The Fermat-type equations $x^5 + y^5 = 2z^p$ or $3z^p$ solved through \mathbb{Q} -curves

Nuno Freitas

Universitat de Barcelona

January 2012

The equation $x^5 + y^5 = dz^p$

Theorem (Billerey and Billerey, Dieulefait)

Let $d=2^{\alpha}3^{\beta}5^{\gamma}$ where $\alpha\geq 2$, $\beta,\gamma,\geq 0$, or d=7,13. Then, for p>19 the equation $x^5+y^5=dz^p$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $l \not\equiv 1 \pmod{5}$.

Theorem (Dieulefait, F)

For any p > 13 such that $p \equiv 1 \mod 4$ or $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions

Theorem (Dieulefait, F)

For any p > 73 such that $p \equiv 1 \mod 4$ or $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions

The equation $x^5 + y^5 = dz^p$

Theorem (Billerey and Billerey, Dieulefait)

Let $d=2^{\alpha}3^{\beta}5^{\gamma}$ where $\alpha\geq 2$, $\beta,\gamma,\geq 0$, or d=7,13. Then, for p>19 the equation $x^5+y^5=dz^p$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $I \not\equiv 1 \pmod{5}$.

Theorem (Dieulefait, F)

For any p > 13 such that $p \equiv 1 \mod 4$ or $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any p > 73 such that $p \equiv 1 \mod 4$ or $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions.

Relating two equations

Key factorization:

$$x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4)$$

Let
$$\phi(x, y) = (x^4 - x^3y + x^2y^2 - xy^3 + y^4)$$

Proposition

If (a,b)=1 then the integers a+b and $\phi(a,b)$ are coprime outside 5. Moreover, $5 \mid a+b \Longleftrightarrow v_5(\phi(a,b))=1$

Proposition

Let $l \not\equiv 1 \pmod{5}$ be a prime number dividing $a^5 + b^5$. If (a, b) = 1 then l divides a + b.

Relating two equations

Key factorization:

$$x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4)$$

Let
$$\phi(x, y) = (x^4 - x^3y + x^2y^2 - xy^3 + y^4)$$

Proposition

If (a, b) = 1 then the integers a + b and $\phi(a, b)$ are coprime outside 5. Moreover, $5 \mid a + b \iff v_5(\phi(a, b)) = 1$

Proposition

Let $l \not\equiv 1 \pmod{5}$ be a prime number dividing $a^5 + b^5$. If (a, b) = 1 then l divides a + b.

Relating two equations

Let (a, b, c) be a primitive solution to $x^5 + y^5 = d\gamma z^p$.

- $a^5 + b^5 = (a+b)\phi(a,b) = d\gamma c^p \ (d=2,3)$
- Since $d\gamma$ is divisible only by primes $l \not\equiv 1 \pmod{5}$ we have $d\gamma \mid a+b$
- If $5 \nmid a + b$ then $\phi(a, b) = c_0^p$
- If $5 \mid a + b$ then $\phi(a, b) = 5c_0^p$
- $c_0 \mid c$ is only divisible by primes $l \equiv 1 \pmod{5}$.

Hence we need to prove that $\phi(x,y) = rz^p$ where r = 1,5 has no non-trivial primitive solutions if $d\gamma \mid a+b$. Actually, we can suppose that $\gamma = 1$.

Observe that over $\mathbb{Q}(\sqrt{5})$

- $\phi(x, y) = \phi_1(x, y)\phi_2(x, y)$, where
- $\phi_1(x,y) = x^2 + \omega xy + y^2$ and $\phi_2(x,y) = x^2 + \overline{\omega}xy + y^2$, with
- $\omega = \frac{-1+\sqrt{5}}{2}, \, \bar{\omega} = \frac{-1-\sqrt{5}}{2}$
- Moreover, if (a, b) = 1 then $\phi_1(a, b), \phi_2(a, b)$ are coprime outside the prime above 5.

Definition

Given a triple (a, b, c) define the Frey-curve over $\mathbb{Q}(\sqrt{5})$

$$E_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \bar{\omega}\phi_1(a,b)x$$

with discriminant $\Delta(E) = 2^6 \bar{\omega} \phi \phi_1$.

There are representations $\rho_{E,I}:G_{\mathbb{Q}(\sqrt{5})}\to \mathrm{GL}_2(\mathbb{Q}_I)$ with residual representations $\bar{\rho}_{E,I}:G_{\mathbb{Q}(\sqrt{5})}\to \mathrm{GL}_2(\mathbb{F}_I)$

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_p)$ be odd and irreducible. Then $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

We need to extend $\bar{\rho}_{E,p}!!!$

Definition

Let C be an elliptic curve over $\overline{\mathbb{Q}}$. We say that C is a \mathbb{Q} -curve if it is isogenous to all its Galois conjugates ${}^{\sigma}C$ for $\sigma \in G_{\mathbb{Q}}$

Proposition

Then $E_{(a,b)}$ is a \mathbb{Q} -curve

Proof: The curve $E_{(a,b)}$ has the non-trivial Galois

$$^{\sigma}E_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \omega\phi_2(a,b)x,$$

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_p)$ be odd and irreducible. Then $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

