Reduction point algorithm for Fuchsian groups

Dionís Remón

Universitat de Barcelona

January 31, 2013

向下 イヨト イヨト

Reduction point algorithm

Definition

Given a pair $(\Gamma, \mathcal{F}(\Gamma))$ and a point $z_0 \in \mathcal{H}$, the *reduction point* algorithm problem asks for an explicit transformation $\gamma \in \Gamma$ such that $\gamma(z_0) \in \mathcal{F}(\Gamma)$.

Word problem

Definition

The word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators of G represent the same element.

Example

Let G be a group generated by a set of elements $\{\gamma_2, \gamma_4, \gamma_6\}$ with relations $\gamma_2^3 = \gamma_4^3 = \gamma_6^2 = \text{Id.}$ Is $\gamma_2^{-1} = \gamma_2^2$ true?

Word problem

Definition

The word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators of G represent the same element.

Example

Let G be a group generated by a set of elements $\{\gamma_2, \gamma_4, \gamma_6\}$ with relations $\gamma_2^3 = \gamma_4^3 = \gamma_6^2 = \text{Id.}$ Is $\gamma_2^{-1} = \gamma_2^2$ true? , Yes!

Word problem

Definition

The word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators of G represent the same element.

Example

Let G be a group generated by a set of elements $\{\gamma_2, \gamma_4, \gamma_6\}$ with relations $\gamma_2^3 = \gamma_4^3 = \gamma_6^2 = Id$. Is $\gamma_2^{-1} = \gamma_2^2$ true? , Yes!

Weak word problem

The weak word problem algorithm for a finitely generated fuchsian group G and fixed \mathcal{F} , i.e., fixed a presentation (generators and relations) is the problem of writing explicitly an element $g \in G$ in terms of its generators.

Equivalence of the two problems

Theorem

Let Γ be a Fuchsian group and $\mathcal{F}(\Gamma)$ a fundamental domain for Γ . The word problem algorithm and the reduction point algorithm are equivalent.

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivalence of the two problems

Theorem

Let Γ be a Fuchsian group and $\mathcal{F}(\Gamma)$ a fundamental domain for Γ . The word problem algorithm and the reduction point algorithm are equivalent.

Proof.

Let $g \in \Gamma$ be an element that we want to describe by using a set of generators of Γ . Let $z_0 \in \overset{\circ}{\mathcal{F}}$ and $z = g(z_0)$. We observe that if $g \neq \text{Id}$, then $z \notin \mathcal{F}$. Applying the reduction point algorithm, we obtain $\gamma(z) = z^* \in \mathcal{F}$. This equality means, by the uniqueness of equivalent points, that $z_0 = z^*$. Then $z_0 = \gamma(z) = \gamma(g(z_0))$. We deduce that $\gamma \cdot g = \text{Id}$. This leads to $g = \gamma^{-1}$. This solves the word problem, since we know how to write γ in terms of the generators of Γ .

Equivalence of the two problems

Theorem

Let Γ be a Fuchsian group and $\mathcal{F}(\Gamma)$ a fundamental domain for Γ . The word problem algorithm and the reduction point algorithm are equivalent.

Proof.

Let $g \in \Gamma$ be an element that we want to describe by using a set of generators of Γ . Let $z_0 \in \overset{\circ}{\mathcal{F}}$ and $z = g(z_0)$. We observe that if $g \neq \mathrm{Id}$, then $z \notin \mathcal{F}$. Applying the reduction point algorithm, we obtain $\gamma(z) = z^* \in \mathcal{F}$. This equality means, by the uniqueness of equivalent points, that $z_0 = z^*$. Then $z_0 = \gamma(z) = \gamma(g(z_0))$. We deduce that $\gamma \cdot g = \mathrm{Id}$. This leads to $g = \gamma^{-1}$. This solves the word problem, since we know how to write γ in terms of the generators of Γ . Reciprocally, ...

Motivation

Why is the reduction algorithm interesting?

イロン 不同と 不同と 不同と

Э

Maass waveforms and modular forms

Definition

A Maass waveform for a Fuchsian group Γ is a function $f : \mathcal{H} \to \mathbb{C} \cup \{\infty\}$, infinitely differentiable and such that:

• It is en eigenvector for the hyperbolic Laplacian: $\Delta f = \lambda f$ with

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial^2 x} + \frac{\partial^2}{\partial^2 y} \right),$$

where we understand z = x + iy.

