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The equation x5 + y5 = dzp

Theorem (Billerey and Billerey, Dieulefait)

Let d = 2α3β5γ where α ≥ 2, β, γ,≥ 0, or d = 7,13. Then, for
p > 19 the equation x5 + y5 = dzp has no non-trivial primitive
solution.

Let γ be an integer divisible only by primes l 6≡ 1 (mod 5).

Theorem (Dieulefait, F)
For any p > 13 such that p ≡ 1 mod 4 or p ≡ ±1 mod 5, the
equation x5 + y5 = 2γzp has no non-trivial primitive solutions.

Theorem (Dieulefait, F)
For any p > 73 such that p ≡ 1 mod 4 or p ≡ ±1 mod 5, the
equation x5 + y5 = 3γzp has no non-trivial primitive solutions.
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Relating two equations

Key factorization:
x5 + y5 = (x + y)(x4 − x3y + x2y2 − xy3 + y4)

Let φ(x , y) = (x4 − x3y + x2y2 − xy3 + y4)

Proposition

If (a,b) = 1 then the integers a + b and φ(a,b) are coprime
outside 5. Moreover, 5 | a + b ⇐⇒ υ5(φ(a,b)) = 1

Proposition

Let l 6≡ 1 (mod 5) be a prime number dividing a5 + b5. If
(a,b) = 1 then l divides a + b.
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Relating two equations

Let (a,b, c) be a primitive solution to x5 + y5 = dγzp.

a5 + b5 = (a + b)φ(a,b) = dγcp (d = 2,3)
Since dγ is divisible only by primes l 6≡ 1 (mod 5) we have
dγ | a + b
If 5 - a + b then φ(a,b) = cp

0

If 5 | a + b then φ(a,b) = 5cp
0

c0 | c is only divisible by primes l ≡ 1 (mod 5).

Hence we need to prove that φ(x , y) = rzp where r = 1,5 has
no non-trivial primitive solutions if dγ | a + b. Actually, we can
suppose that γ = 1.
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The Frey Q-curve

Observe that over Q(
√

5)

φ(x , y) = φ1(x , y)φ2(x , y), where
φ1(x , y) = x2 +ωxy + y2 and φ2(x , y) = x2 + ω̄xy + y2, with

ω = −1+
√

5
2 , ω̄ = −1−

√
5

2

Moreover, if (a,b) = 1 then φ1(a,b), φ2(a,b) are coprime
outside the prime above 5.

Definition

Given a triple (a,b, c) define the Frey-curve over Q(
√

5)

E(a,b) : y2 = x3 + 2(a + b)x2 − ω̄φ1(a,b)x

with discriminant ∆(E) = 26ω̄φφ1.

There are representations ρE ,l : GQ(
√

5) → GL2(Ql) with
residual representations ρ̄E ,l : GQ(

√
5) → GL2(Fl)

Nuno Freitas Generalized Fermat Equations



The Frey Q-curve

Serre Conjecture (Khare, Wintenberger)

Let ρ̄ : GQ → GL2(F̄p) be odd and irreducible. Then ρ̄ is
modular of type (N(ρ̄), k(ρ̄), ε(ρ̄)).

We need to extend ρ̄E ,p!!!

Definition

Let C be an elliptic curve over Q̄. We say that C is a Q-curve if
it is isogenous to all its Galois conjugates σC for σ ∈ GQ

Proposition
Then E(a,b) is a Q-curve

Proof: The curve E(a,b) has the non-trivial Galois

σE(a,b) : y2 = x3 + 2(a + b)x2 − ωφ2(a,b)x ,
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The Frey Q-curve

and there exists a 2-isogeny µ : σE → E given by

(x , y) 7→ (− y2

2x2 ,

√
−2
4

y
x2 (ωφ2 + x2)).

Theorem

Let K = Q(θ) where θ =
√

1
2(5 +

√
5). Put γ = 2θ2 − θ − 5 and

consider the twist of E(a,b) by γ defined over K by

Eγ : y2 = x3 + 2γ(a + b)x2 − γ2ω̄φ1(a,b)x .

The Weil restriction B = ResK/Q(Eγ/K ) ∼ S1 × S2 where Si
are two non-isogenous abelian surfaces of GL2-type defined
over Q. Each Si has its Q-endomorphism algebra iso to Q(i).
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Computing (N(ρ̄), k(ρ̄), ε(ρ̄))

For λ ∈ Q(i) then GQ acts on TlSi and induces
ρl = ρSi ,λ ⊕ ρ

σ
Si ,λ

.
To compute N(ρ̄Si ,λ) we need the level of ρSi ,λ first.

From Tate’s Algorithm we compute NEγ and with

Milne’s Formula: NB = NmK/Q(NEγ )Disc(K/Q)2

we obtain the conductor of B

Proposition

NB = 2t56+srad(c)4

s = 0 or 2 if 5 | a + b or 5 - a + b, respectively
if 2 | a + b ⇒ t = 24,8,16 if 2 ‖ a + b,4 ‖ a + b,8 | a + b
if 2 - a + b then t = 24 or 20 if 4 - a or 4 | a, respectively.
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Computing (N(ρ̄), k(ρ̄), ε(ρ̄))

Let ε be the character of K then ε2 is the character of Q(
√

5).

Eγ has no CM⇒ ρEγ ,l absolutely irreducible
Extensions of abs. irr. rep. are unique up to twists
There are four 2-dimensional rep. of GQ extending ρEγ ,l

ρS1,λ ⊗ ε = ρσS1,λ
, ρS1,λ ⊗ ε

2 = ρS2,λ, ρS1,λ ⊗ ε
3 = ρσS2,λ

B ' S1 × S2 ⇒ NB = NS1NS2

NSi = cond(ρSi ,λ)cond(ρσSi ,λ
) = cond(ρSi ,λ)2

The difference between cond(ρS1,λ) and cond(ρS2,λ) is at 5
cond5(ρS1,λ ⊗ ε

2) ≤ lcm(cond5(ρS1,λ), cond(ε2)2 = 52)
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Computing (N(ρ̄), k(ρ̄), ε(ρ̄))

Equation ν2(a + b) ρS1,λ ρσS1,λ
ρS2,λ ρσS2,λ

r = 1 0 2652c0 2652c0 2652c0 2652c0
r = 1 0 2552c0 2552c0 2552c0 2552c0
r = 1 1 2652c0 2652c0 2652c0 2652c0
r = 1 2 2252c0 2252c0 2252c0 2252c0
r = 1 ≥ 3 2452c0 2452c0 2452c0 2452c0
r = 5 0 2652c0 2652c0 265c0 265c0
r = 5 0 2552c0 2552c0 255c0 255c0
r = 5 1 2652c0 2652c0 265c0 265c0
r = 5 2 2252c0 2252c0 225c0 225c0
r = 5 ≥ 3 2452c0 2452c0 245c0 245c0

Table: Values of conductors, where c0 = rad(c)
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Computing (N(ρ̄), k(ρ̄), ε(ρ̄))

Let λ in Q(i) be above p and define ρ := ρS1,λ and ρ̄ := ρ̄S1,λ.
(Hellegouarch) ρ̄|K = ρ̄Eγ ,p is unramified at c0 = rad(c).
Disc(K/Q) = 2453 then ρ̄ can not ramify outside 2 and 5
(Carayol) Wild ramification implies conductor does not
decrease when reducing mod p
Then N(ρ̄) is equal to the first column in the previous table
without c0
(Pyle) ρ has character ε−1 then ε(ρ̄) = ε−1 since p > 2
If p - c S1 has good reduction; if p | c, since p | υP(∆) then
ρ̄ is finite. In both cases k(ρ̄) = 2
(Ellenberg) ρ̄ is absolutely irreducible for p > 13 if (a,b, c)
is such that |c| > 1.

From Serre conjecture there is a newform f of type (M,2, ε̄)
with M = 1600, 800, 400 or 100 and a prime P in Qf above p
such that ρ̄ ≡ ρ̄f ,P(mod P)
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Eliminating Newforms

For each possible newform we will contradict the congruence
ρ̄ ≡ ρ̄f ,p.

Compute with SAGE the newforms in S2(M, ε−1)

The newforms corresponding to the trivial solutions
(±1,0), (0,±1), (1,1), (−1,−1) and (1,−1), (−1,1) exist.
E(±1,0), E(0,±1) is not a problem for d = 2
E(−1,1), E(1,−1), E(1,1) and E(−1,−1) have Complex
Multiplication

Observe that Q(i) = Q(ε) ⊆ Qf and define the sets:
S1: Newforms with CM (Complex Multiplication),
S2: Newforms without CM and field of coefficients strictly

containing Q(i),
S3: Newforms without CM and field of coefficients Q(i)
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d=2: Newforms in S1

Recall that 2 | a + b then 800 is not a possible level.

There are four with CM by Q(i) and four by Q(
√
−5).

If (a,b, c) is non-trivial there exists a prime ≥ 5 of
multiplicative reduction.
(Ellenberg) If p > 13 the image of ρ̄ will not lie in the
normalizer of a split Cartan subgroup.
For an f with CM if p is a square on the field of CM then
the image of ρ̄f ,p will be in a normalizer of a split Cartan
subgroup.
Then p ≡ 1 mod 4 and p ≡ ±1 mod 5⇒ ρ̄ 6≡ ρ̄f ,p
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d=2: Newforms in S2

There are 12 newforms (modulo conjugation) in S2.
For q of good reduction for S1, aq = āqε

−1(q).
3 is of good reduction and a3 = t − ti with t ∈ Z.
Weil bound |a3| ≤ 2

√
3⇒ |t | ≤ 2

If f = q +
∑

n=2 an(f )qn then a3(ρ̄) ≡ a3(f ) (mod P)

There is f in S2 of level 400 with a3(f ) having minimal
polynomial x2 + 10i
Then a3(f ) ≡ t − it (mod P) implies 100 ≡ 4t4 (mod P),
substituting for t = 0,±1,±2 we reach a contradiction if
p > 5.
Do the same with a3(f ) for all other f and conlude a
contradiction for p > 7.
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d=2: Newforms in S3

Let χ be the character of Q(
√

2) and Eγ,2 the twist by 2 of Eγ .

There are 10 “bad” newforms in S3 all with level 1600
(2 ‖ a + b).
Since 1600 = 2652 and cond(χ)2 = 82 = 26 the conductor
of f ⊗ χ may decrease.
With SAGE we compute the coefficients of f ⊗χ to find that
f ⊗ χ are of level 800 for all f in S3
(ρS1,λ ⊗ χ)|K = (ρS1,λ)|K ⊗ χ|K = ρEγ ,p ⊗ χ|K = ρEγ,2,p

Then ρS1,λ ⊗ χ extends ρEγ,2,p and the same holds for ρσS1,λ
,

ρσS2,λ
, ρS2,λ

Therefore ρB,p ⊗ χ = (IndGQ
GK
ρEγ ,p)⊗ χ =

IndGQ
GK

(ρEγ ,p ⊗ χ|K ) = IndGQ
GK
ρEγ,2,p arises from GQ acting on

the p-adic Tate module of ResK/Q(Eγ,2/K ).
Then we can compute conductor of ρB,p ⊗ χ via Milne’s
Formula
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d=2: Newforms in S3

ρ1 := ρS1,λ ⊗ χ is a 2-dimensional factor of ρB,p ⊗ χ and extends
ρEγ,2,p. Let ρ̄1 denote its reduction. A similar analysis as for Eγ
shows that if 2 ‖ a + b then by Serre’s conjecture

ρ̄1 is modular of type (M1,2, ε̄) with M = 100 or 400

ρ̄1 ≡ ρ̄g,p (mod P)
ρ̄1 = ρS1,λ ⊗ χ = ρ̄⊗ χ ≡ ρ̄f ,p ⊗ χ ≡ ρ̄f⊗χ,p = ρ̄f ′,p,

We know that f ′ has level 800
This kind of level lowering can not happen (by Carayol)!

Theorem
For any p > 13 such that p ≡ 1 mod 4 and p ≡ ±1 mod 5, the
equation x5 + y5 = 2γzp has no non-trivial primitive solutions.
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d=3: a+b odd, level 800

Let d = 3. Recall that 3 | a + b and suppose a + b odd, which
means level 800 or 1600.

In level 800 there are 4 newforms of type S2 and 10 of type
S3 and none of type S1. Suppose ρ̄ ≡ ρ̄f ,p.
For type S2 we do as before. There exists f in S2 with
a3(f ) having minimal polynomial t2 ± (2− 2i)t + i then we
need p > 73 to achieve a contradiction.
If f ∈ S3, ρ̄|GK ≡ ρ̄f ,p|GK ⇒ aP3(Eγ) ≡ aP3(f ) (mod p)
3 | a + b ⇒ aP3(Eγ) = −18 (with SAGE)
a3(f ) = ±(2i − 2) or ±(i − 1) for f in S3
aP3(f ) = α4 + β4, where α, β are roots of the characteristic
polynomial of ρf ,p(Frob3), i.e. x2 − a3(f )x + ε−1(3)3
Then aP3(f ) = 14 or 2, contradiction for p > 3
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d=3: a+b odd, level 1600

Now level 1600:

The forms of type S1 and S2 can be eliminated exactly as
for d = 2. Since f in S1 with CM by Q(

√
−5) verify

a3 = ±(i − 1) we only need the condition p ≡ 1 mod 4,
because 3 | a + b.
For f in S3 consider f ⊗ χ known to have level 800 = 2552

and twist Eγ(a,b) by 2.
If cond2(Eγ,2) 6= 25 we have a contradiction by Carayol.
If cond2(Eγ,2) = 25 then since Eγ,2 mod P3 is equal to
Eγ(a,b) mod P3 we have aP3(Eγ,2) = −18 which gives a
contradiction with aP3(f ) as before.
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d=3: a+b even

Suppose a + b even.

We eliminate newforms of type S2 and S3 exactly with the
same arguments used when d = 2.
For f in S1 we only need to suppose that is p ≡ 1 mod 4 to
get a contradiction since newforms with CM by Q(

√
−5)

verify a3 = ±(i − 1).

Theorem
For any p > 73 such that p ≡ 1 mod 4, the equation
x5 + y5 = 3γzp has no non-trivial primitive solutions.
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d=3: a+b even
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Another Q-curve

Definition

Let F(a,b) be the elliptic curve defined over Q(
√

5) given by

F(a,b) : y2 = x3 + 2(a− b)x2 + (
3
10

√
5 +

1
2

)φ1(a,b)x .

F(a,b) is a Q-curve.
As in the case of E we apply Quer’s theory, Milne’s
Formula and Serre’s conjecture.
We have ρ̄ ≡ ρ̄f ,p for newforms with level 100, 400 or 1600
if 8 | a + b, 4 ‖ a + b or 2 ‖ a + b, respectively.
If 2 - a + b we can suppose that a is even and we are in
level 800 or 1600 if 4 | a or 4 - a, respectively.
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Multi-Frey technique

Suppose that a5 + b5 = dcp and that c is even.
Then we have a solution (a,b, c0) to x5 + y5 = d2pzp and
by B-D it is impossible.
We can suppose c to be odd and we only have to deal with
the cases 2 ‖ a + b or 2 - a + b.
Thus we have to eliminate newforms only on levels 1600
(d = 2) or 1600 and 800 (d = 3).
These are the same levels as in the case of E(a,b)

For a solution (a,b, c) we have a double congruence
(ρ̄E , ρ̄F ) ≡ (ρ̄f ,p|K , ρ̄g,p|K ) (mod P), where f ,g are
newforms in S2(M, ε−1) both with level M = 800 or
M = 1600.
We can apply the multi-Frey technique with E and F !
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Multi-Frey technique

Definition
Let C(x ,y)/K be E(x ,y) or F(x ,y). For a prime q of good reduction
for C and newform f let

C(x ,y)(q, f ) = aq(C(x ,y))− aq(f |K )

Theorem (Siksek)

Let (f ,g) be a pair of newforms and define

Aq(f ,g) =
∏

(x ,y)∈Fq−{(0,0)}

gcd(E(x ,y)(q, f )),F(x ,y)(q,g)).

If (a,b, c) is a primitive solution giving rise to the double
congruence (ρ̄E , ρ̄F ) ≡ (ρ̄f ,p|K , ρ̄g,p|K ) (mod P) then p | Aq.
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We want to improve the conditions on p which comes from
CM forms.
In level 800 there are no newforms with CM
In level 1600 there are f1,f2 by Q(i) and g1,g2 by Q(

√
−5)

Let SS1 be the set of pairs (f ,g) where f has no CM and
SS2 the set of those where f has CM.
We eliminate a pair (f ,g) in SS1 by applying the
arguments on f explained before.
Given (f ,g) in SS2 we compute Aq(f ,g) using the auxiliary
primes q = 3,7,13,17 to find that Aq(f ,g) = 0 for all the
auxiliary primes only if f ,g have CM by distinct fields.
Remain four pairs: (f1,g1), (f1,g2), (g1, f1) and (g2, f2).
For a prime p ≡ 1 (mod 4) or p ≡ ±1 (mod 5) we can
eliminate these pairs by applying Ellenberg’s theorem to E
or F convenientyl to get a contradiction! q.e.d.
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