We need to extend $\bar{\rho}_{E,p}!!!$

Definition

Let C be an elliptic curve over $\overline{\mathbb{Q}}$. We say that C is a \mathbb{Q} -curve if it is isogenous to all its Galois conjugates ${}^{\sigma}C$ for $\sigma \in G_{\mathbb{Q}}$

Proposition

Then $E_{(a,b)}$ is a \mathbb{Q} -curve

Proof: The curve $E_{(a,b)}$ has the non-trivial Galois

$${}^{\sigma}E_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \omega\phi_2(a,b)x,$$

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_p)$ be odd and irreducible. Then $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

We need to extend $\bar{\rho}_{E,p}!!!$

Definition

Let C be an elliptic curve over $\overline{\mathbb{Q}}$. We say that C is a \mathbb{Q} -curve if it is isogenous to all its Galois conjugates ${}^{\sigma}C$ for $\sigma \in G_{\mathbb{Q}}$

Proposition

Then $E_{(a,b)}$ is a \mathbb{Q} -curve

Proof: The curve $E_{(a,b)}$ has the non-trivial Galois

$$^{\sigma}E_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \omega\phi_2(a,b)x,$$

and there exists a 2-isogeny $\mu : {}^{\sigma}E \to E$ given by

$$(x,y)\mapsto (-\frac{y^2}{2x^2},\frac{\sqrt{-2}}{4}\frac{y}{x^2}(\omega\phi_2+x^2)).$$

Theorem

Let $K = \mathbb{Q}(\theta)$ where $\theta = \sqrt{\frac{1}{2}}(5 + \sqrt{5})$. Put $\gamma = 2\theta^2 - \theta - 5$ and consider the twist of $E_{(a,b)}$ by γ defined over K by

$$E_{\gamma}: y^2 = x^3 + 2\gamma(a+b)x^2 - \gamma^2 \bar{\omega}\phi_1(a,b)x.$$

The Weil restriction $B = \operatorname{Res}_{K/\mathbb{Q}}(E_{\gamma}/K) \sim S_1 \times S_2$ where S_i are two non-isogenous abelian surfaces of GL_2 -type defined over \mathbb{Q} . Each S_i has its \mathbb{Q} -endomorphism algebra iso to $\mathbb{Q}(i)$

and there exists a 2-isogeny $\mu : {}^{\sigma}E \to E$ given by

$$(x,y)\mapsto (-\frac{y^2}{2x^2},\frac{\sqrt{-2}}{4}\frac{y}{x^2}(\omega\phi_2+x^2)).$$

Theorem

Let $K = \mathbb{Q}(\theta)$ where $\theta = \sqrt{\frac{1}{2}}(5 + \sqrt{5})$. Put $\gamma = 2\theta^2 - \theta - 5$ and consider the twist of $E_{(a,b)}$ by γ defined over K by

$$E_{\gamma}: y^2 = x^3 + 2\gamma(a+b)x^2 - \gamma^2\bar{\omega}\phi_1(a,b)x.$$

The Weil restriction $B = \operatorname{Res}_{K/\mathbb{Q}}(E_{\gamma}/K) \sim S_1 \times S_2$ where S_i are two non-isogenous abelian surfaces of GL_2 -type defined over \mathbb{Q} . Each S_i has its \mathbb{Q} -endomorphism algebra iso to $\mathbb{Q}(i)$.

- For $\lambda \in \mathbb{Q}(i)$ then $G_{\mathbb{Q}}$ acts on $T_I S_i$ and induces $\rho_I = \rho_{S_i,\lambda} \oplus \rho_{S_i,\lambda}^{\sigma}$.
- To compute $N(\bar{\rho}_{S_i,\lambda})$ we need the level of $\rho_{S_i,\lambda}$ first.

From Tate's Algorithm we compute $N_{E_{\gamma}}$ and with

Milne's Formula: $N_B = \operatorname{Nm}_{K/\mathbb{Q}}(N_{E_{\gamma}})\operatorname{Disc}(K/\mathbb{Q})^2$

we obtain the conductor of B

Proposition

- $N_B = 2^t 5^{6+s} \operatorname{rad}(c)^4$
- s = 0 or 2 if $5 \mid a + b$ or $5 \nmid a + b$, respectively
- if $2 \mid a+b \Rightarrow t = 24, 8, 16$ if $2 \parallel a+b, 4 \parallel a+b, 8 \mid a+b$
- if $2 \nmid a + b$ then t = 24 or 20 if $4 \nmid a$ or $4 \mid a$, respectively.

- For $\lambda \in \mathbb{Q}(i)$ then $G_{\mathbb{Q}}$ acts on $T_{l}S_{i}$ and induces $\rho_{l} = \rho_{S_{i},\lambda} \oplus \rho_{S_{i},\lambda}^{\sigma}$.
- To compute $N(\bar{\rho}_{S_i,\lambda})$ we need the level of $\rho_{S_i,\lambda}$ first.

From Tate's Algorithm we compute $N_{E_{\gamma}}$ and with

Milne's Formula: $N_B = \operatorname{Nm}_{K/\mathbb{Q}}(N_{E_{\gamma}})\operatorname{Disc}(K/\mathbb{Q})^2$

we obtain the conductor of B

Proposition

- $N_B = 2^t 5^{6+s} \operatorname{rad}(c)^4$
- s = 0 or 2 if $5 \mid a + b$ or $5 \nmid a + b$, respectively
- if $2 \mid a+b \Rightarrow t = 24, 8, 16$ if $2 \parallel a+b, 4 \parallel a+b, 8 \mid a+b$
- if $2 \nmid a + b$ then t = 24 or 20 if $4 \nmid a$ or $4 \mid a$, respectively.

Let ϵ be the character of K then ϵ^2 is the character of $\mathbb{Q}(\sqrt{5})$.

- E_{γ} has no CM $\Rightarrow \rho_{E_{\gamma},I}$ absolutely irreducible
- Extensions of abs. irr. rep. are unique up to twists
- ullet There are four 2-dimensional rep. of $G_{\mathbb Q}$ extending $ho_{E_{\gamma},l}$

$$\rho_{S_1,\lambda} \otimes \epsilon = \rho_{S_1,\lambda}^{\sigma}, \quad \rho_{S_1,\lambda} \otimes \epsilon^2 = \rho_{S_2,\lambda}, \quad \rho_{S_1,\lambda} \otimes \epsilon^3 = \rho_{S_2,\lambda}^{\sigma}$$

- $\bullet \ B \simeq S_1 \times S_2 \Rightarrow N_B = N_{S_1} N_{S_2}$
- $N_{S_i} = \operatorname{cond}(\rho_{S_i,\lambda})\operatorname{cond}(\rho_{S_i,\lambda}^{\sigma}) = \operatorname{cond}(\rho_{S_i,\lambda})^2$
- The difference between $\operatorname{cond}(\rho_{S_1,\lambda})$ and $\operatorname{cond}(\rho_{S_2,\lambda})$ is at 5
- $\operatorname{cond}_5(\rho_{S_1,\lambda} \otimes \epsilon^2) \leq \operatorname{lcm}(\operatorname{cond}_5(\rho_{S_1,\lambda}),\operatorname{cond}(\epsilon^2)^2 = 5^2)$

Let ϵ be the character of K then ϵ^2 is the character of $\mathbb{Q}(\sqrt{5})$.

- E_{γ} has no CM $\Rightarrow \rho_{E_{\gamma},I}$ absolutely irreducible
- Extensions of abs. irr. rep. are unique up to twists
- ullet There are four 2-dimensional rep. of $G_{\mathbb Q}$ extending $ho_{\mathsf E_\gamma,l}$

$$\rho_{\mathcal{S}_{1},\lambda}\otimes\epsilon=\rho^{\sigma}_{\mathcal{S}_{1},\lambda},\quad\rho_{\mathcal{S}_{1},\lambda}\otimes\epsilon^{2}=\rho_{\mathcal{S}_{2},\lambda},\quad\rho_{\mathcal{S}_{1},\lambda}\otimes\epsilon^{3}=\rho^{\sigma}_{\mathcal{S}_{2},\lambda}$$

- $\bullet \ B \simeq S_1 \times S_2 \Rightarrow N_B = N_{S_1} N_{S_2}$
- $N_{S_i} = \operatorname{cond}(\rho_{S_i,\lambda})\operatorname{cond}(\rho_{S_i,\lambda}^{\sigma}) = \operatorname{cond}(\rho_{S_i,\lambda})^2$
- The difference between $\operatorname{cond}(\rho_{S_1,\lambda})$ and $\operatorname{cond}(\rho_{S_2,\lambda})$ is at 5
- $\operatorname{cond}_5(\rho_{S_1,\lambda}\otimes\epsilon^2)\leq \operatorname{lcm}(\operatorname{cond}_5(\rho_{S_1,\lambda}),\operatorname{cond}(\epsilon^2)^2=5^2)$

Let ϵ be the character of K then ϵ^2 is the character of $\mathbb{Q}(\sqrt{5})$.

- E_{γ} has no CM $\Rightarrow \rho_{E_{\gamma},I}$ absolutely irreducible
- Extensions of abs. irr. rep. are unique up to twists
- ullet There are four 2-dimensional rep. of $G_{\mathbb Q}$ extending $ho_{{\mathsf E}_{\gamma},I}$

$$\rho_{S_1,\lambda} \otimes \epsilon = \rho_{S_1,\lambda}^{\sigma}, \quad \rho_{S_1,\lambda} \otimes \epsilon^2 = \rho_{S_2,\lambda}, \quad \rho_{S_1,\lambda} \otimes \epsilon^3 = \rho_{S_2,\lambda}^{\sigma}$$

- $\bullet \ B \simeq S_1 \times S_2 \Rightarrow N_B = N_{S_1} N_{S_2}$
- $N_{S_i} = \operatorname{cond}(\rho_{S_i,\lambda})\operatorname{cond}(\rho_{S_i,\lambda}^{\sigma}) = \operatorname{cond}(\rho_{S_i,\lambda})^2$
- The difference between $\operatorname{cond}(\rho_{S_1,\lambda})$ and $\operatorname{cond}(\rho_{S_2,\lambda})$ is at 5
- $\operatorname{cond}_5(\rho_{S_1,\lambda} \otimes \epsilon^2) \leq \operatorname{lcm}(\operatorname{cond}_5(\rho_{S_1,\lambda}),\operatorname{cond}(\epsilon^2)^2 = 5^2)$

Equation	$\nu_2(a+b)$	$ ho_{\mathcal{S}_1,\lambda}$	$ ho_{\mathcal{S}_1,\lambda}^{\sigma}$	$ ho_{\mathcal{S}_{2},\lambda}$	$ ho_{\mathcal{S}_{2},\lambda}^{\sigma}$
<i>r</i> = 1	0	$2^65^2c_0$	$2^65^2c_0$	$2^65^2c_0$	$2^65^{2}c_0$
<i>r</i> = 1	0	$2^55^2c_0$	$2^55^2c_0$	$2^55^2c_0$	$2^55^2c_0$
<i>r</i> = 1	1	$2^65^2c_0$	$2^65^2c_0$	$2^65^2c_0$	$2^65^2c_0$
<i>r</i> = 1	2	$2^25^2c_0$	$2^25^2c_0$	$2^25^2c_0$	$2^25^2c_0$
<i>r</i> = 1	≥ 3	$2^45^2c_0$	$2^45^2c_0$	$2^45^2c_0$	$2^45^2c_0$
<i>r</i> = 5	0	$2^65^2c_0$	$2^65^2c_0$	2^65c_0	2^65c_0
<i>r</i> = 5	0	$2^55^2c_0$	$2^55^2c_0$	2^55c_0	2^55c_0
<i>r</i> = 5	1	$2^65^2c_0$	$2^65^2c_0$	2^65c_0	2^65c_0
<i>r</i> = 5	2	$2^25^2c_0$	$2^25^2c_0$	2^25c_0	2^25c_0
<i>r</i> = 5	≥ 3	$2^45^2c_0$	$2^45^2c_0$	2^45c_0	2^45c_0

Table: Values of conductors, where $c_0 = rad(c)$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho := \rho_{S_1,\lambda}$ and $\bar{\rho} := \bar{\rho}_{S_1,\lambda}$.

- (Hellegouarch) $\bar{\rho}|\mathcal{K}=\bar{\rho}_{E_{\gamma},p}$ is unramified at $c_0=\operatorname{rad}(c)$.
- Disc $(K/\mathbb{Q})=2^45^3$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing mod p
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_0
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho}) = \epsilon^{-1}$ since p > 2
- If p ∤ c S₁ has good reduction; if p | c, since p | υ_{p(Δ)} then ρ̄ is finite. In both cases k(ρ̄) = 2
- (Ellenberg) $\bar{\rho}$ is absolutely irreducible for p>13 if (a,b,c) is such that |c|>1.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with M = 1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above p such that $\bar{\rho} \equiv \bar{\rho}_{f,\mathfrak{P}}(\text{mod }\mathfrak{P})$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho := \rho_{S_1,\lambda}$ and $\bar{\rho} := \bar{\rho}_{S_1,\lambda}$.

- (Hellegouarch) $\bar{\rho}|\mathcal{K}=\bar{\rho}_{E_{\gamma},p}$ is unramified at $c_0=\operatorname{rad}(c)$.
- Disc $(K/\mathbb{Q})=2^45^3$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing mod p
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_0
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho}) = \epsilon^{-1}$ since p > 2
- If p ∤ c S₁ has good reduction; if p | c, since p | v_{p(Δ)} then ρ̄ is finite. In both cases k(ρ̄) = 2
- (Ellenberg) $\bar{\rho}$ is absolutely irreducible for p>13 if (a,b,c) is such that |c|>1.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with M=1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above p such that $\bar{\rho} \equiv \bar{\rho}_{f,\mathfrak{P}}(\text{mod }\mathfrak{P})$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho := \rho_{S_1,\lambda}$ and $\bar{\rho} := \bar{\rho}_{S_1,\lambda}$.

- (Hellegouarch) $\bar{\rho}|K=\bar{\rho}_{E_{\gamma},p}$ is unramified at $c_0=\mathrm{rad}(c)$.
- Disc $(K/\mathbb{Q})=2^45^3$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing mod p
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_0
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho}) = \epsilon^{-1}$ since $\rho > 2$
- If p ∤ c S₁ has good reduction; if p | c, since p | v_{p(Δ)} then ρ̄ is finite. In both cases k(ρ̄) = 2
- (Ellenberg) $\bar{\rho}$ is absolutely irreducible for p > 13 if (a, b, c) is such that |c| > 1.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with M = 1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above p such that $\bar{\rho} \equiv \bar{\rho}_{f,\mathfrak{P}}(\text{mod }\mathfrak{P})$

Let λ in $\mathbb{Q}(i)$ be above p and define $\rho := \rho_{S_1,\lambda}$ and $\bar{\rho} := \bar{\rho}_{S_1,\lambda}$.