• The function f satisfies the cuspidality condition

$$\int_{\mathcal{F}} |f(z)|^2 ds^2 < \infty.$$

• $f(\gamma(z)) = \chi(\gamma)f(z)$, with $\gamma \in \Gamma$.

Motivation Maass waveforms Reduction algorithm Fuchsian codes

A Maass-wave form admits a series development of the form

$$f(z) = \sum_{n=-\infty}^{n=\infty} a_n \sqrt{\Im(z)} K_{i\mu}(2\pi |n| \Im(z)) e^{2\pi i n \Re(z)}$$

where $K_{i\mu}$ are modified Bessel functions.

To compute the coefficients a_n we need to solve a linear system

$$f_{j}(z) = f(\sigma_{j}z) = f(T_{j}^{-1}U_{w_{j}}^{-1}\sigma_{I(j)}z_{j}^{*})$$

$$= \chi(T_{j}^{-1}U_{w_{j}}^{-1})f_{I(j)}(z_{j}^{*}).$$
(1)

for j = 1, ..., n, with $z \in \mathcal{H}$, $\gamma(z) = z^*$, and $z^* \in \mathcal{F}$. The number n equals the number of auxiliary points $\{z_i\} \subset \mathcal{H}$, necessary to compute the coefficients.

Fuchsian codes

The reduction algorithm can be used to design codes; see lván Blanco-Chacón's tuesday talk.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$\Gamma(6,1)$, Alsina-Bayer

Γ(6,1)

Then the hyperbolic hexagon of vertices

$$v_{1} = \frac{-\sqrt{3}+i}{2}, \quad v_{2} = \frac{-1+i}{1+\sqrt{3}}, \quad v_{3} = (2-\sqrt{3})i,$$

$$v_{4} = \frac{1+i}{1+\sqrt{3}}, \quad v_{5} = \frac{\sqrt{3}+i}{2}, \quad v_{6} = i,$$

is a fundamental domain for $\Gamma(6,1)$ in the Poincarè upper half-plane.

イロン イヨン イヨン イヨン

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

The transformations which fix the vertices $(\gamma_i(v_i) = v_i)$ are:

$$\begin{split} \gamma_1 &= \begin{bmatrix} \sqrt{3} & 2\\ -2 & -\sqrt{3} \end{bmatrix}, \qquad \gamma_2 = \frac{1}{2} \begin{bmatrix} 1+\sqrt{3} & 3-\sqrt{3}\\ -3-\sqrt{3} & 1-\sqrt{3} \end{bmatrix}, \\ \gamma_3 &= \begin{bmatrix} 0 & -2+\sqrt{3}\\ 2+\sqrt{3} & 0 \end{bmatrix}, \quad \gamma_4 = \frac{1}{2} \begin{bmatrix} 1+\sqrt{3} & -3+\sqrt{3}\\ 3+\sqrt{3} & 1-\sqrt{3} \end{bmatrix}, \\ \gamma_5 &= \begin{bmatrix} \sqrt{3} & -2\\ 2 & -\sqrt{3} \end{bmatrix}, \qquad \gamma_6 = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}. \end{split}$$

イロン イヨン イヨン イヨン

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$\Gamma(6,1)$, Alsina-Bayer

Presentation of $\Gamma(6, 1)$

We have the following presentation of the group $\Gamma(6,1)/(\pm \mathrm{Id})$:

$$\langle \gamma_2, \gamma_4, \gamma_6 : \gamma_2^3 = \gamma_4^3 = \gamma_6^2 = (\gamma_2^{-1} \gamma_6 \gamma_4)^2 = 1 \rangle.$$

Figure: Fundamental domain $\mathcal{F}(\Gamma(6,1))$

イロン イヨン イヨン イヨン

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Ingredients of a reduction point algorithm

We can cover ${\cal H}$ by "regions", depending on ${\cal F}(\Gamma(6,1)),$ and assign a map to each region so that

- The regions are finite in number and satisfy $\mathcal{H} = \bigcup \mathcal{R}_i$.
- Do mappings $(\mathcal{R}_i, \gamma_i)$.
- In each region, the reduction algorithm uses words beginning with $\gamma_i^{-1}.$

・ロト ・回ト ・ヨト ・ヨト

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Ingredients of a reduction point algorithm (2)

We are going to show

 A mapping assignment for the Fuchsian group Γ(6,1) is given by (S⁻, γ₂), (S⁺, γ₄), (S[∞], γ₆) and (F, Id).

