} 5 c_{0}$	$2^{4} 5 c_{0}$

Table: Values of conductors, where $c_{0}=\operatorname{rad}(c)$

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho:=\rho_{S_{1}, \lambda}$ and $\bar{\rho}:=\bar{\rho}_{S_{1}, \lambda}$.

- (Hellegouarch) $\bar{\rho} \mid K=\bar{\rho}_{E_{\gamma}, p}$ is unramified at $c_{0}=\operatorname{rad}(c)$.
- $\operatorname{Disc}(K / \mathbb{Q})=2^{4} 5^{3}$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing $\bmod p$
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_{0}

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho:=\rho_{\mathcal{S}_{1}, \lambda}$ and $\bar{\rho}:=\bar{\rho}_{s_{1}, \lambda}$.

- (Hellegouarch) $\bar{\rho} \mid K=\bar{\rho}_{E_{\gamma}, p}$ is unramified at $c_{0}=\operatorname{rad}(c)$.
- $\operatorname{Disc}(K / \mathbb{Q})=2^{4} 5^{3}$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing mod p
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_{0}
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho})=\epsilon^{-1}$ since $p>2$
- If $p \nmid c S_{1}$ has good reduction; if $p \mid c$, since $p \mid v_{\mathfrak{F}(\Delta)}$ then $\bar{\rho}$ is finite. In both cases $k(\bar{\rho})=2$
- (Elenberg) $\bar{\rho}$ is absolutely irreducible for $p>13$ if (a, b, c) is such that $|c|>1$.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with $M=1600,800,400$ or 100 and a prime \mathfrak{P} in \mathbb{Q}_{f} above p such thai $\bar{p} \equiv \bar{p}_{f, 23}(\bmod 刃)$

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho:=\rho_{S_{1}, \lambda}$ and $\bar{\rho}:=\bar{\rho}_{S_{1}, \lambda}$.

- (Hellegouarch) $\bar{\rho} \mid K=\bar{\rho}_{E_{\gamma}, p}$ is unramified at $c_{0}=\operatorname{rad}(c)$.
- $\operatorname{Disc}(K / \mathbb{Q})=2^{4} 5^{3}$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing $\bmod p$
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_{0}
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho})=\epsilon^{-1}$ since $p>2$
- If $p \nmid c S_{1}$ has good reduction; if $p \mid c$, since $p \mid v_{\mathfrak{P}(\Delta)}$ then $\bar{\rho}$ is finite. In both cases $k(\bar{\rho})=2$
- (Ellenberg) $\bar{\rho}$ is absolutely irreducible for $p>13$ if (a, b, c) is such that $|c|>1$.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with $M=1600,800,400$ or 100 and a prime \mathfrak{P} in \mathbb{Q}_{f} above p such that $\bar{\rho} \equiv \bar{\rho}_{f, \mathfrak{P}}(\bmod \mathfrak{P})$

Computing $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho:=\rho_{S_{1}, \lambda}$ and $\bar{\rho}:=\bar{\rho}_{S_{1}, \lambda}$.

- (Hellegouarch) $\bar{\rho} \mid K=\bar{\rho}_{E_{\gamma}, p}$ is unramified at $c_{0}=\operatorname{rad}(c)$.
- $\operatorname{Disc}(K / \mathbb{Q})=2^{4} 5^{3}$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing $\bmod p$
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_{0}
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho})=\epsilon^{-1}$ since $p>2$
- If $p \nmid c S_{1}$ has good reduction; if $p \mid c$, since $p \mid v_{\mathfrak{P}(\Delta)}$ then $\bar{\rho}$ is finite. In both cases $k(\bar{\rho})=2$
- (Ellenberg) $\bar{\rho}$ is absolutely irreducible for $p>13$ if (a, b, c) is such that $|c|>1$.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with $M=1600,800,400$ or 100 and a prime \mathfrak{P} in \mathbb{Q}_{f} above p such that $\bar{\rho} \equiv \bar{\rho}_{f, \mathfrak{P}}(\bmod \mathfrak{P})$

Eliminating Newforms

For each possible newform we will contradict the congruence $\bar{\rho} \equiv \bar{\rho}_{f, p}$.

- Compute with SAGE the newforms in $\mathcal{S}_{2}\left(M, \epsilon^{-1}\right)$
- The newforms corresponding to the trivial solutions $(\pm 1,0),(0, \pm 1),(1,1),(-1,-1)$ and $(1,-1),(-1,1)$ exist.
- $E_{(\pm 1,0)}, E_{(0, \pm 1)}$ is not a problem for $d=2$
- $E_{(-1,1)}, E_{(1,-1)}, E_{(1,1)}$ and $E_{(-1,-1)}$ have Complex Multiplication

Observe that $\mathbb{Q}(i)=\mathbb{Q}(\epsilon) \subseteq \mathbb{Q}_{f}$ and define the sets:
S1: Newforms with CM (Complex Multiplication),
S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,

S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

Eliminating Newforms

For each possible newform we will contradict the congruence $\bar{\rho} \equiv \bar{\rho}_{f, p}$.

- Compute with SAGE the newforms in $\mathcal{S}_{2}\left(M, \epsilon^{-1}\right)$
- The newforms corresponding to the trivial solutions $(\pm 1,0),(0, \pm 1),(1,1),(-1,-1)$ and $(1,-1),(-1,1)$ exist.
- $E_{(\pm 1,0)}, E_{(0, \pm 1)}$ is not a problem for $d=2$
- $E_{(-1,1)}, E_{(1,-1)}, E_{(1,1)}$ and $E_{(-1,-1)}$ have Complex Multiplication

Observe that $\mathbb{Q}(i)=\mathbb{Q}(\epsilon) \subseteq \mathbb{Q}_{f}$ and define the sets:
S1: Newforms with CM (Complex Multiplication),
S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,
S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

d=2: Newforms in S1

Recall that $2 \mid a+b$ then 800 is not a possible level.

- There are four with CM by $\mathbb{Q}(i)$ and four by $\mathbb{Q}(\sqrt{-5})$.
- If (a, b, c) is non-trivial there exists a prime ≥ 5 of multiplicative reduction.
- (Ellenberg) If $p>13$ the image of $\bar{\rho}$ will not lie in the normalizer of a split Cartan subgroup.
- For an f with CM if p is a square on the field of CM then the image of $\bar{\rho}_{f, p}$ will be in a normalizer of a split Cartan subgroup.
- Then $p \equiv 1 \bmod 4$ and $p \equiv \pm 1 \bmod 5 \Rightarrow \bar{\rho} \not \equiv \bar{\rho}_{f, p}$

d=2: Newforms in S2

- There are 12 newforms (modulo conjugation) in S2.
- For q of good reduction for $S_{1}, a_{q}=\bar{a}_{q} \epsilon^{-1}(q)$.
- 3 is of good reduction and $a_{3}=t-t i$ with $t \in \mathbb{Z}$.
- Weil bound $\left|a_{3}\right| \leq 2 \sqrt{3} \Rightarrow|t| \leq 2$
- If $f=q+\sum_{n=2} a_{n}(f) q^{n}$ then $a_{3}(\bar{\rho}) \equiv a_{3}(f)(\bmod \mathfrak{P})$
- There is f in S2 of level 400 with $a_{3}(f)$ having minimal polynomial $x^{2}+10 i$
- Then $a_{3}(f) \equiv t$ - it $(\bmod \mathfrak{P})$ implies $100 \equiv 4 t^{4}(\bmod \mathfrak{P})$, substituting for $t=0, \pm 1, \pm 2$ we reach a contradiction if $p>5$.
- Do the same with $a_{3}(f)$ for all other f and conlude a contradiction for $p>7$.

d=2: Newforms in S3

Let χ be the character of $\mathbb{Q}(\sqrt{2})$ and $E_{\gamma, 2}$ the twist by 2 of E_{γ}.

- There are 10 "bad" newforms in S3 all with level 1600 (2 || $a+b$).
- Since $1600=2^{6} 5^{2}$ and cond $(\chi)^{2}=8^{2}=2^{6}$ the conductor of $f \otimes \chi$ may decrease.
- With SAGE we compute the coefficients of $f \otimes \chi$ to find that $f \otimes x$ are of level 800 for all f in S3
- Then $\rho_{S_{1}, \lambda} \otimes \chi$ extends $\rho_{E_{\gamma, 2}, p}$ and the same holds for $\rho_{S_{1},}^{\sigma}$ $\rho_{S_{2, \lambda}}^{\sigma}, \rho_{S_{2}, \lambda}$
- Therefore $\rho_{B, p} \otimes \chi=\left(\operatorname{lnd}_{G_{K}}^{G_{Q}} \rho_{E_{\gamma, p}}\right) \otimes \chi=$

Ind $G_{G_{K}}^{G_{\mathbb{Q}}}\left(\rho_{E_{\gamma, p}} \otimes \chi_{\mid K}\right)=\operatorname{lnd}_{G_{K}}^{G_{\mathbb{Q}}} \rho_{E_{\gamma, 2}, p}$ arises from $G_{\mathbb{Q}}$ acting on the p-adic Tate module of $\operatorname{Res}_{K / \mathbb{Q}}\left(E_{\gamma, 2} / K\right)$.

- Then we can compute conductor of $\rho_{B, p} \otimes \chi$ via Milne's Formula

d=2: Newforms in S3

Let χ be the character of $\mathbb{Q}(\sqrt{2})$ and $E_{\gamma, 2}$ the twist by 2 of E_{γ}.

- There are 10 "bad" newforms in S3 all with level 1600 (2 || $a+b$).
- Since $1600=2^{6} 5^{2}$ and cond $(\chi)^{2}=8^{2}=2^{6}$ the conductor of $f \otimes \chi$ may decrease.
- With SAGE we compute the coefficients of $f \otimes \chi$ to find that $f \otimes \chi$ are of level 800 for all f in S3
- Then $\rho_{S_{1}, \lambda}$ extends $\rho_{E_{\gamma, 2, p}}$ and the same holds for $\rho_{S_{1}}^{\sigma}$,
- Therefore $\rho_{B, p} \otimes \chi=\left(\operatorname{Ind}_{G_{K}}^{G_{0}} \rho_{E_{\gamma}, p}\right)$ Ind ${ }_{G_{K}}^{G_{\mathbb{Q}}}\left(\rho_{E_{\gamma, p}} \otimes \chi_{\mid K}\right)=\operatorname{lnd}_{G_{K}}^{G_{\mathbb{Q}}} \rho_{E_{\gamma, 2}, p}$ arises from $G_{\mathbb{Q}}$ acting on the p-adic Tate module of $\operatorname{Res}_{K / \mathbb{Q}}\left(E_{\gamma, 2} / K\right)$.
- Then we can compute conductor of $\rho_{B, p} \otimes \chi$ via Milne's Formula

d=2: Newforms in S3

Let χ be the character of $\mathbb{Q}(\sqrt{2})$ and $E_{\gamma, 2}$ the twist by 2 of E_{γ}.

- There are 10 "bad" newforms in S3 all with level 1600 (2 || $a+b$).
- Since $1600=2^{6} 5^{2}$ and cond $(\chi)^{2}=8^{2}=2^{6}$ the conductor of $f \otimes \chi$ may decrease.
- With SAGE we compute the coefficients of $f \otimes \chi$ to find that $f \otimes \chi$ are of level 800 for all f in S3
- $\left(\rho_{S_{1}, \lambda} \otimes \chi\right)_{\mid K}=\left(\rho_{\mathcal{S}_{1}, \lambda}\right)_{\mid K} \otimes \chi_{\mid K}=\rho_{E_{\gamma, p}} \otimes \chi_{\mid K}=\rho_{E_{\gamma, 2}, p}$
- Then $\rho_{\mathcal{S}_{1}, \lambda} \otimes \chi$ extends $\rho_{E_{\gamma, 2}, p}$ and the same holds for $\rho_{\mathcal{S}_{1}, \lambda}^{\sigma}$, $\rho_{S_{2}, \lambda}^{\sigma}, \rho_{S_{2}, \lambda}$
- Therefore $\rho_{B, p} \otimes \chi=\left(\operatorname{Ind}_{G_{K}}^{G_{Q}} \rho_{E_{\gamma}, p}\right) \otimes \chi=$ $\operatorname{Ind}{ }_{G_{K}}^{G_{Q}}\left(\rho_{E_{\gamma}, p} \otimes \chi_{\mid K}\right)=\operatorname{Ind}_{G_{K}}^{G_{Q}} \rho_{E_{\gamma, 2}, p}$ arises from $G_{\mathbb{Q}}$ acting on the p-adic Tate module of $\operatorname{Res}_{K / \mathbb{Q}}\left(E_{\gamma, 2} / K\right)$.
- Then we can compute conductor of $\rho_{B, p} \otimes \chi$ via Milne's Formula

d=2: Newforms in S3

$\rho_{1}:=\rho_{S_{1}, \lambda} \otimes \chi$ is a 2-dimensional factor of $\rho_{B, p} \otimes \chi$ and extends $\rho_{E_{\gamma, 2}, p}$. Let $\bar{\rho}_{1}$ denote its reduction. A similar analysis as for E_{γ} shows that if $2 \| a+b$ then by Serre's conjecture
$\bar{\rho}_{1}$ is modular of type $\left(M_{1}, 2, \bar{\epsilon}\right)$ with $M=100$ or 400

- $\bar{\rho}_{1} \equiv \bar{\rho}_{g, p}(\bmod \mathfrak{P})$
- $\bar{\rho}_{1}=\overline{\rho_{S_{1}, \lambda} \otimes \chi}=\bar{\rho} \otimes \chi \equiv \bar{\rho}_{f, p} \otimes \chi \equiv \bar{\rho}_{f \otimes \chi, p}=\bar{\rho}_{f^{\prime}, p}$,
- We know that f^{\prime} has level 800
- This kind of level lowering can not happen (by Carayol)!

d=2: Newforms in S3

$\rho_{1}:=\rho_{S_{1}, \lambda} \otimes \chi$ is a 2-dimensional factor of $\rho_{B, p} \otimes \chi$ and extends $\rho_{E_{\gamma, 2}, p}$. Let $\bar{\rho}_{1}$ denote its reduction. A similar analysis as for E_{γ} shows that if $2 \| a+b$ then by Serre's conjecture
$\bar{\rho}_{1}$ is modular of type $\left(M_{1}, 2, \bar{\epsilon}\right)$ with $M=100$ or 400

- $\bar{\rho}_{1} \equiv \bar{\rho}_{g, p}(\bmod \mathfrak{P})$
- $\bar{\rho}_{1}=\overline{\rho_{S_{1}, \lambda} \otimes \chi}=\bar{\rho} \otimes \chi \equiv \bar{\rho}_{f, p} \otimes \chi \equiv \bar{\rho}_{f \otimes \chi, p}=\bar{\rho}_{f^{\prime}, p}$,
- We know that f^{\prime} has level 800
- This kind of level lowering can not happen (by Carayol)!

Theorem

For any $p>13$ such that $p \equiv 1 \bmod 4$ and $p \equiv \pm 1 \bmod 5$, the equation $x^{5}+y^{5}=2 \gamma z^{p}$ has no non-trivial primitive solutions.

d=3: a+b odd, level 800

Let $d=3$. Recall that $3 \mid a+b$ and suppose $a+b$ odd, which means level 800 or 1600.

- In level 800 there are 4 newforms of type S2 and 10 of type S3 and none of type S1. Suppose $\bar{\rho} \equiv \bar{\rho}_{f, p}$.
- For type S 2 we do as before. There exists f in S 2 with $a_{3}(f)$ having minimal polynomial $t^{2} \pm(2-2 i) t+i$ then we need $p>73$ to achieve a contradiction.
- If $f \in S 3,\left.\left.\bar{\rho}\right|_{G_{K}} \equiv \bar{\rho}_{f, p}\right|_{G_{K}} \Rightarrow a_{\mathfrak{P}_{3}}\left(E_{\gamma}\right) \equiv a_{\mathfrak{P}_{3}}(f)(\bmod p)$
- $3 \mid a+b \Rightarrow a_{\mathfrak{P}_{3}}\left(E_{\gamma}\right)=-18$ (with SAGE)
- $a_{3}(f)= \pm(2 i-2)$ or $\pm(i-1)$ for f in S3
- $a_{\mathfrak{P}_{3}}(f)=\alpha^{4}+\beta^{4}$, where α, β are roots of the characteristic polynomial of $\rho_{f, p}\left(\mathrm{Frob}_{3}\right)$, i.e. $x^{2}-a_{3}(f) x+\epsilon^{-1}(3) 3$
- Then $a_{\mathfrak{P}_{3}}(f)=14$ or 2 , contradiction for $p>3$

d=3: a+b odd, level 1600

Now level 1600:

- The forms of type S1 and S2 can be eliminated exactly as for $d=2$. Since f in S1 with CM by $\mathbb{Q}(\sqrt{-5})$ verify $a_{3}= \pm(i-1)$ we only need the condition $p \equiv 1 \bmod 4$, because $3 \mid a+b$.
- For f in S3 consider $f \otimes \chi$ known to have level $800=2^{5} 5^{2}$ and twist $E_{\gamma}(a, b)$ by 2.
- If $\operatorname{cond}_{2}\left(E_{\gamma, 2}\right) \neq 2^{5}$ we have a contradiction by Carayol.
- If $\operatorname{cond}_{2}\left(E_{\gamma, 2}\right)=2^{5}$ then since $E_{\gamma, 2} \bmod \mathfrak{P}_{3}$ is equal to $E_{\gamma}(a, b) \bmod \mathfrak{P}_{3}$ we have $a_{\mathfrak{P}_{3}}\left(E_{\gamma, 2}\right)=-18$ which gives a contradiction with $a_{\mathfrak{P}_{3}}(f)$ as before.

d=3: a+b even

Suppose $a+b$ even.

- We eliminate newforms of type S2 and S3 exactly with the same arguments used when $d=2$.
- For f in S1 we only need to suppose that is $p \equiv 1 \bmod 4$ to get a contradiction since newforms with CM by $\mathbb{Q}(\sqrt{-5})$ verify $a_{3}= \pm(i-1)$.

d=3: a+b even

Suppose $a+b$ even.

- We eliminate newforms of type S2 and S3 exactly with the same arguments used when $d=2$.
- For f in S 1 we only need to suppose that is $p \equiv 1 \bmod 4$ to get a contradiction since newforms with CM by $\mathbb{Q}(\sqrt{-5})$ verify $a_{3}= \pm(i-1)$.

Theorem

For any $p>73$ such that $p \equiv 1 \bmod 4$, the equation $x^{5}+y^{5}=3 \gamma z^{p}$ has no non-trivial primitive solutions.

Another \mathbb{Q}-curve

Definition

Let $F_{(a, b)}$ be the elliptic curve defined over $\mathbb{Q}(\sqrt{5})$ given by

$$
F_{(a, b)}: y^{2}=x^{3}+2(a-b) x^{2}+\left(\frac{3}{10} \sqrt{5}+\frac{1}{2}\right) \phi_{1}(a, b) x .
$$

- $F_{(a, b)}$ is a \mathbb{Q}-curve.
- As in the case of E we apply Quer's theory, Milne's Formula and Serre's conjecture.
- We have $\bar{\rho} \equiv \bar{\rho}_{f, p}$ for newforms with level 100,400 or 1600 if $8 \mid a+b, 4 \| a+b$ or $2 \| a+b$, respectively.
- If $2 \nmid a+b$ we can suppose that a is even and we are in level 800 or 1600 if 4 | a or $4 \nmid$ a, respectively.

Another \mathbb{Q}-curve

Definition

Let $F_{(a, b)}$ be the elliptic curve defined over $\mathbb{Q}(\sqrt{5})$ given by

$$
F_{(a, b)}: y^{2}=x^{3}+2(a-b) x^{2}+\left(\frac{3}{10} \sqrt{5}+\frac{1}{2}\right) \phi_{1}(a, b) x
$$

- $F_{(a, b)}$ is a \mathbb{Q}-curve.
- As in the case of E we apply Quer's theory, Milne's Formula and Serre's conjecture.
- We have $\bar{\rho} \equiv \bar{\rho}_{f, p}$ for newforms with level 100,400 or 1600 if $8 \mid a+b, 4 \| a+b$ or $2 \| a+b$, respectively.
- If $2 \nmid a+b$ we can suppose that a is even and we are in level 800 or 1600 if $4 \mid a$ or $4 \nmid a$, respectively.