- (Hellegouarch) $\bar{\rho}|\mathcal{K}=\bar{\rho}_{E_{\gamma},p}$ is unramified at $c_0=\operatorname{rad}(c)$.
- Disc $(K/\mathbb{Q})=2^45^3$ then $\bar{\rho}$ can not ramify outside 2 and 5
- (Carayol) Wild ramification implies conductor does not decrease when reducing mod p
- Then $N(\bar{\rho})$ is equal to the first column in the previous table without c_0
- (Pyle) ρ has character ϵ^{-1} then $\epsilon(\bar{\rho}) = \epsilon^{-1}$ since p > 2
- If p ∤ c S₁ has good reduction; if p | c, since p | v_{p(Δ)} then ρ̄ is finite. In both cases k(ρ̄) = 2
- (Ellenberg) $\bar{\rho}$ is absolutely irreducible for p > 13 if (a, b, c) is such that |c| > 1.

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with M=1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above p such that $\bar{\rho} \equiv \bar{\rho}_{f,\mathfrak{P}}(\text{mod }\mathfrak{P})$

Eliminating Newforms

For each possible newform we will contradict the congruence $\bar{\rho} \equiv \bar{\rho}_{f,p}$.

- Compute with SAGE the newforms in $S_2(M, \epsilon^{-1})$
- The newforms corresponding to the trivial solutions $(\pm 1,0)$, $(0,\pm 1)$, (1,1), (-1,-1) and (1,-1), (-1,1) exist.
- $E_{(\pm 1,0)}$, $E_{(0,\pm 1)}$ is not a problem for d=2
- $E_{(-1,1)}$, $E_{(1,-1)}$, $E_{(1,1)}$ and $E_{(-1,-1)}$ have Complex Multiplication

Observe that $\mathbb{Q}(i) = \mathbb{Q}(\epsilon) \subseteq \mathbb{Q}_f$ and define the sets:

- S1: Newforms with CM (Complex Multiplication),
- S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,
- S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

Eliminating Newforms

For each possible newform we will contradict the congruence $\bar{\rho} \equiv \bar{\rho}_{f,p}$.

- Compute with SAGE the newforms in $S_2(M, \epsilon^{-1})$
- The newforms corresponding to the trivial solutions $(\pm 1,0)$, $(0,\pm 1)$, (1,1), (-1,-1) and (1,-1), (-1,1) exist.
- $E_{(\pm 1,0)}$, $E_{(0,\pm 1)}$ is not a problem for d=2
- $E_{(-1,1)}$, $E_{(1,-1)}$, $E_{(1,1)}$ and $E_{(-1,-1)}$ have Complex Multiplication

Observe that $\mathbb{Q}(i) = \mathbb{Q}(\epsilon) \subseteq \mathbb{Q}_f$ and define the sets:

- S1: Newforms with CM (Complex Multiplication),
- S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,
- S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

Recall that $2 \mid a + b$ then 800 is not a possible level.

- There are four with CM by $\mathbb{Q}(i)$ and four by $\mathbb{Q}(\sqrt{-5})$.
- If (a, b, c) is non-trivial there exists a prime ≥ 5 of multiplicative reduction.
- (Ellenberg) If p > 13 the image of $\bar{\rho}$ will not lie in the normalizer of a split Cartan subgroup.
- For an f with CM if p is a square on the field of CM then the image of $\bar{\rho}_{f,p}$ will be in a normalizer of a split Cartan subgroup.
- Then $p\equiv 1 \mod 4$ and $p\equiv \pm 1 \mod 5 \Rightarrow ar{
 ho}
 ot \equiv ar{
 ho}_{f,p}$

- There are 12 newforms (modulo conjugation) in S2.
- For q of good reduction for S_1 , $a_q = \bar{a}_q \epsilon^{-1}(q)$.
- 3 is of good reduction and $a_3 = t ti$ with $t \in \mathbb{Z}$.
- Weil bound $|a_3| \le 2\sqrt{3} \Rightarrow |t| \le 2$
- If $f = q + \sum_{n=2} a_n(f)q^n$ then $a_3(\bar{\rho}) \equiv a_3(f) \pmod{\mathfrak{P}}$
- There is f in S2 of level 400 with $a_3(f)$ having minimal polynomial $x^2 + 10i$
- Then $a_3(f) \equiv t it \pmod{\mathfrak{P}}$ implies $100 \equiv 4t^4 \pmod{\mathfrak{P}}$, substituting for $t = 0, \pm 1, \pm 2$ we reach a contradiction if p > 5.
- Do the same with a₃(f) for all other f and conlude a contradiction for p > 7.

Let χ be the character of $\mathbb{Q}(\sqrt{2})$ and $E_{\gamma,2}$ the twist by 2 of E_{γ} .

- There are 10 "bad" newforms in S3 all with level 1600 (2 \parallel a+b).
- Since $1600 = 2^65^2$ and $cond(\chi)^2 = 8^2 = 2^6$ the conductor of $f \otimes \chi$ may decrease.
- With SAGE we compute the coefficients of $f \otimes \chi$ to find that $f \otimes \chi$ are of level 800 for all f in S3
- $\bullet \ (\rho_{S_1,\lambda} \otimes \chi)_{|K} = (\rho_{S_1,\lambda})_{|K} \otimes \chi_{|K} = \rho_{E_{\gamma},p} \otimes \chi_{|K} = \rho_{E_{\gamma,2},p}$
- Then $\rho_{S_1,\lambda} \otimes \chi$ extends $\rho_{E_{\gamma,2},p}$ and the same holds for $\rho_{S_1,\lambda}^{\sigma}$, $\rho_{S_2,\lambda}^{\sigma}$, $\rho_{S_2,\lambda}$
- Therefore $ho_{B,p} \otimes \chi = (\operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} \rho_{E_{\gamma},p}) \otimes \chi = \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} (\rho_{E_{\gamma},p} \otimes \chi_{|K}) = \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} \rho_{E_{\gamma,2},p}$ arises from $G_{\mathbb{Q}}$ acting on the p-adic Tate module of $\operatorname{Res}_{K/\mathbb{Q}}(E_{\gamma,2}/K)$.
- Then we can compute conductor of $\rho_{B,p} \otimes \chi$ via Milne's Formula

Let χ be the character of $\mathbb{Q}(\sqrt{2})$ and $E_{\gamma,2}$ the twist by 2 of E_{γ} .

- There are 10 "bad" newforms in S3 all with level 1600 (2 \parallel a+b).
- Since $1600 = 2^65^2$ and $cond(\chi)^2 = 8^2 = 2^6$ the conductor of $f \otimes \chi$ may decrease.
- With SAGE we compute the coefficients of $f \otimes \chi$ to find that $f \otimes \chi$ are of level 800 for all f in S3
- $(\rho_{S_1,\lambda} \otimes \chi)_{|K} = (\rho_{S_1,\lambda})_{|K} \otimes \chi_{|K} = \rho_{E_{\gamma},p} \otimes \chi_{|K} = \rho_{E_{\gamma,2},p}$
- Then $\rho_{S_1,\lambda} \otimes \chi$ extends $\rho_{E_{\gamma,2},p}$ and the same holds for $\rho_{S_1,\lambda}^{\sigma}$, $\rho_{S_2,\lambda}^{\sigma}$, $\rho_{S_2,\lambda}$
- Therefore $ho_{B,p} \otimes \chi = (\operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}}
 ho_{E_{\gamma},p}) \otimes \chi = \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} (
 ho_{E_{\gamma},p} \otimes \chi_{|K}) = \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}}
 ho_{E_{\gamma,2},p}$ arises from $G_{\mathbb{Q}}$ acting on the p-adic Tate module of $\operatorname{Res}_{K/\mathbb{Q}}(E_{\gamma,2}/K)$.
- Then we can compute conductor of $\rho_{B,p} \otimes \chi$ via Milne's Formula

Let χ be the character of $\mathbb{Q}(\sqrt{2})$ and $E_{\gamma,2}$ the twist by 2 of E_{γ} .

- There are 10 "bad" newforms in S3 all with level 1600 (2 \parallel a+b).
- Since $1600 = 2^65^2$ and $cond(\chi)^2 = 8^2 = 2^6$ the conductor of $f \otimes \chi$ may decrease.
- With SAGE we compute the coefficients of $f \otimes \chi$ to find that $f \otimes \chi$ are of level 800 for all f in S3
- $\bullet \ (\rho_{S_1,\lambda} \otimes \chi)_{|K} = (\rho_{S_1,\lambda})_{|K} \otimes \chi_{|K} = \rho_{E_{\gamma},p} \otimes \chi_{|K} = \rho_{E_{\gamma,2},p}$
- Then $\rho_{S_1,\lambda} \otimes \chi$ extends $\rho_{E_{\gamma,2},p}$ and the same holds for $\rho_{S_1,\lambda}^{\sigma}$, $\rho_{S_2,\lambda}^{\sigma}$, $\rho_{S_2,\lambda}$
- Therefore $ho_{\mathcal{B},p} \otimes \chi = (\operatorname{Ind}_{G_{\mathcal{K}}}^{G_{\mathbb{Q}}}
 ho_{E_{\gamma},p}) \otimes \chi = \operatorname{Ind}_{G_{\mathcal{K}}}^{G_{\mathbb{Q}}} (
 ho_{E_{\gamma},p} \otimes \chi_{|\mathcal{K}}) = \operatorname{Ind}_{G_{\mathcal{K}}}^{G_{\mathbb{Q}}}
 ho_{E_{\gamma,2},p} \text{ arises from } G_{\mathbb{Q}} \text{ acting on the } p\text{-adic Tate module of } \operatorname{Res}_{\mathcal{K}/\mathbb{Q}}(E_{\gamma,2}/\mathcal{K}).$
- Then we can compute conductor of $\rho_{B,p} \otimes \chi$ via Milne's Formula

 $ho_1:=
ho_{\mathcal{S}_1,\lambda}\otimes\chi$ is a 2-dimensional factor of $ho_{\mathcal{B},p}\otimes\chi$ and extends $ho_{\mathcal{E}_{\gamma,2},p}$. Let $ar
ho_1$ denote its reduction. A similar analysis as for \mathcal{E}_{γ} shows that if 2 \parallel a+b then by Serre's conjecture

 $\bar{\rho}_1$ is modular of type $(M_1, 2, \bar{\epsilon})$ with M = 100 or 400

- ullet $ar{
 ho}_1 \equiv ar{
 ho}_{g,p} \ (\mathsf{mod}\ \mathfrak{P})$
- $\bar{\rho}_1 = \overline{\rho_{S_1,\lambda} \otimes \chi} = \bar{\rho} \otimes \chi \equiv \bar{\rho}_{f,p} \otimes \chi \equiv \bar{\rho}_{f \otimes \chi,p} = \bar{\rho}_{f',p}$,
- We know that f' has level 800
- This kind of level lowering can not happen (by Carayol)!

Theorem

For any p > 13 such that $p \equiv 1 \mod 4$ and $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions.

 $ho_1:=
ho_{\mathcal{S}_1,\lambda}\otimes\chi$ is a 2-dimensional factor of $ho_{\mathcal{B},p}\otimes\chi$ and extends $ho_{\mathcal{E}_{\gamma,2},p}$. Let $ar
ho_1$ denote its reduction. A similar analysis as for \mathcal{E}_{γ} shows that if 2 \parallel a+b then by Serre's conjecture

 $\bar{
ho}_1$ is modular of type $(M_1,2,ar{\epsilon})$ with M=100 or 400

- ullet $ar{
 ho}_1 \equiv ar{
 ho}_{g,p} \ (\mathsf{mod}\ \mathfrak{P})$
- $\bar{\rho}_1 = \overline{\rho_{S_1,\lambda} \otimes \chi} = \bar{\rho} \otimes \chi \equiv \bar{\rho}_{f,p} \otimes \chi \equiv \bar{\rho}_{f \otimes \chi,p} = \bar{\rho}_{f',p}$,
- We know that f' has level 800
- This kind of level lowering can not happen (by Carayol)!

Theorem

For any p > 13 such that $p \equiv 1 \mod 4$ and $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions.

d=3: a+b odd, level 800

Let d = 3. Recall that $3 \mid a + b$ and suppose a + b odd, which means level 800 or 1600.

- In level 800 there are 4 newforms of type S2 and 10 of type S3 and none of type S1. Suppose $\bar{\rho} \equiv \bar{\rho}_{f,p}$.
- For type S2 we do as before. There exists f in S2 with $a_3(f)$ having minimal polynomial $t^2 \pm (2-2i)t + i$ then we need p > 73 to achieve a contradiction.
- If $f \in S3$, $\bar{
 ho}|_{G_K} \equiv \bar{
 ho}_{f,p}|_{G_K} \Rightarrow a_{\mathfrak{P}_3}(E_\gamma) \equiv a_{\mathfrak{P}_3}(f) \pmod{p}$
- 3 | $a+b \Rightarrow a_{\mathfrak{P}_3}(E_{\gamma}) = -18$ (with SAGE)
- $a_3(f) = \pm (2i 2)$ or $\pm (i 1)$ for f in S3
- $a_{\mathfrak{P}_3}(f) = \alpha^4 + \beta^4$, where α , β are roots of the characteristic polynomial of $\rho_{f,p}(\text{Frob}_3)$, i.e. $x^2 a_3(f)x + \epsilon^{-1}(3)3$
- Then $a_{\mathfrak{P}_3}(f) = 14$ or 2, contradiction for p > 3

d=3: a+b odd, level 1600

Now level 1600:

- The forms of type S1 and S2 can be eliminated exactly as for d=2. Since f in S1 with CM by $\mathbb{Q}(\sqrt{-5})$ verify $a_3=\pm(i-1)$ we only need the condition $p\equiv 1 \mod 4$, because $3\mid a+b$.
- For f in S3 consider $f \otimes \chi$ known to have level $800 = 2^5 5^2$ and twist $E_{\gamma}(a, b)$ by 2.
- If $cond_2(E_{\gamma,2}) \neq 2^5$ we have a contradiction by Carayol.
- If $\operatorname{cond}_2(E_{\gamma,2}) = 2^5$ then since $E_{\gamma,2}$ mod \mathfrak{P}_3 is equal to $E_{\gamma}(a,b)$ mod \mathfrak{P}_3 we have $a_{\mathfrak{P}_3}(E_{\gamma,2}) = -18$ which gives a contradiction with $a_{\mathfrak{P}_3}(f)$ as before.

d=3: a+b even

Suppose a + b even.

- We eliminate newforms of type S2 and S3 exactly with the same arguments used when d = 2.
- For f in S1 we only need to suppose that is $p \equiv 1 \mod 4$ to get a contradiction since newforms with CM by $\mathbb{Q}(\sqrt{-5})$ verify $a_3 = \pm (i-1)$.

Theorem

For any p > 73 such that $p \equiv 1 \mod 4$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions.

d=3: a+b even

Suppose a + b even.

- We eliminate newforms of type S2 and S3 exactly with the same arguments used when d = 2.
- For f in S1 we only need to suppose that is $p \equiv 1 \mod 4$ to get a contradiction since newforms with CM by $\mathbb{Q}(\sqrt{-5})$ verify $a_3 = \pm (i-1)$.

Theorem

For any p > 73 such that $p \equiv 1 \mod 4$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions.