Figure: Regions for $\mathcal{F}(\Gamma(6,1))$

・ロン ・回と ・ヨン・

Proof

Idea of the proof

We shall show that all points of each region can be reach by using in the last position (as a application) the paired map of the region.

Proof

Idea of the proof

We shall show that all points of each region can be reach by using in the last position (as a application) the paired map of the region.

Region S^{∞}

Every point in the region S^{∞} can be moved to one of the other regions via the map γ_6 . This is because every point $z \in \mathcal{H}$ with |z| > 1 via the inversion γ_6 is translated to $|\gamma_6(z)| < 1$.

・ロン ・回と ・ヨン・

Proof

Idea of the proof

We shall show that all points of each region can be reach by using in the last position (as a application) the paired map of the region.

Region S^{∞}

Every point in the region S^{∞} can be moved to one of the other regions via the map γ_6 . This is because every point $z \in \mathcal{H}$ with |z| > 1 via the inversion γ_6 is translated to $|\gamma_6(z)| < 1$.

Region S^- and S^+

In what follows we are going to work in the region S^- . The same procedure can be applied for the region S^+ .

Proof (ii)

Boundary of S^-

We consider the boundary of S^- composed by three "edges". These are: S_u (upper edge), S_e (exterior edge) and S_i (interior edge).

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Next

First of all, we are going to cover the boundary points.

Motivation Reduction algorithm Other quaternionic Fuchsian groups Other cocompact groups

Next

First of all, we are going to cover the boundary points.

First and easy ones

First we will deal with S_e and S_u .

・ロン ・回 と ・ ヨ と ・ ヨ と

Motivation Reduction algorithm Other quaternionic Fuchsian groups Other cocompact groups

Next

First of all, we are going to cover the boundary points.

First and easy ones

First we will deal with S_e and S_u .

Difficult one

To cover the interior edge S_i is more difficult because the tiles which cover the edge S_i intersect the region S^+ .

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Exterior edge

Let p be the path which contains the vertices $v_1v_6v_5.$ Then the map $(\gamma_2\gamma_4^2)$ satisfies

$$\bigcup_{n\in\mathbb{N}} (\gamma_2\gamma_4^2)^n(p) = \{z: |z| = 1, \Re(z) < 0\}.$$

This means that the (infinite) set of tiles $(\gamma_2 \gamma_4^2)^n(\mathcal{F})$ covers S_e^- .

Figure: Subregions for S^-

イロン イヨン イヨン イヨン

Upper edge

The upper edge of S^- , i. e. S_u^- , is covered by three tiles

 $\gamma_2(\mathcal{F})\cup\gamma_2^2(\mathcal{F})\cup\gamma_2^2\gamma_6(\mathcal{F}).$

・ロン ・回と ・ヨン・

Upper edge

The upper edge of S^- , i. e. S_u^- , is covered by three tiles

 $\gamma_2(\mathcal{F})\cup\gamma_2^2(\mathcal{F})\cup\gamma_2^2\gamma_6(\mathcal{F}).$

Figure: Higher edge for S^-

・ロン ・回と ・ヨン・

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Interior edge

The interior edge S_i^- of S^- is covered by the set of infinite tiles

$$\mathcal{E} := \bigcup_{n \geq 0} \gamma_2^2 \gamma_6 \gamma_4 h^n(\mathcal{F}) \ \cup \bigcup_{n > 0} h^{-n}(\mathcal{F}).$$

・ロン ・回 と ・ヨン ・ヨン

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Interior edge

The interior edge S_i^- of S^- is covered by the set of infinite tiles

$$\mathcal{E} := \bigcup_{n \ge 0} \gamma_2^2 \gamma_6 \gamma_4 h^n(\mathcal{F}) \ \cup \bigcup_{n > 0} h^{-n}(\mathcal{F}).$$

Figure: Covering the interior edge of S^-

イロン イヨン イヨン イヨン

From the presentation of the group $\Gamma(6,1)$, it follows that

$$\gamma_2^2 \gamma_6 \gamma_4 = \gamma_4^2 \gamma_6 \gamma_2.$$

This means, from the word problem point of view, that the region \mathcal{E} , which includes S_i , corresponds to the set of words that can be written starting either with γ_2 or γ_4 .

