BCN Spring 2016 Workshop: Number Theory & K-theory

From zeta functions to Waldhausen's S-construction

Ponentes

Joachim Kock

Resumen

The classical M\"obius inversion principle for arithmetic
functions states that the zeta function is convolution
invertible (with inverse the Möbius function).  I will survey a
sequence of generalisations of this principle: first to locally
finite posets (Hall and Rota) and to monoids with the
finite-decomposition property (Cartier-Foata), then to Möbius categories (Leroux, Lawvere-Menni), and finally to the recent notion of decomposition space (joint work with Gálvez and Tonks), of which Waldhausen's S-construction is an important example (cf.~also Dyckerhoff-Kapranov).

 

References

I.Gálvez-Carrillo, J.Kock, A.Tonks.
Decomposition spaces, incidence algebras and M\"obius inversion I: basic theory. ArXiv:1512.07573.

I.Gálvez-Carrillo, J.Kock, A.Tonks.
Decomposition spaces, incidence algebras and M\"obius inversion II:completeness, length filtration, and finiteness.
ArXiv:1512.07577.

 

 

Ficheros

No hay ficheros disponibles para descargar

Idiomas: