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The equation x° + y° = dzP

Theorem (Billerey and Billerey, Dieulefait)

Let d = 23857 where a > 2, 8,7,> 0, or d = 7,13. Then, for
p > 19 the equation x° + y® = dzP has no non-trivial primitive
solution.
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The equation x° + y°® = dzP

Theorem (Billerey and Billerey, Dieulefait)

Let d = 23857 where a > 2, 8,7,> 0, or d = 7,13. Then, for
p > 19 the equation x° + y® = dzP has no non-trivial primitive
solution.

Let v be an integer divisible only by primes / # 1 (mod 5).

Theorem (Dieulefait, F)

For any p > 13 such that p =1 mod 4 or p = +1 mod 5, the
equation x° + y® = 2~zP has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any p > 73 such that p =1 mod 4 or p = +1 mod 5, the
equation x° + y® = 3~zP has no non-trivial primitive solutions.

v

Nuno Freitas Generalized Fermat Equations



Relating two equations

Key factorization:
X° Y% = (x+y)(x* = X3Py + xy% — xy® + y*) \
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Relating two equations

Key factorization:
X° Y% = (x+y)(x* = X3Py + xy% — xy® + y*) ’

Let ¢(x, y) = (x* — x3y + x2y2 — xy3 + y*)

Proposition

If (a, b) = 1 then the integers a+ b and ¢(a, b) are coprime
outside 5. Moreover, 5 | a+ b <= vs(¢(a, b)) = 1

Proposition

Let / # 1 (mod 5) be a prime number dividing & + b°. If
(a, b) = 1 then / divides a + b.
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Relating two equations

Let (a, b, ¢) be a primitive solution to x° + y° = d~zP.

@ &+ b= (a+b)p(ab)=dycP (d=2,3)

@ Since d~ is divisible only by primes / # 1 (mod 5) we have
dvy|la+b

@ If 5fa+ bthen ¢(a, b) = c§
e If 5| a+ bthen ¢(a, b) = 5¢5
@ ¢y | cis only divisible by primes / = 1 (mod 5).

Hence we need to prove that ¢(x, y) = rzP where r = 1,5 has
no non-trivial primitive solutions if dv | a+ b. Actually, we can
suppose that v = 1.
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The Frey Q-curve

Observe that over Q(v/5)

® ¢(x,y) = p1(x,y)d2(x, y), where

@ H1(x,y) = X% +wxy +y? and ¢a(x, y) = x*> +@xy + y2, with
—1-5\/5 o= —15\/5

Q w=

@ Moreover, if (a,b) = 1 then ¢1(a, b), ¢2(a, b) are coprime
outside the prime above 5.

Definition
Given a triple (a, b, ¢) define the Frey-curve over Q(v/5)

Eab) : ¥° = x° +2(a+ b)x® — @¢1(a, b)x

with discriminant A(E) = 25@¢¢1.

There are representations pg ; : GQ(\@) — GL2(Qy) with
residual representations pe,; : Gg(,/5) — Gla(F))
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The Frey Q-curve

Serre Conjecture (Khare, Wintenberger)

Let p: Gy — GLa(Fp) be odd and irreducible. Then 5 is
modular of type (N(7), k(7). (7)).

We need to extend pg p!!!
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The Frey Q-curve

Serre Conjecture (Khare, Wintenberger)

Let p: Gy — GLa(Fp) be odd and irreducible. Then 5 is
modular of type (N(7), k(7). (7)).

We need to extend pg p!!!

Definition

Let C be an elliptic curve over Q. We say that C is a Q-curve if
it is isogenous to all its Galois conjugates ?C for o € Gy

Proposition
Then E(, ) is a Q-curve
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The Frey Q-curve

Serre Conjecture (Khare, Wintenberger)

Let p: Gy — GLa(Fp) be odd and irreducible. Then 5 is
modular of type (N(7), k(7). (7)).

We need to extend pg p!!!

Definition

Let C be an elliptic curve over Q. We say that C is a Q-curve if
it is isogenous to all its Galois conjugates ?C for o € Gy

Proposition
Then E(, ) is a Q-curve

Proof: The curve E, ) has the non-trivial Galois

“Eap) 1 Y2 = x> +2(a+ b)x* —wep(a, b)x,
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The Frey Q-curve

and there exists a 2-isogeny p : E — E given by

y2 V-2y

Tox2' 4 ;(wcbz +X2))-

(Gy) = (
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The Frey Q-curve

and there exists a 2-isogeny p : E — E given by

2 /o2
() = (= L5 V2L (i 4 2)).