Once we have controlled the boundary of the region S^- , we want to cover its interior.

・ロン ・回 と ・ ヨ と ・ ヨ と

э

Once we have controlled the boundary of the region S^- , we want to cover its interior.

Figure: Covering the interior of S^-

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

The star $\star(\mathcal{F})$ of \mathcal{F}

Covering a fundamental domain

Let Γ be a fuchsian group with fundamental domain \mathcal{F} . Let $\mathcal{T} \subseteq \Gamma$ be a set of transformations of Γ . We say that \mathcal{T} covers \mathcal{F} if the set

$$\mathcal{C}_{\mathcal{T}} := igcup_{\gamma \in \mathcal{T}} \gamma(\mathcal{F})$$

is connected and there exists an $\epsilon > 0$ such that $B_{\epsilon}(z) \subseteq C_{\mathcal{T}}$, for all in $z \in \mathcal{H}$.

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Star of \mathcal{F}

We define $\Gamma^\star\subseteq\Gamma$ as the set of transformations such that

$$\bigcup_{\gamma\in\Gamma^*}\gamma(\mathcal{F})=\mathcal{C}_{\Gamma^*}=\bigcap_{\mathcal{T}}\mathcal{C}_{\mathcal{T}}.$$

・ロン ・回と ・ヨン ・ヨン

Star of ${\mathcal F}$

We define $\Gamma^* \subseteq \Gamma$ as the set of transformations such that

$$\bigcup_{\gamma\in\Gamma^*}\gamma(\mathcal{F})=\mathcal{C}_{\Gamma^*}=\bigcap_{\mathcal{T}}\mathcal{C}_{\mathcal{T}}.$$

Definition of $\star(\mathcal{F})$

We define $\star(\mathcal{F})$ to be the subset of \mathcal{H} defined by

$$\star(\mathcal{F}) := igcup_{\gamma \in \mathsf{\Gamma}^*} \gamma(\mathcal{F}).$$

・ロン ・回と ・ヨン・

Star of ${\mathcal F}$

We define $\Gamma^\star\subseteq\Gamma$ as the set of transformations such that

$$\bigcup_{\gamma\in\Gamma^*}\gamma(\mathcal{F})=\mathcal{C}_{\Gamma^*}=\bigcap_{\mathcal{T}}\mathcal{C}_{\mathcal{T}}.$$

Definition of $\star(\mathcal{F})$

We define $\star(\mathcal{F})$ to be the subset of \mathcal{H} defined by

$$\star(\mathcal{F}) := igcup_{\gamma \in \Gamma^*} \gamma(\mathcal{F}).$$

We define $\star(\gamma_1(\mathcal{F}) \cup \gamma_2(\mathcal{F})) := \star(\gamma_1(\mathcal{F})) \cup \star(\gamma_2(\mathcal{F})).$

・ロン ・回 と ・ ヨ と ・ ヨ と

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Properties of $\star(\mathcal{F})$

P.1

Let \mathcal{F} be a fundamental domain for Γ and $\gamma \in \Gamma$. Then, $\star(\gamma \mathcal{F})) = \gamma(\star(\mathcal{F})).$

P.2

Let $\gamma \in \Gamma(6, 1)$ be such that $\gamma(\mathcal{F}) \subseteq S^- \setminus \partial S^-$, i. e., with no intersection with the boundary. Then,

 $\star(\gamma(\mathcal{F})) \subseteq S^- \cup \mathcal{E}.$

・ロン ・回と ・ヨン・

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Properties of $\star(\mathcal{F})$ (cont.)