Another Q-curve

Definition

Let $F_{(a,b)}$ be the elliptic curve defined over $\mathbb{Q}(\sqrt{5})$ given by

$$F_{(a,b)}: y^2 = x^3 + 2(a-b)x^2 + (\frac{3}{10}\sqrt{5} + \frac{1}{2})\phi_1(a,b)x.$$

- $F_{(a,b)}$ is a \mathbb{Q} -curve.
- As in the case of E we apply Quer's theory, Milne's Formula and Serre's conjecture.
- We have $\bar{\rho} \equiv \bar{\rho}_{f,p}$ for newforms with level 100, 400 or 1600 if 8 | a + b, 4 || a + b or 2 || a + b, respectively.
- If $2 \nmid a + b$ we can suppose that a is even and we are in level 800 or 1600 if $4 \mid a$ or $4 \nmid a$, respectively.

Another Q-curve

Definition

Let $F_{(a,b)}$ be the elliptic curve defined over $\mathbb{Q}(\sqrt{5})$ given by

$$F_{(a,b)}: y^2 = x^3 + 2(a-b)x^2 + (\frac{3}{10}\sqrt{5} + \frac{1}{2})\phi_1(a,b)x.$$

- $F_{(a,b)}$ is a \mathbb{Q} -curve.
- As in the case of E we apply Quer's theory, Milne's Formula and Serre's conjecture.
- We have $\bar{\rho} \equiv \bar{\rho}_{f,p}$ for newforms with level 100, 400 or 1600 if 8 | a + b, 4 || a + b or 2 || a + b, respectively.
- If 2 ∤ a + b we can suppose that a is even and we are in level 800 or 1600 if 4 | a or 4 ∤ a, respectively.

Multi-Frey technique

- Suppose that $a^5 + b^5 = dc^p$ and that c is even.
- Then we have a solution (a, b, c_0) to $x^5 + y^5 = d2^p z^p$ and by B-D it is impossible.
- We can suppose c to be odd and we only have to deal with the cases $2 \parallel a + b$ or $2 \nmid a + b$.
- Thus we have to eliminate newforms only on levels 1600 (d = 2) or 1600 and 800 (d = 3).
- These are the same levels as in the case of $E_{(a,b)}$
- For a solution (a, b, c) we have a double congruence $(\bar{\rho}_E, \bar{\rho}_F) \equiv (\bar{\rho}_{f,p}|K, \bar{\rho}_{g,p}|K) \pmod{\mathfrak{P}}$, where f, g are newforms in $S_2(M, \epsilon^{-1})$ both with level M = 800 or M = 1600.
- We can apply the multi-Frey technique with E and F!

Multi-Frey technique

Definition

Let $C_{(x,y)}/K$ be $E_{(x,y)}$ or $F_{(x,y)}$. For a prime q of good reduction for C and newform f let

$$C_{(x,y)}(q,f) = a_q(C_{(x,y)}) - a_q(f|K)$$

Theorem (Siksek)

Let (f, g) be a pair of newforms and define

$$A_q(f,g) = \prod_{(x,y) \in \mathbb{F}_q - \{(0,0)\}} \gcd(E_{(x,y)}(q,f)), F_{(x,y)}(q,g)).$$

If (a, b, c) is a primitive solution giving rise to the double congruence $(\bar{\rho}_E, \bar{\rho}_F) \equiv (\bar{\rho}_{f,p}|K, \bar{\rho}_{g,p}|K) \pmod{\mathfrak{P}}$ then $p \mid A_q$.

- We want to improve the conditions on p which comes from CM forms.
- In level 800 there are no newforms with CM
- In level 1600 there are f_1, f_2 by $\mathbb{Q}(i)$ and g_1, g_2 by $\mathbb{Q}(\sqrt{-5})$
- Let SS1 be the set of pairs (f, g) where f has no CM and SS2 the set of those where f has CM.
- We eliminate a pair (f, g) in SS1 by applying the arguments on f explained before.
- Given (f,g) in SS2 we compute $A_q(f,g)$ using the auxiliary primes q=3,7,13,17 to find that $A_q(f,g)=0$ for all the auxiliary primes only if f,g have CM by distinct fields.
- Remain four pairs: (f_1, g_1) , (f_1, g_2) , (g_1, f_1) and (g_2, f_2) .
- For a prime $p \equiv 1 \pmod{4}$ or $p \equiv \pm 1 \pmod{5}$ we can eliminate these pairs by applying Ellenberg's theorem to E or F conveniently to get a contradiction! q.e.d.

- We want to improve the conditions on p which comes from CM forms.
- In level 800 there are no newforms with CM
- In level 1600 there are f_1, f_2 by $\mathbb{Q}(i)$ and g_1, g_2 by $\mathbb{Q}(\sqrt{-5})$
- Let SS1 be the set of pairs (f, g) where f has no CM and SS2 the set of those where f has CM.
- We eliminate a pair (f, g) in SS1 by applying the arguments on f explained before.
- Given (f,g) in SS2 we compute $A_q(f,g)$ using the auxiliary primes q=3,7,13,17 to find that $A_q(f,g)=0$ for all the auxiliary primes only if f,g have CM by distinct fields.
- Remain four pairs: (f_1, g_1) , (f_1, g_2) , (g_1, f_1) and (g_2, f_2) .
- For a prime $p \equiv 1 \pmod{4}$ or $p \equiv \pm 1 \pmod{5}$ we can eliminate these pairs by applying Ellenberg's theorem to E or F conveniently to get a contradiction! q.e.d.