Theorem

T|

Let K = Q(6) where 6 = {/%(5 + V/5). Puty =262 — 6 — 5 and
consider the twist of E(, ) by v defined over K by

E, : ¥2 = x3 + 2y(a+ b)x? — v2w¢1(a, b)x.

The Weil restriction B = Resk g(E,/K) ~ S1 x Sz where S;
are two non-isogenous abelian surfaces of GL,-type defined
over Q. Each S; has its Q-endomorphism algebra iso to Q(/).

v
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Computing (N(p), k(p), €(p))

@ For A € Q(i) then Gg acts on T;S; and induces
pI=psx D PG -
@ To compute N(ps, ) we need the level of pg, ) first.
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Computing (N(p), k(p), €(p))

@ For A € Q(i) then Gg acts on T;S; and induces
pI=psx D PG -
@ To compute N(ps, ) we need the level of pg, ) first.

From Tate’s Algorithm we compute Ng, and with

Milne’s Formula: Ng = Nm o (Ng, )Disc(K/Q)? J

we obtain the conductor of B

Proposition

@ Np = 2!5%+srad(c)*

@ s=0or2if5|a+bor5¢ta+ b, respectively
eif2|la+b=1t=248,16if2| a+ b, 4| a+b,8|a+b
o if2ta+bthent=240r20if4+taor4| a, respectively.
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Computing (N(p), k(p), €(p))

Let € be the character of K then ¢? is the character of Q(v/5).
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Computing (N(p), k(p), €(p))

Let € be the character of K then ¢? is the character of Q(v/5).

@ E, hasno CM = pg_, absolutely irreducible
@ Extensions of abs. irr. rep. are unique up to twists
@ There are four 2-dimensional rep. of G extending pge_

2 3 _
p81,)\®6:p§ 2\ /031,/\®6 ZPSQ,)N p81,)\®6 —/0% A
15 2
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Computing (N(p), k(p), €(p))

Let € be the character of K then ¢? is the character of Q(v/5).

@ E, hasno CM = pg_, absolutely irreducible
@ Extensions of abs. irr. rep. are unique up to twists
@ There are four 2-dimensional rep. of G extending pge_

2 _ 3 _
pS1,)\®6:p§1,)\7 /031,/\®6 _pSQ,)\v p81,)\®6 —/0%2’)\ J

o B’:S1 ><82:>NB:NS1N32

@ Ns, = cond(ps, »)cond(p ,) = cond(ps; »)?

@ The difference between cond(ps, ) and cond(ps, ») is at 5
@ conds(ps, » ® €) < lcm(conds(ps, ), cond(e?)? = 52)
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Computing (N(p), k(p), €(p))

Equation [ 12(a+b) | ps.x | 7o | Psr | P

r=1 0 2652¢, | 285%¢, | 265°¢, | 265°¢,
r=1 0 255200 255200 255200 255200
r=1 1 2652¢, | 285%¢, | 265°¢, | 255°¢,
r=1 2 225%¢y | 2°5°%¢, | 2°5%¢, | 2°5°¢,

r=1 >3 2%52¢, | 2%52¢, | 2%5°¢, | 2%5°¢,

r=5 0 2652¢, | 2852¢, | 285¢, | 2%5¢,
r=5 0 2552¢y | 255%¢y | 2°5¢, | 2°5¢,
r=5 1 2652¢, | 285%¢, | 255¢, | 2%5¢,
r=5 2 2252¢, | 2252¢, | 225¢, | 225cy
r=5 >3 2%52¢y | 2%5%¢, | 2%5¢, | 2%5¢,

Table: Values of conductors, where ¢, = rad(c)
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Computing (N(p), k(p), €(p))

Let X in Q(/) be above p and define p := pg, » and p := pg, .
@ (Hellegouarch) p|K = pg, p is unramified at ¢y = rad(c).
@ Disc(K/Q) = 2453 then 5 can not ramify outside 2 and 5
@ (Carayol) Wild ramification implies conductor does not
decrease when reducing mod p
@ Then N(p) is equal to the first column in the previous table
without ¢y
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Computing (N(p), k(p), €(p))

Let X in Q(/) be above p and define p := pg, » and p := pg, .

@ (Hellegouarch) p|K = pg, p is unramified at ¢y = rad(c).