P.3

Let Γ be a Fuchsian group and let \mathcal{F} be a fundamental domain for Γ . We have the following property for the star operator:

 $\inf\{\Im(z): z \in \gamma(\mathcal{F})\} > \inf\{\Im(z): z \in \star(\gamma(\mathcal{F})\})\},$

for all $\gamma \in \Gamma$.

Example, $\Gamma(6,1)$

The set $\Gamma(6,1)^*$ is given by

 $\mathsf{\Gamma}(6,1)^* = \hspace{0.1 in} \{ \hspace{0.1 in} \operatorname{Id}, \gamma_2, \gamma_4, \gamma_6, \gamma_2^2, \gamma_4^2, \gamma_6\gamma_2, \gamma_6\gamma_4, \gamma_2\gamma_4^2, \gamma_4\gamma_2^2, \gamma_2^2\gamma_6,$

$$\gamma_4^2\gamma_6, \gamma_6\gamma_4\gamma_2^2, \gamma_2^2\gamma_6\gamma_4, \gamma_6\gamma_2\gamma_4^2 \}.$$

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

In order to reach the result, we must cover the region S^- . Once we control the edges we must cover the rest.

Figure: S_1^-

We define

$$\begin{array}{ll} S_1^- &:= \star(\mathcal{F}) \cap (S^- \cup \mathcal{E}), \text{then} \\ S_1^- &= \gamma_2 \gamma_4^2(\mathcal{F}) \cup \gamma_2(\mathcal{F}) \cup \gamma_2^2(\mathcal{F}) \cup \gamma_2^2 \gamma_6(\mathcal{F}) \cup \gamma_2^2 \gamma_6 \gamma_4(\mathcal{F}) \\ b_1 &:= \inf\{\Im(z) : z \in S_1^-\} \end{array}$$

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$$N_{21}^- = (\star(S_1^-) \setminus S_1^-) \cap (S^- \cup \mathcal{E}),$$

$$t_{21} = \sup\{\Im(z) : z \in N_{21}^-\}$$

<ロ> (四) (四) (注) (注) (三)

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$$N_{21}^- = (\star(S_1^-) \setminus S_1^-) \cap (S^- \cup \mathcal{E}),$$

$$t_{21} = \sup\{\Im(z) : z \in N_{21}^-\}$$

Figure: N_{21}^- for the $\Gamma(6, 1)$

・ロ・ ・ 日・ ・ 田・ ・ 日・

Э

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$$N_{21}^- = (\star(S_1^-) \setminus S_1^-) \cap (S^- \cup \mathcal{E}),$$

$$t_{21} = \sup\{\Im(z) : z \in N_{21}^-\}$$

Figure: N_{21}^- for the $\Gamma(6, 1)$

We want $t_{2x} < b_1$.

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$$N_{21}^- = (\star(S_1^-) \setminus S_1^-) \cap (S^- \cup \mathcal{E}),$$

$$t_{21} = \sup\{\Im(z) : z \in N_{21}^-\}$$

Figure: N_{21}^- for the $\Gamma(6, 1)$

We want $t_{2x} < b_1$.

Motivation Reduction algorithm Guternionic Fuchsian groups Other quaternionic Fuchsian groups Other guages other groups

We name \mathcal{V} the set of vertices of S^- such that $\Im v_i > b_1$.

・ロン ・回 と ・ヨン ・ヨン

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

We name \mathcal{V} the set of vertices of S^- such that $\Im v_i > b_1$.

Figure: S_2^- for $\Gamma(6, 1)$

イロン イヨン イヨン イヨン

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

We name \mathcal{V} the set of vertices of S^- such that $\Im v_i > b_1$.

Figure: S_2^- for $\Gamma(6, 1)$

We name t_2 the last t_{2x} and we name S_2 the union of the green plus blues tiles.

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Main theorem

Theorem

We have the equality:

$$S^- = \bigcup_{n \in \mathbb{N}} S_n^-.$$

Proof.

We have constructed a sequence $\{t_i > 0\}$ which is strictly decreasing

$$t_1 > t_2 > t_3 > \dots$$

This means that $\lim t_i = 0$ and this implies that S^- can be covered by tiles. The property *P*.1 implies that the region can be covered by maps, starting as a word, by g_2 .

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Reduction algorithm

Correctness

The algorithm finishes always since the action of the group Γ on ${\cal H}$ is properly discontinue (discretness).