Multi-Frey technique

- Suppose that $a^{5}+b^{5}=d c^{p}$ and that c is even.
- Then we have a solution $\left(a, b, c_{0}\right)$ to $x^{5}+y^{5}=d 2^{p} z^{p}$ and by B-D it is impossible.
- We can suppose c to be odd and we only have to deal with the cases $2 \| a+b$ or $2 \nmid a+b$.
- Thus we have to eliminate newforms only on levels 1600 $(d=2)$ or 1600 and $800(d=3)$.
- These are the same levels as in the case of $E_{(a, b)}$
- For a solution (a, b, c) we have a double congruence $\left(\bar{\rho}_{E}, \bar{\rho}_{F}\right) \equiv\left(\bar{\rho}_{f, p}\left|K, \bar{\rho}_{g, p}\right| K\right)(\bmod \mathfrak{P})$, where f, g are newforms in $S_{2}\left(M, \epsilon^{-1}\right)$ both with level $M=800$ or $M=1600$.
- We can apply the multi-Frey technique with E and F !

Multi-Frey technique

Definition

Let $C_{(x, y)} / K$ be $E_{(x, y)}$ or $F_{(x, y)}$. For a prime q of good reduction for C and newform f let

$$
C_{(x, y)}(q, f)=a_{q}\left(C_{(x, y)}\right)-a_{q}(f \mid K)
$$

Theorem (Siksek)

Let (f, g) be a pair of newforms and define

$$
\left.A_{q}(f, g)=\prod_{(x, y) \in \mathbb{F}_{q}-\{(0,0)\}} \operatorname{gcd}\left(E_{(x, y)}(q, f)\right), F_{(x, y)}(q, g)\right)
$$

If (a, b, c) is a primitive solution giving rise to the double congruence $\left(\bar{\rho}_{E}, \bar{\rho}_{F}\right) \equiv\left(\bar{\rho}_{f, p}\left|K, \bar{\rho}_{g, p}\right| K\right)(\bmod \mathfrak{P})$ then $p \mid A_{q}$.

- We want to improve the conditions on p which comes from CM forms.
- In level 800 there are no newforms with CM
- In level 1600 there are f_{1}, f_{2} by $\mathbb{Q}(i)$ and g_{1}, g_{2} by $\mathbb{Q}(\sqrt{-5})$
- Let SS1 be the set of pairs (f, g) where f has no CM and SS2 the set of those where f has CM.
- We eliminate a pair (f, g) in SS1 by applying the arguments on f explained before.
- Given (f, g) in SS2 we compute $A_{a}(f, g)$ using the auxiliary primes $q=3,7,13,17$ to find that $A_{q}(f, g)=0$ for all the auxiliary primes only if f, g have CM by distinct fields. - Remain four pairs: $\left(f_{1}, g_{1}\right),\left(f_{1}, g_{2}\right),\left(g_{1}, f_{1}\right)$ and $\left(g_{2}, f_{2}\right)$.
- For a prime $p \equiv 1(\bmod 4)$ or $p \equiv \pm 1(\bmod 5)$ we can eliminate these pairs by applying Ellenberg's theorem to E or F convenientyl to get a contradiction! q.e.d.
- We want to improve the conditions on p which comes from CM forms.
- In level 800 there are no newforms with CM
- In level 1600 there are f_{1}, f_{2} by $\mathbb{Q}(i)$ and g_{1}, g_{2} by $\mathbb{Q}(\sqrt{-5})$
- Let SS1 be the set of pairs (f, g) where f has no CM and SS2 the set of those where f has CM.
- We eliminate a pair (f, g) in SS1 by applying the arguments on f explained before.
- Given (f, g) in SS2 we compute $A_{q}(f, g)$ using the auxiliary primes $q=3,7,13,17$ to find that $A_{q}(f, g)=0$ for all the auxiliary primes only if f, g have CM by distinct fields.
- Remain four pairs: $\left(f_{1}, g_{1}\right),\left(f_{1}, g_{2}\right),\left(g_{1}, f_{1}\right)$ and $\left(g_{2}, f_{2}\right)$.
- For a prime $p \equiv 1(\bmod 4)$ or $p \equiv \pm 1(\bmod 5)$ we can eliminate these pairs by applying Ellenberg's theorem to E or F convenientyl to get a contradiction! q.e.d.