@ Disc(K/Q) = 2453 then 5 can not ramify outside 2 and 5

@ (Carayol) Wild ramification implies conductor does not
decrease when reducing mod p

@ Then N(p) is equal to the first column in the previous table
without ¢y

@ (Pyle) p has character ¢~ then ¢(p) = ¢~ since p > 2

@ If pt ¢ 51 has good reduction; if p | ¢, since p | vy(a) then
p is finite. In both cases k(p) = 2
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Computing (N(p), k(p), €(p))

Let X in Q(/) be above p and define p := pg, » and p := pg, .

@ (Hellegouarch) p|K = pg, p is unramified at ¢y = rad(c).

@ Disc(K/Q) = 2453 then 5 can not ramify outside 2 and 5

@ (Carayol) Wild ramification implies conductor does not
decrease when reducing mod p

@ Then N(p) is equal to the first column in the previous table
without ¢y

@ (Pyle) p has character ¢~ then ¢(p) = ¢~ since p > 2

@ If pt ¢ 51 has good reduction; if p | ¢, since p | vy(a) then
p is finite. In both cases k(p) = 2

@ (Ellenberg) p is absolutely irreducible for p > 13 if (a, b, ¢)
is such that |c| > 1.
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Computing (N(p), k(p), €(p))

Let X in Q(/) be above p and define p := pg, » and p := pg, .

@ (Hellegouarch) p|K = pg, p is unramified at ¢y = rad(c).

@ Disc(K/Q) = 2453 then 5 can not ramify outside 2 and 5

@ (Carayol) Wild ramification implies conductor does not
decrease when reducing mod p

@ Then N(p) is equal to the first column in the previous table
without ¢y

@ (Pyle) p has character ¢~ then ¢(p) = ¢~ since p > 2

@ If pt ¢ 51 has good reduction; if p | ¢, since p | vy(a) then
p is finite. In both cases k(p) = 2

@ (Ellenberg) p is absolutely irreducible for p > 13 if (a, b, ¢)
is such that |c| > 1.

From Serre conjecture there is a newform f of type (M, 2, €)
with M = 1600, 800, 400 or 100 and a prime 3 in Qs above p
such that p = pr s(mod )
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Eliminating Newforms

For each possible newform we will contradict the congruence
P = Pi p-
@ Compute with SAGE the newforms in So(M, e~ )
@ The newforms corresponding to the trivial solutions
(+£1,0), (0,+1), (1,1), (—1,—1) and (1,-1), (-1, 1) exist.
® E(11,0), Eo,+1) is not a problem for d = 2

® E_11), E1,—1), E1,1) and E(_q _1) have Complex
Multiplication
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Eliminating Newforms

For each possible newform we will contradict the congruence
P = Pi p-
@ Compute with SAGE the newforms in So(M, e~ )
@ The newforms corresponding to the trivial solutions
(+£1,0), (0,+1), (1,1), (—1,—1) and (1,-1), (-1, 1) exist.
® E(11,0), Eo,+1) is not a problem for d = 2
® E_11), E1,—1), E1,1) and E(_q _1) have Complex
Multiplication
Observe that Q(/) = Q(¢) € Qr and define the sets:
S1: Newforms with CM (Complex Multiplication),

S2: Newforms without CM and field of coefficients strictly
containing Q(/),
S3: Newforms without CM and field of coefficients Q(/)
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d=2: Newforms in S1

Recall that 2 | a+ b then 800 is not a possible level.

@ There are four with CM by Q(/) and four by Q(v/—5).

@ If (a, b, c) is non-trivial there exists a prime > 5 of
multiplicative reduction.

@ (Ellenberg) If p > 13 the image of p will not lie in the
normalizer of a split Cartan subgroup.

@ For an f with CM if p is a square on the field of CM then
the image of pr, will be in a normalizer of a split Cartan
subgroup.

@ Thenp=1mod4andp=+1modS=p#prp

Nuno Freitas Generalized Fermat Equations



d=2: Newforms in S2

@ There are 12 newforms (modulo conjugation) in S2.

@ For g of good reduction for Sy, ag = age~'(q).

@ 3is of good reduction and a3 = t — ti with t € Z.

@ Weil bound |ag| < 2V3 = |t| <2

o Iff=q+ >, 5an(f)q" then az(p) = az(f) (mod P)

@ There is f in S2 of level 400 with as(f) having minimal
polynomial x2 + 10

@ Then as(f) =t — it (mod B) implies 100 = 4* (mod R),
substituting for t = 0, +1, 2 we reach a contradiction if
p > 5.

@ Do the same with as(f) for all other f and conlude a
contradiction for p > 7.
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d=2: Newforms in S3

Let x be the character of Q(v/2) and E, » the twist by 2 of E,.

@ There are 10 “bad” newforms in S3 all with level 1600
(2] a+ b).
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d=2: Newforms in S3

Let x be the character of Q(v/2) and E, » the twist by 2 of E,.
@ There are 10 “bad” newforms in S3 all with level 1600
(21 a+ b).
@ Since 1600 = 2852 and cond(x)? = 82 = 2° the conductor
of f ® x may decrease.

@ With SAGE we compute the coefficients of f @ x to find that
f ® x are of level 800 for all f in S3
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d=2: Newforms in S3

Let x be the character of Q(v/2) and E, » the twist by 2 of E,.

@ There are 10 “bad” newforms in S3 all with level 1600
(21 a+ b).

@ Since 1600 = 2852 and cond(x)? = 82 = 2° the conductor
of f ® x may decrease.

@ With SAGE we compute the coefficients of f @ x to find that
f ® x are of level 800 for all f in S3

® (ps; 2 @ X) ik = (Ps A)|K @ XK = PE,.p @ X|K = PE, ,p

@ Then pg, » ® x extends pg_, , and the same holds for pg ,,
p§27)\’ p827/\

@ Therefore pgp ® x = (IndgﬁpEmp) X =
Indg%(pglwp ® Xx|Kk) = Indg%pgwp arises from Gg acting on
the p-adic Tate module of Resk o (E, 2/K).

@ Then we can compute conductor of pg , @ x via Milne’s
Formula
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d=2: Newforms in S3

p1 = ps, » ® x is a 2-dimensional factor of pg , @ x and extends
PE, ,.p- Let p1 denote its reduction. A similar analysis as for E,
shows that if 2 || a+ b then by Serre’s conjecture

p1 is modular of type (M, 2, €) with M = 100 or 400 |

@ p1 = pgp (Mod )

@ D1 =psAOX=POX= Prp@X = Paxp = Pt ps

@ We know that ' has level 800

@ This kind of level lowering can not happen (by Carayol)!
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d=2: Newforms in S3

p1 = ps, » ® x is a 2-dimensional factor of pg , @ x and extends
PE, ,.p- Let p1 denote its reduction. A similar analysis as for E,
shows that if 2 || a+ b then by Serre’s conjecture

p1 is modular of type (M, 2, €) with M = 100 or 400 |

@ p1 = pgp (Mod )

@ D1 =psAOX=POX= Prp@X = Paxp = Pt ps

@ We know that ' has level 800

@ This kind of level lowering can not happen (by Carayol)!

For any p > 13 such that p =1 mod 4 and p = +1 mod 5, the
equation x° + y® = 2~zP has no non-trivial primitive solutions.
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d=3: a+b odd, level 800

Let d = 3. Recall that 3 | a+ b and suppose a + b odd, which
means level 800 or 1600.

@ In level 800 there are 4 newforms of type S2 and 10 of type
S3 and none of type S1. Suppose p = pr p.

@ For type S2 we do as before. There exists f in S2 with
as(f) having minimal polynomial t? 4 (2 — 2/)t + i then we
need p > 73 to achieve a contradiction.

If f € S3, pla, = Prpla, = aps(Ey) = ap,(f) (mod p)

3| a+ b= ap,(E,) = —18 (with SAGE)

az(f) = +(2i —2) or £(i — 1) for fin S3

ap,(f) = o* + B*, where a, 3 are roots of the characteristic
polynomial of pf ,(Frobs), i.e. X2 — ag(f)x + ¢ 1(3)3

@ Then ay,(f) = 14 or 2, contradiction for p > 3
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d=3: a+b odd, level 1600

Now level 1600:

@ The forms of type S1 and S2 can be eliminated exactly as
for d = 2. Since f in S1 with CM by Q(v/-5) verify
as = £(i — 1) we only need the condition p = 1 mod 4,
because 3 | a+ b.