Pairing Map-Regio	n		
	element of $\Gamma(6,1)$	Regions	
	γ_2	<i>S</i> ⁻	
	γ_4	S^+	
	γ_6	S^∞	

```
posaDomini612[z ] :=
 Block [{bandera, bandera1, bandera2, bandera3, bandera4, c1, r1, c2, r2,
   c_3, r_3, c_4, r_4, v_1, v_2, v_3, v_4, v_5, a_{ux}, k = 0, q_1, q_2, q_3, q_4, q_5, q_6},
  aux = z:
  v1 = -Sart[3]/2 + I/2; v2 = (-1 + I)/(1 + Sart[3]);
  v_3 = (2 - Sqrt[3]) I; v_4 = (1 + I) / (1 + Sqrt[3]); v_5 = (Sqrt[3] + I) / 2;
  c1 = retornaCentre[v1, v2]; r1 = Abs[v2-c1];
  c2 = retornaCentre[v2, v3]; r2 = Abs[v3 - c2];
  c3 = retornaCentre[v3, v4]; r3 = Abs[v4 - c3];
  c4 = retornaCentre[v4, v5]; r4 = Abs[v5 - c4];
  q_2 = 1/2 \{ \{1 + \text{sgrt}[3], 3 - \text{sgrt}[3] \}, \{-3 - \text{sgrt}[3], 1 - \text{sgrt}[3] \} \};
  g4 = 1/2 {{1+Sqrt[3], -3+Sqrt[3]}, {3+Sqrt[3], 1-Sqrt[3]}};
  a6 = \{\{0, 1\}, \{-1, 0\}\};
  While[!esenDomini[{{0, 1}}, {{c1, r1}, {c2, r2}, {c3, r3}, {c4, r4}}, aux],
   If[Abs[aux] \ge 1, aux = hm2[g6, aux],
    If [Re[aux] \leq 0, aux = hm2[q2, aux], aux = hm2[q4, aux]];
   k + + :
   If[k > 1000, Abort[]]
  1;
  Return[aux]
```

メロト メポト メヨト メヨト

э.

Figure: Example of the use of our reduction algorithm

・ロト ・回ト ・モト ・モト

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$\Gamma(10,1)$, Alsina-Bayer

$$\begin{aligned} v_1 &= \frac{-\sqrt{2} + \sqrt{3}i}{5(-1+\sqrt{2})}, \quad v_2 &= \frac{-\sqrt{2} + \sqrt{3}i}{5(1+\sqrt{2})} \quad v_3 &= \frac{-\sqrt{2} + \sqrt{3}i}{5(7+5\sqrt{2})}i \\ v_4 &= \frac{\sqrt{2} + \sqrt{3}i}{5(7+5\sqrt{2})}, \quad v_5 &= \frac{\sqrt{2} + \sqrt{3}i}{5(1+\sqrt{2})} \quad v_6 &= \frac{\sqrt{2} + \sqrt{3}i}{5(-1+\sqrt{2})}, \end{aligned}$$

Dionís Remón Reduction point algorithm for Fuchsian groups

・ロン ・回 と ・ ヨン ・ ヨン

The transformations which fixe the vertices $(\gamma_i(v_i) = v_i)$ are:

$$\begin{split} \gamma_1 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & 1+\sqrt{2} \\ 5(1-\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} & \gamma_2 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & -1+\sqrt{2} \\ -5(1+\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} \\ \gamma_3 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & -7+5\sqrt{2} \\ -5(7+5\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} & \gamma_4 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & 7-5\sqrt{2} \\ 5(7+5\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} \\ \gamma_5 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & 1-\sqrt{2} \\ 5(1+\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} & \gamma_6 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & -1-\sqrt{2} \\ 5(-1+\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The transformations which fixe the vertices $(\gamma_i(v_i) = v_i)$ are:

$$\begin{split} \gamma_1 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & 1+\sqrt{2} \\ 5(1-\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} & \gamma_2 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & -1+\sqrt{2} \\ -5(1+\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} \\ \gamma_3 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & -7+5\sqrt{2} \\ -5(7+5\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} & \gamma_4 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & 7-5\sqrt{2} \\ 5(7+5\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} \\ \gamma_5 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & 1-\sqrt{2} \\ 5(1+\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} & \gamma_6 &= \frac{1}{2} \begin{bmatrix} 1+\sqrt{2} & -1-\sqrt{2} \\ 5(-1+\sqrt{2}) & 1-\sqrt{2} \end{bmatrix} \end{split}$$

Principal homothety

$$h = \begin{bmatrix} 3+2\sqrt{2} & 0\\ 0 & 3-2\sqrt{2} \end{bmatrix}.$$

イロン 不同と 不同と 不同と

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Presentation of $\Gamma(10, 1)$

$$\langle \gamma_2, h, \gamma_5: \; \gamma_2^3 = \gamma_5^3 = (h^{-1}\gamma_2)^3 = (h^{-1}\gamma_5)^3 = 1
angle.$$

Figure: Example of the use of our reduction algorithm

・ロ・ ・ 日・ ・ 田・ ・ 田・

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$\Gamma(15,1)$, Alsina-Bayer

The principal homothety of $\Gamma(15, 1)$ is

$$h = \begin{bmatrix} 2 + \sqrt{3} & 0 \\ 0 & 2 - \sqrt{3} \end{bmatrix}$$

$$\beta = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 5 & 3 \end{bmatrix}, \quad \gamma = \frac{1}{2} \begin{bmatrix} -4 + 3\sqrt{3} & -\sqrt{3} \\ 5\sqrt{3} & -4 - 3\sqrt{3} \end{bmatrix}$$

Presentation of the group

$$\Gamma(15,1)/\{\pm \mathrm{Id} = \langle h, \beta, \gamma : (\gamma h)^3 = (h\beta^{-1}\gamma\beta)^3 = 1 \rangle.$$

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Figure: Example of the use of our algorithm

・ロン ・回と ・ヨン ・ヨン

Э

Motivation Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Figure: Example of the use of our algorithm

・ロト ・回ト ・ヨト ・ヨト

Э

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

$\Gamma(6,5)$, Nualart-Travesa

A fundamental domain for $\Gamma(6, 5)$ is defined by the vertices

$$\begin{array}{ll} \mathsf{v}_1 = (2+\sqrt{3}i), & \mathsf{v}_2 = \frac{-2\sqrt{3}+i}{4+\sqrt{3}}, & \mathsf{v}_3 = \frac{16\sqrt{3}+i}{38+15\sqrt{3}}, & \mathsf{v}_4 = \frac{-15\sqrt{3}+i}{38+16\sqrt{3}}, & \mathsf{v}_5 = \frac{-\sqrt{3}+i}{4+2\sqrt{3}}, \\ \\ \mathsf{v}_6 = (7-4\sqrt{3})i, & \mathsf{v}_7 = \frac{2\sqrt{3}+i}{5+2\sqrt{3}}, & \mathsf{v}_8 = \frac{16\sqrt{3}+i}{31+8\sqrt{3}}, & \mathsf{v}_9 = \frac{15\sqrt{3}+i}{28+6\sqrt{3}}, & \mathsf{v}_{10} = \frac{\sqrt{3}+i}{2}. \end{array}$$

$$\begin{split} g_1 &= \left[\begin{array}{cc} 0 & -2 - \sqrt{3} \\ 2 - \sqrt{3} & 0 \end{array} \right], \qquad g_2 &= \left[\begin{array}{cc} -2\sqrt{3} & -4 + \sqrt{3} \\ 4 + \sqrt{3} & 2\sqrt{3} \end{array} \right], \\ g_3 &= \left[\begin{array}{cc} 16\sqrt{3} & 38 - 15\sqrt{3} \\ -38 - 15\sqrt{3} & -16\sqrt{3} \end{array} \right], \qquad g_4 &= \left[\begin{array}{cc} -15\sqrt{3} & -38 + 16\sqrt{3} \\ 38 + 16\sqrt{3} & 15\sqrt{3} \end{array} \right], \\ g_5 &= \left[\begin{array}{cc} \sqrt{3} & 4 - 2\sqrt{3} \\ -4 - 2\sqrt{3} & -\sqrt{3} \end{array} \right], \qquad g_6 &= \left[\begin{array}{cc} 0 & 7 - 4\sqrt{3} \\ -7 - 4\sqrt{3} & 0 \end{array} \right], \\ g_7 &= \left[\begin{array}{cc} -2\sqrt{3} & 5 - 2\sqrt{3} \\ -5 - 2\sqrt{3} & 2\sqrt{3} \end{array} \right], \qquad g_8 &= \left[\begin{array}{cc} -16\sqrt{3} & 31 - 8\sqrt{3} \\ -31 - 8\sqrt{3} & 16\sqrt{3} \end{array} \right], \\ g_9 &= \left[\begin{array}{cc} -15\sqrt{3} & 28 - 6\sqrt{3} \\ -28 - 6\sqrt{3} & 15\sqrt{3} \end{array} \right], \qquad g_{10} &= \left[\begin{array}{cc} \sqrt{3} & -2 \\ 2 & -\sqrt{3} \end{array} \right]. \end{split}$$