@ For f in S3 consider f @ y known to have level 800 = 2552
and twist E,(a, b) by 2.
@ If condy(E, ) # 25 we have a contradiction by Carayol.

e If condy(E, ») = 2° then since E, » mod B3 is equal to
E,(a, b) mod B3 we have ayp,(E, 2) = —18 which gives a
contradiction with ay, (f) as before.
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Suppose a + b even.
@ We eliminate newforms of type S2 and S3 exactly with the
same arguments used when d = 2.

@ For fin S1 we only need to suppose that is p = 1 mod 4 to
get a contradiction since newforms with CM by Q(+/—5)
verify ag = (i — 1).
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Suppose a + b even.

@ We eliminate newforms of type S2 and S3 exactly with the
same arguments used when d = 2.

@ For fin S1 we only need to suppose that is p = 1 mod 4 to
get a contradiction since newforms with CM by Q(+/—5)
verify ag = (i — 1).

For any p > 73 such that p = 1 mod 4, the equation
x® + y® = 3yzP has no non-trivial primitive solutions.
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Another Q-curve

Definition

Let F(a) be the elliptic curve defined over Q(+/5) given by

Fap) : ¥? = x> +2(a— b)x® + ( f+ )<;51(a b)x.

@ F(ap) is aQ-curve.

@ As in the case of E we apply Quer’s theory, Milne’s
Formula and Serre’s conjecture.

Nuno Freitas Generalized Fermat Equations



Another Q-curve

Definition
Let F(a) be the elliptic curve defined over Q(+/5) given by

Fap) : ¥? = x> +2(a— b)x® + ( f+ )<;51(a b)x.

@ F(ap) is aQ-curve.
@ As in the case of E we apply Quer’s theory, Milne’s
Formula and Serre’s conjecture.

@ We have p = py, for newforms with level 100, 400 or 1600
if8|a+b,4| a+bor2| a-+ b, respectively.

@ If 2+ a+ b we can suppose that a is even and we are in
level 800 or 1600 if 4 | aor 4 1 a, respectively.
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Multi-Frey technique

@ Suppose that a° + b> = dcP and that c is even.

@ Then we have a solution (&, b, ¢y) to x® 4 y° = d2PzP and
by B-D it is impossible.

@ We can suppose c to be odd and we only have to deal with
thecases2 || a+bor2fa+b.

@ Thus we have to eliminate newforms only on levels 1600
(d =2) or 1600 and 800 (d = 3).

@ These are the same levels as in the case of E, )

@ For a solution (a, b, c) we have a double congruence

(Pe, PF) = (P1,pl K, Pg,pl K) (Mod B), where f, g are
newforms in Sy(M, ¢~ ') both with level M = 800 or
M = 1600.

@ We can apply the multi-Frey technique with E and F!
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Multi-Frey technique

Definition

Let Cx,y)/K be Ey ) or Fx . For a prime q of good reduction
for C and newform f let

Cixy(@:F) = ag(Cixy)) — aq(f|K)

Theorem (Siksek)
Let (f, g) be a pair of newforms and define

At @)= J]  9cd(Epy)(@: 1) Fxy)(a:9))-
(x)€Fa—{(0.0)}

If (a, b, c) is a primitive solution giving rise to the double
congruence (5. ) = (71,5l K. 5g.pl K) (mod ) then p | Aq.

Nuno Freitas Generalized Fermat Equations



@ We want to improve the conditions on p which comes from
CM forms.

@ In level 800 there are no newforms with CM
@ In level 1600 there are f;,f by Q(/) and g1,9- by Q(+/—5)

@ Let SS1 be the set of pairs (f, g) where f has no CM and
SS2 the set of those where f has CM.
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@ We want to improve the conditions on p which comes from
CM forms.

@ In level 800 there are no newforms with CM

@ In level 1600 there are f,f by Q(/) and g1,g» by Q(v/-5)

@ Let SS1 be the set of pairs (f, g) where f has no CM and
SS2 the set of those where f has CM.

@ We eliminate a pair (f, g) in SS1 by applying the
arguments on f explained before.

@ Given (f,g) in SS2 we compute Aq(f, g) using the auxiliary
primes q = 3,7,13,17 to find that Aq(f, g) = 0 for all the
auxiliary primes only if f, g have CM by distinct fields.

@ Remain four pairs: (fi, 91), (f1, g2), (91, f;) and (gz, f).

@ For a prime p=1 (mod 4) or p = +1 (mod 5) we can
eliminate these pairs by applying Ellenberg’s theorem to E
or F convenientyl to get a contradiction! g.e.d.
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