Dionís Remón

Reduction point algorithm for Fuchsian groups

ヘロマ ヘロマ ヘルマ ヘルマ

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Presentation of $\Gamma(6,5)$

Identification of sides

The γ_i , $i = 1, \ldots, 5$,

the map γ_1 sends $(v_1 v_2, v_7 v_6)$, the map γ_2 sends $(v_2 v_3, v_8 v_7)$, the map γ_3 sends $(v_3 v_4, v_1 v_{10})$, the map γ_4 sends $(v_4 v_5, v_{10} v_9)$, the map γ_5 sends $(v_5 v_6, v_9 v_8)$.

Presentation of $\Gamma(6,5)$

$$\Gamma(6,5) = \{\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5 : (\gamma_3 \gamma_2^{-1} \gamma_1)^2 = (\gamma_2^{-1} \gamma_5 \gamma_1)^2 = (\gamma_4^{-1} \gamma_5)^2 = \mathrm{Id} \}.$$

イロン 不同と 不同と 不同と

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

Figure: Example of the use of our reduction algorithm

< □ > < □ > < □ > < □ > < □ > .

Э

Reduction algorithm for quaternionic Fuchsian groups Other quaternionic Fuchsian groups Other cocompact groups

The triangle group $\Gamma = e2d1D6ii$, Sijsling

Consider the Fuchsian triangle group $\Gamma = e2d1D6ii$ which has signature (1; 2). Then the hyperbolic polygon with vertices (v_1, v_2, v_3, v_4) ,

$$v_1 = \frac{1}{2}i\sqrt{2+\sqrt{3}} + \frac{1}{2}\sqrt{3(2+\sqrt{3})}, \quad v_2 = \frac{1}{2}\sqrt{6-3\sqrt{3}} + \frac{1}{2}i\sqrt{2-\sqrt{3}},$$

$$v_3 = \frac{1}{2}i\sqrt{2} + \sqrt{3} - \frac{1}{2}\sqrt{3}(2 + \sqrt{3}), \quad v_4 = \frac{1}{2}i\sqrt{2} - \sqrt{3} + \frac{-3 + \sqrt{3}}{2\sqrt{2}},$$

is a fundamental domain in the Poincarè upper half-plane.

•••

Moreover we have the next properties:

• Let α, β be maps

$$\alpha = \begin{bmatrix} \sqrt{\frac{3}{2}} + \frac{1}{\sqrt{2}} & 0\\ 0 & \sqrt{\frac{3}{2}} - \frac{1}{\sqrt{2}} \end{bmatrix} \quad \beta = \begin{bmatrix} \sqrt{2} & 1\\ 1 & \sqrt{2} \end{bmatrix}$$

• The identifications between edges are given by:

 (v_3v_4, v_1v_2) by means of β , (v_2v_4, v_1v_3) by means of α .

• We have the next presentation for this group:

$$\langle \alpha, \beta : (\alpha \beta \alpha^{-1} \beta^{-1})^2 = 1 \rangle.$$

<ロ> (四) (四) (三) (三)

Motivation	Reduction algorithm for quaternionic Fuchsian groups		
Reduction algorithm	Other quaternionic Fuchsian groups		
	Other cocompact groups		

Figure: Example of the use of the reduction algorithm

<ロ> <同> <同> < 同> < 同> < 同> :